Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Obstet Gynecol ; 230(2): 254.e1-254.e13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37531989

RESUMO

BACKGROUND: Hyperglycemia from pregestational diabetes mellitus induces neural tube defects in the developing fetus. Folate supplementation is the only effective way to prevent neural tube defects; however, some cases of neural tube defects are resistant to folate. Excess folate has been linked to higher maternal cancer risk and infant allergy. Therefore, additional interventions are needed. Understanding the mechanisms underlying maternal diabetes mellitus-induced neural tube defects can identify potential targets for preventing such defects. Despite not yet being in clinical use, growing evidence suggests that microRNAs are important intermediates in embryonic development and can serve as both biomarkers and drug targets for disease intervention. Our previous studies showed that maternal diabetes mellitus in vivo activates the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in the developing embryo and that a high glucose condition in vitro reduces microRNA-322 (miR-322) levels. IRE1α is an RNA endonuclease; however, it is unknown whether IRE1α targets and degrades miR-322 specifically or whether miR-322 degradation leads to neural tube defects via apoptosis. We hypothesize that IRE1α can inhibit miR-322 in maternal diabetes mellitus-induced neural tube defects and that restoring miR-322 expression in developing neuroepithelium ameliorates neural tube defects. OBJECTIVE: This study aimed to identify potential targets for preventing maternal diabetes mellitus-induced neural tube defects and to investigate the roles and relationship of a microRNA and an RNA endonuclease in mouse embryos exposed to maternal diabetes mellitus. STUDY DESIGN: To determine whether miR-322 reduction is necessary for neural tube defect formation in pregnancies complicated by diabetes mellitus, male mice carrying a transgene expressing miR-322 were mated with nondiabetic or diabetic wide-type female mice to generate embryos with or without miR-322 overexpression. At embryonic day 8.5 when the neural tube is not yet closed, embryos were harvested for the assessment of 3 miR-322 transcripts (primary, precursor, and mature miR-322), tumor necrosis factor receptor-associated factor 3 (TRAF3), and neuroepithelium cell survival. Neural tube defect incidences were determined in embryonic day 10.5 embryos when the neural tube should be closed if there is no neural tube defect formation. To identify which miR-322 transcript is affected by maternal diabetes mellitus and high glucose conditions, 3 miR-322 transcripts were assessed in embryos from dams with or without diabetes mellitus and in C17.2 mouse neural stem cells treated with different concentrations of glucose and at different time points. To determine whether the endonuclease IRE1α targets miR-322, small interfering RNA knockdown of IRE1α or overexpression of inositol-requiring transmembrane kinase/endoribonuclease 1α by DNA plasmid transfection was used to determine the effect of IRE1α deficiency or overexpression on miR-322 expression. RNA immunoprecipitation was performed to reveal the direct targets of inositol-requiring transmembrane kinase/endoribonuclease 1α. RESULTS: Maternal diabetes mellitus suppressed miR-322 expression in the developing neuroepithelium. Restoring miR-322 expression in the neuroepithelium blocked maternal diabetes mellitus-induced caspase-3 and caspase-8 cleavage and cell apoptosis, leading to a neural tube defect reduction. Reversal of maternal diabetes mellitus-inhibited miR-322 via transgenic overexpression prevented TRAF3 up-regulation in embryos exposed to maternal diabetes mellitus. Activated IRE1α acted as an endonuclease and degraded precursor miR-322, resulting in mature miR-322 reduction. CONCLUSION: This study supports the crucial role of the IRE1α-microRNA-TRAF3 circuit in the induction of neuroepithelial cell apoptosis and neural tube defect formation in pregnancies complicated by diabetes mellitus and identifies IRE1α and miR-322 as potential targets for preventing maternal diabetes mellitus-induced neural tube defects.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , MicroRNAs , Defeitos do Tubo Neural , Gravidez em Diabéticas , Humanos , Gravidez , Masculino , Feminino , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Gravidez em Diabéticas/genética , Gravidez em Diabéticas/metabolismo , Diabetes Gestacional/genética , Glucose , Ácido Fólico , Inositol
2.
Curr Diab Rep ; 18(3): 12, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29450745

RESUMO

PURPOSE OF REVIEW: Monogenic diabetes accounts for 1-2% of all diabetes cases, but is frequently misdiagnosed as type 1, type 2, or gestational diabetes. Accurate genetic diagnosis directs management, such as no pharmacologic treatment for GCK-MODY, low-dose sulfonylureas for HNF1A-MODY and HNF4A-MODY, and high-dose sulfonylureas for KATP channel-related diabetes. While diabetes treatment is defined for the most common causes of monogenic diabetes, pregnancy poses a challenge to management. Here, we discuss the key issues in pregnancy affected by monogenic diabetes. RECENT FINDINGS: General recommendations for pregnancy affected by GCK-MODY determine need for maternal insulin treatment based on fetal mutation status. However, a recent study suggests macrosomia and miscarriage rates may be increased with this strategy. Recent demonstration of transplacental transfer of sulfonylureas also raises questions as to when insulin should be initiated in sulfonylurea-responsive forms of monogenic diabetes. Pregnancy represents a challenge in management of monogenic diabetes, where factors of maternal glycemic control, fetal mutation status, and transplacental transfer of medication must all be taken into consideration. Guidelines for pregnancy affected by monogenic diabetes will benefit from large, prospective studies to better define the need for and timing of initiation of insulin treatment.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Gravidez em Diabéticas/terapia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Glucoquinase/genética , Fatores Nucleares de Hepatócito/genética , Humanos , Mutação , Canais de Potássio/genética , Gravidez , Gravidez em Diabéticas/diagnóstico , Gravidez em Diabéticas/genética , Gravidez em Diabéticas/fisiopatologia
3.
Reprod Toxicol ; 23(4): 486-98, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17482424

RESUMO

We aimed to investigate the extent to which maternal diabetes with or without folic acid (FA) supplementation affects mRNA levels and protein distribution of ROS scavenging enzymes, vascular endothelial growth factor-A (Vegf-A), folate binding protein-1 (Folbp-1), and apoptosis-associated proteins in the yolk sacs of rat embryos on gestational days 10 and 11. Commencing at conception and throughout pregnancy, half of the streptozotocin-diabetic and half of the control rats received daily FA injections. Maternal diabetes impaired vascular morphology and decreased CuZnSOD and GPX-1 gene expression in yolk sacs. Maternal diabetes also increased the levels of CuZnSOD protein, increased the Bax/Bcl-2 protein ratio and decreased Vegf-A protein distribution. FA treatment normalized vascular morphology, decreased mRNA levels of all three SOD isoforms and increased Vegf-A mRNA levels, rectified CuZnSOD protein distribution and Bax/Bcl-2 ratio. A teratogenic diabetic environment produces a state of vasculopathy, oxidative stress, and mild apoptosis in the yolk sac. FA administration normalizes vascular morphology, diminishes apoptotic rate, and increases Vegf-A gene expression and protein distribution in the yolk sac of diabetic rats.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Ácido Fólico/farmacologia , Oxirredutases/metabolismo , Gravidez em Diabéticas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Saco Vitelino/efeitos dos fármacos , Animais , Antioxidantes/uso terapêutico , Caspase 3/metabolismo , Catalase/metabolismo , Diabetes Mellitus Experimental/embriologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Feminino , Ácido Fólico/uso terapêutico , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Idade Gestacional , Glutationa Peroxidase/metabolismo , Glicina N-Metiltransferase/metabolismo , Oxirredutases/genética , Gravidez , Gravidez em Diabéticas/genética , Gravidez em Diabéticas/metabolismo , Gravidez em Diabéticas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Saco Vitelino/enzimologia , Saco Vitelino/patologia , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA