RESUMO
As the human life expectancy increases, age-linked diseases have become more and more frequent. The worldwide increment of dementia cases demands medical solutions, but the current available drugs do not meet all the expectations. Recently the attention of the scientific community was attracted by natural compounds, used in ancient medicine, known for their beneficial effects and high tolerability. This review is focused on Ginger (Zingiber officinale) and explore its properties against Alzheimer's Disease and Vascular Dementia, two of the most common and devastating forms of dementia. This work resumes the beneficial effects of Ginger compounds, tested in computational in vitro and in vivo models of Alzheimer's Disease and Vascular Dementia, along with some human tests. All these evidences suggest a potential role of the compounds of ginger not only in the treatment of the disease, but also in its prevention.
Assuntos
Demência/tratamento farmacológico , Extratos Vegetais/química , Substâncias Protetoras/química , Zingiber officinale/química , Catecóis/química , Catecóis/farmacologia , Descoberta de Drogas , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Guaiacol/análogos & derivados , Guaiacol/química , Guaiacol/farmacologia , Humanos , Cetonas/química , Cetonas/farmacologia , Modelos Moleculares , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Relação Estrutura-AtividadeRESUMO
In this study, the effects of 6-paradol (6P) and 6-paradol-ß-glucoside (6PG) on neuritogenesis were investigated using PC12 cells. Treatment with 200 µM 6P or 6PG and nerve growth factor (NGF) (5 ng mL-1) increased the number of elongated dendritic cells 8.7 and 5.4 times, respectively, compared to that with NGF (5 ng mL-1) treatment alone. 6P and 6PG did not stimulate the phosphorylation of extracellular regulated protein kinases (ERK)1/2 and cAMP response element-binding protein (CREB) in the tropomyosin receptor kinase A (TrkA) pathway as their activities were suppressed by the pathway inhibitor, k252a. 6P enhanced Ca2+ influx into the cells, whereas 6PG had no effect on Ca2+ influx, although it stimulated PC12 cell differentiation. High-performance liquid chromatography (HPLC) analysis of 6PG in PC12 culture medium suggested that 6PG was deglycosylated to generate 6P, which exhibited the effect. Furthermore, the bioactivities of 6P and 6PG were investigated in mice, and the results revealed that they ameliorated short-term memory loss in animals during behavioral testing.
Assuntos
Glucosídeos/administração & dosagem , Guaiacol/análogos & derivados , Cetonas/administração & dosagem , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Cálcio/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glucosídeos/química , Guaiacol/administração & dosagem , Guaiacol/química , Humanos , Cetonas/química , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Camundongos , Células PC12 , Fosforilação , Ratos , Receptor trkA/genética , Receptor trkA/metabolismo , Sementes/química , Transdução de Sinais/efeitos dos fármacos , Zingiberaceae/químicaRESUMO
Dendrobium bibenzyls and phenanthrenes such as chrysotoxine, cypripedin, gigantol and moscatilin have been reported to show promising inhibitory effects on lung cancer growth and metastasis in ex vivo human cell line models, suggesting their potential for clinical application in patients with lung cancer. However, it remains to be determined whether these therapeutic effects can be also seen in primary human cells and/or in vivo. In this study, we comparatively investigated the immune modulatory effects of bibenzyls and phenanthrenes, including a novel Dendrobium bibenzyl derivative, in primary human monocytes. All compounds were isolated and purified from a Thai orchid Dendrobium lindleyi Steud, a new source of therapeutic compounds with promising potential of tissue culture production. We detected increased frequencies of TNF- and IL-6-expressing monocytes after treatment with gigantol and cypripedin, whereas chrysotoxine and moscatilin did not alter the expression of these cytokines in monocytes. Interestingly, the new 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl derivative showed dose-dependent immune modulatory effects in lipopolysaccharide (LPS)-treated CD14lo and CD14hi monocytes. Together, our findings show immune modulatory effects of the new bibenzyl derivative from Dendrobium lindleyi on different monocyte sub-populations. However, therapeutic consequences of these different monocyte populations on human diseases including cancer remain to be investigated.
Assuntos
Bibenzilas/farmacologia , Dendrobium , Fatores Imunológicos/farmacologia , Monócitos/efeitos dos fármacos , Fenantrenos/farmacologia , Extratos Vegetais/farmacologia , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Bibenzilas/química , Células Cultivadas , Dendrobium/química , Guaiacol/análogos & derivados , Guaiacol/química , Guaiacol/farmacologia , Humanos , Fatores Imunológicos/química , Monócitos/imunologia , Naftoquinonas/química , Naftoquinonas/farmacologia , Fenantrenos/química , Extratos Vegetais/químicaRESUMO
RATIONALE: Gigantol (3',4-dihydroxy-3,5'-dimethoxybibenzyl) is a bibenzyl compound isolated from Dendrobii Caulis that has been widely used as a medicinal herb in China. To fully understand the mechanism of action of gigantol, it is necessary to determine its metabolic profile. METHODS: Gigantol at a concentration of 20 µM was incubated with hepatocytes (rat, dog, monkey, and human) at 37°C. After 120 min incubation, the samples were analyzed using liquid chromatography coupled with electrospray ionization tandem mass spectrometry. The structures of the metabolites were characterized by their molecular masses, product ions, and retention times. RESULTS: A total of 17 metabolites were detected and structurally identified. The metabolism involved the following pathways: (a) oxidation to form quinone-methide species and subsequently conjugation with glutathione (GSH); (b) demethylation to form demethylated gigantol, which was further conjugated with GSH; (c) hydroxylation to yield hydroxyl-gigantol followed by glucuronidation or GSH conjugation; and (d) glucuronidation to form glucuronide conjugates. Glucuronidation was the primary metabolic pathway in all tested species. CONCLUSIONS: Hydroxylation, demethylation, glucuronidation, and GSH conjugation were the major metabolic pathways of gigantol. This study provides new information on the metabolic profiles of gigantol and helps us understand the disposition of the compound.
Assuntos
Bibenzilas , Cromatografia Líquida de Alta Pressão/métodos , Guaiacol/análogos & derivados , Hepatócitos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Bibenzilas/análise , Bibenzilas/química , Bibenzilas/metabolismo , Bibenzilas/farmacocinética , Células Cultivadas , Cães , Guaiacol/análise , Guaiacol/química , Guaiacol/metabolismo , Guaiacol/farmacocinética , Haplorrinos , Humanos , Ratos , Espectrometria de Massas em Tandem/métodosRESUMO
Hawthorn seed can be used to produce various bioactive compounds through destructive distillation. In this study, an accurate and feasible analytical method based on a gas chromatography mass spectrometer (GC-MS) was developed for simultaneous determination of six major compounds (contributing to more than 3% in total peak area) in destructive distillation extracts of hawthorn seed collected at different temperatures ranging from 150 to 270 °C. Then, a broth microdilution method coupled with grey correlation analysis was engaged in the evaluation of their antimicrobial activities and the screening of primarily active compounds. Results indicate that the extract collected from 211 to 230 °C had the highest content of six major compounds (furfural, 2-methoxyphenol, 2-methoxy-4-methylphenol, 4-ethyl-2-methoxyphenol, 2,6-dimethoxyphenol, and 5-tertbutylpyrogallol) and the strongest antibacterial activity. Besides, 2,6-dimethoxyphenol was found to be a potential compound in inhibiting the growth of vaginitis pathogens. This study provided an optimum temperature for the destructive distillation of hawthorn seed, reducing the waste of energy, and saving the cost of production in the hawthorn industry.
Assuntos
Antibacterianos/farmacologia , Crataegus/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Sementes/química , Antibacterianos/química , Cresóis/química , Cresóis/isolamento & purificação , Cresóis/farmacologia , Destilação/métodos , Furaldeído/química , Furaldeído/isolamento & purificação , Furaldeído/farmacologia , Guaiacol/química , Guaiacol/isolamento & purificação , Guaiacol/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pirogalol/análogos & derivados , Pirogalol/química , Pirogalol/isolamento & purificação , Pirogalol/farmacologiaRESUMO
BACKGROUND: Transient receptor potential ankyrin-1 (TRPA1) channels expressed in the central terminal of dorsal root ganglion neurons in the spinal substantia gelatinosa (SG) play a role in modulating nociceptive transmission. Although plant-derived compounds exhibiting antinociception (such as eugenol, carvacrol and thymol) activate TRPA1 channels to enhance spontaneous excitatory transmission while hyperpolarizing membranes in SG neurons without TRPA1 activation, specific chemical moieties involved in synaptic modulation are unknown. METHODS: We examined the effects of other plant-derived compounds (guaiacol, vanillin, vanillic acid and p-cymene) on holding current and spontaneous excitatory transmission at -70 mV by applying the whole-cell patch-clamp technique to SG neurons in adult rat spinal cord slices. RESULTS: None of the compounds affected the frequency or amplitude of spontaneous excitatory postsynaptic current. Guaiacol and vanillic acid had no effect on holding currents, while vanillin and p-cymene produced an inward and outward current, respectively, in some neurons tested. Synaptic modulation was also observed within the same neuron as the activities of eugenol, carvacrol, thymol, and the chemically-related plant-derived compound zingerone occurred. CONCLUSION: A substituted group in eugenol and zingerone, but not in guaiacol, vanillin or vanillic acid, as well as an OH bound to the benzene ring of carvacrol and thymol, but not p-cymene, play a role in producing outward current and TRPA1 activation. Thus, the binding of such chemical moeties to the benzene ring of plant-derived compounds appears necessary to modulate nociceptive transmission in the SG. This information provides insight for the development of new analgesics based on plant-derived compounds.
Assuntos
Analgésicos/farmacologia , Extratos Vegetais/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Canal de Cátion TRPA1/agonistas , Analgésicos/química , Animais , Benzaldeídos/química , Benzaldeídos/farmacologia , Cimenos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Guaiacol/química , Guaiacol/farmacologia , Técnicas In Vitro , Masculino , Estrutura Molecular , Monoterpenos/química , Monoterpenos/farmacologia , Extratos Vegetais/química , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Substância Gelatinosa/metabolismo , Canal de Cátion TRPA1/metabolismo , Ácido Vanílico/química , Ácido Vanílico/farmacologiaRESUMO
BACKGROUND: Grains of paradise (GP) is the seed of Aframomum melegueta, which is widely distributed throughout West Africa and has been used as a spice and a folk remedy for a long time. Anti-obesity effect of GP intake was demonstrated in a previous report. Aim of the present study was to isolate some compounds in GP and clarify the anti-obesity mechanism. RESULTS: Ten vanilloid compounds were isolated. Among them, 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol and 1-(4'-hydroxy-3'-methoxyphenyl)-3-octen-5-one were determined as novel compounds and 6-gingerol, 6-paradol and 6-shogaol were identified as the major constituents in GP extract. Moreover, the extract and 6-gingerol, which is one of the principal components of GP extract, were orally administered to rats to investigate the effect on sympathetic nerve activity (SNA) in brown adipose tissue (BAT). The injection of GP extract and 6-gingerol decreased BAT-SNA, whereas capsaicin, which is a major component of chili pepper, activates the sympathetic nervous system. CONCLUSION: This study suggested that GP extract and 6-gingerol were largely unrelated to the anti-obesity effect by the activation of interscapular BAT-SNA and had a different anti-obesity mechanism to capsaicin. © 2018 Society of Chemical Industry.
Assuntos
Obesidade/fisiopatologia , Extratos Vegetais/química , Sistema Nervoso Simpático/diagnóstico por imagem , Zingiberaceae/química , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/inervação , Animais , Catecóis/administração & dosagem , Catecóis/química , Álcoois Graxos/administração & dosagem , Álcoois Graxos/química , Guaiacol/administração & dosagem , Guaiacol/análogos & derivados , Guaiacol/química , Humanos , Cetonas/administração & dosagem , Cetonas/química , Estrutura Molecular , Obesidade/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Ratos , Sementes/química , Sistema Nervoso Simpático/fisiopatologiaRESUMO
Zingerone (ZGR), a phenolic alkanone found in Zingiber officinale, has been reported to have various pharmacological activities such as anti-inflammatory, anti-apoptotic, and protecting myocardial infarction and irritable bowel disorder. The aim was to identify the unreported bioactive anti-factor Xa (FXa) and anti-platelet activities of ZGR. ZGR was evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity and production, and thrombus formation. ZGR reduced activated partial thromboplastin time and it inhibited the catalytic activity of FXa toward its substrate S-2222 in a noncompetitive inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619 (not thrombin). However, ZGR did not prolong bleeding time in mice, as shown by tail clipping. ZGR also inhibited ADP- and U46619- induced phosphorylation of myristolated alanine-rich C-kinase substrate (MARCKS) and the expressions of P-selectin and PAC-1 in platelets. In an animal model of arterial and pulmonary thrombosis, ZGR showed enhanced antithrombotic effects. ZGR also elicited anticoagulant effects in mice. Our results reveal that ZGR is an antithrombotic compound with both FXa inhibitory and anti-platelet aggregation activities. Collectively, these results show that ZGR could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs.
Assuntos
Inibidores do Fator Xa/farmacologia , Guaiacol/análogos & derivados , Extratos Vegetais/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Trombose/tratamento farmacológico , Zingiber officinale/química , Animais , Fator Xa/metabolismo , Inibidores do Fator Xa/química , Guaiacol/química , Guaiacol/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Trombose/sangue , Trombose/metabolismoRESUMO
Five technical lignins (three organosolv, Kraft and soda lignin) were depolymerised to produce monomeric biobased aromatics, particularly alkylphenols, by a new two-stage thermochemical approach consisting of dedicated pyrolysis followed by catalytic hydrodeoxygenation (HDO) of the resulting pyrolysis oils. Pyrolysis yielded a mixture of guaiacols, catechols and, optionally, syringols in addition to alkylphenols. HDO with heterogeneous catalysts (Ru/C, CoMo/alumina, phosphided NiMO/C) effectively directed the product mixture towards alkylphenols by, among others, demethoxylation. Up to 15wt% monomeric aromatics of which 11wt% alkylphenols was obtained (on the lignin intake) with limited solid formation (<3wt% on lignin oil intake). For comparison, solid Kraft lignin was also directly hydrotreated for simultaneous depolymerisation and deoxygenation resulting in two times more alkylphenols. However, the alkylphenols concentration in the product oil is higher for the two-stage approach. Future research should compare direct hydrotreatment and the two-stage approach in more detail by techno-economic assessments.
Assuntos
Biotecnologia/métodos , Lignina/química , Fenóis/química , Óxido de Alumínio/química , Catálise , Catecóis/química , Guaiacol/químicaRESUMO
The epithelial-mesenchymal transition (EMT) is an important cellular process during which polarized epithelial cells become motile mesenchymal cells, which promote cancer metastasis. Ginger, the rhizome of Zingiber officinale, is extensively used in cooking worldwide and also as a traditional medicinal herb with antioxidant, anti-inflammatory and anticancer properties. Several pungent compounds have been identified in ginger, including zingerone, which has anticancer potential. However, the role of zingerone in EMT is unclear. We investigated the synergistic effect of zingerone and its derivative on EMT. Transforming growth factor-beta 1 (TGF-ß1) induces the EMT to promote hepatocellular carcinoma metastasis, including migration and invasion. To understand the repressive role of the combination of zingerone and its derivative (ZD 2) in hepatocellular carcinoma metastasis, we investigated the potential use of each compound of ginger, such as zingerone, ZD 2 and 6-shogaol, or the mixture of zingerone and ZD 2 (ZD 2-1) as inhibitors of TGF-ß1 induced EMT development in SNU182 hepatocellular carcinoma cells in vitro. We show that ZD 2-1, but not zingerone, ZD 2 and 6-shogaol significantly increased expression of the epithelial marker E-cadherin and repressed Snail upregulation and expression of the mesenchymal marker N-cadherin during initiation of the TGF-ß1 induced EMT. In addition, ZD 2-1 inhibited the TGF-ß1 induced increase in cell migration and invasion of SNU182 hepatocellular carcinoma cells. Furthermore, ZD 2-1 significantly inhibited TGF-ß1 regulated matrix metalloproteinase-2/9 and activation of Smad2/3. We also found that ZD 2-1 inhibited nuclear translocation of NF-κB, activation of p42/44 MAPK/AP1 signaling pathway in the TGF-ß1 induced EMT. Our findings provide new evidence that combined treatment with ZD 2, novel zingerone derivative, and zingerone synergistically suppresses hepatocellular carcinoma metastasis in vitro by inhibiting the TGF-ß1 induced EMT.
Assuntos
Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Guaiacol/análogos & derivados , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/prevenção & controle , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Linhagem Celular Tumoral , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/fisiologia , Guaiacol/química , Guaiacol/farmacologia , Humanos , Fator de Crescimento Transformador beta1/fisiologiaRESUMO
Lactoperoxidase is a milk hemoprotein that acts as a non-immunoglobulin protective protein and shows strong antimicrobial activity. Bovine milk contains about 15 and 7 times higher levels of lactoperoxidase than human colustrum and camel milk, respectively. Human, bovine, and camel lactoperoxidases (hLPO, bLPO, and cLPO, respectively) were purified as homogeneous samples with specific activities of 4.2, 61.3, and 8.7 u/mg, respectively. The optimal working pH was 7.5 (hLPO and bLPO) and 6.5 (cLPO), whereas the optimal working temperature for these proteins was 40 °C. The K m of hLPO, cLPO, and bLPO were 17, 16, and 19 mM, and their corresponding V max values were 2, 1.7, and 2.7 µmol/min ml. However, in the presence of H2O2, the K m values were 11 mM for hLPO and cLPO and 20 mM for bLPO, while the corresponding V max values were 1.17 for hLPO and 1.4 µmol/min ml for cLPO and bLPO. All three proteins were able to inhibit the herpes simplex virus type 1 (HSV-1) in Vero cell line model. The relative antiviral activities were proportional to the protein concentrations. The highest anti-HSV-1 activity was exhibited by bLPO that inhibited the HSV particles at a concentration of 0.5 mg/ml with the relative activity of 100%.
Assuntos
Antivirais/farmacologia , Colostro/química , Guaiacol/química , Herpesvirus Humano 1/efeitos dos fármacos , Lactoperoxidase/farmacologia , Leite/química , Animais , Antivirais/química , Antivirais/isolamento & purificação , Camelus , Bovinos , Chlorocebus aethiops , Herpesvirus Humano 1/crescimento & desenvolvimento , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Lactoperoxidase/química , Lactoperoxidase/isolamento & purificação , Testes de Sensibilidade Microbiana , Temperatura , Células VeroRESUMO
BACKGROUND: Gigantol and syringic acid (SA) have been shown to synergistically prevent formation of diabetic cataract (DC). However, the exact mechanism of this effect is unknown. Here, we investigate the effect of these compounds on the activity of aldose reductase (AR) and cataract formation. METHODS: We examined the synergistic anti-cataract efficacy of gigantol and SA in the high glucose- and streptozotocin -induced DC rat model; synergism was evaluated using Jin's formula. We investigated possible mechanisms of action by measuring AR expression and activity and levels of sorbitol using enzyme kinetics, Western blot, and RT-PCR. Finally, we examined binding interaction between AR and both compounds using a combination of site-directed mutagenesis, recombinant expression of wild-type and mutant proteins, and enzyme kinetics. RESULTS: Combination treatment of gigantol and SA synergistically protected both HLECs(human lens epithelial cells) grown in vitro and DC formation in STZ-induced rats in vivo. Synergism was attributed to inhibition of AR activity, downregulation of AR expression via impaired transcription, and decreased sorbitol levels. Enzyme kinetics studies showed that the activity of an AR Asn160Ala mutant protein was significantly decreased compared to wild-type AR, confirming that Asn160 is a key residue for interaction between AR and both compounds. CONCLUSION: Combined administration of gigantol and SA synergize to enhance anti-cataract efficacy. The synergistic effect is mainly attributed to disruption of the polyol pathway and inhibition of AR activity.
Assuntos
Aldeído Redutase/efeitos dos fármacos , Bibenzilas/farmacologia , Catarata/prevenção & controle , Complicações do Diabetes/prevenção & controle , Ácido Gálico/análogos & derivados , Guaiacol/análogos & derivados , Aldeído Redutase/metabolismo , Animais , Bibenzilas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Ácido Gálico/química , Ácido Gálico/farmacologia , Guaiacol/química , Guaiacol/farmacologia , Humanos , Masculino , Ratos , Ratos WistarRESUMO
Ginger (Zingiber officinale Rosc.) is a common dietary adjunct that contributes to the taste and flavor of foods, and is also an important Traditional Chinese medicine (TCM). Different processing methods can produce different processed gingers with dissimilar chemical constituents and pharmacological activities. In this study, an ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/QTOF-MS) was applied to identify the complicated components from fresh, dried, stir-frying and carbonized ginger extracts. All of the 27 compounds were identified from four kinds of ginger samples (fresh, dried, stir-frying and carbonized ginger). Five main constituents (zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol) in these four kinds of ginger sample extracts were simultaneously determined by UPLC-PDA. Meanwhile, the antioxidant effect of fresh, dried, stir-frying and carbonized gingers were evaluated by three assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP)). The results demonstrated that antioxidant activity of dried ginger was the highest, for its phenolic contents are 5.2-, 1.1- and 2.4-fold higher than that of fresh, stir-frying and carbonized ginger, respectively, the antioxidant activities' results indicated a similar tendency with phenolic contents: dried ginger>stir-frying ginger>fresh ginger>carbonized ginger. The processing contributed to the decreased concentration of gingerols and the increased levels of shogaols, which reducing the antioxidant effects in pace with processing. This study elucidated the relationship of the heating process with the constituents and antioxidant activity, and provided a guide for choosing different kinds of ginger samples on clinical application.
Assuntos
Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Extratos Vegetais/química , Zingiber officinale/química , Catecóis/química , Álcoois Graxos/química , Guaiacol/análogos & derivados , Guaiacol/químicaRESUMO
A new 9,10-dihydrophenanthrene,1,5-dihydroxy-3,4,7-trimethoxy-9,10-dihydrophenanthrene (1) was isolated and identified from the whole plants of Dendrobium moniliforme, as well as 24 known compounds including hircinol (2), (2R*,3S*)-3-hydroxymethyl-9-methoxy-2-(4'-hydroxy-3',5'-dimethoxyphenyl)-2,3,6,7-tetrahydro-phenanthro[4,3-b]furan-5,11-diol (3), diospyrosin (4), aloifol I (5), moscatilin (6), 3,4'-dihydroxy-3',4,5-trimethoxybibenzyl (7), gigantol (8), 3,3'-dihydroxy-4,5-dimethoxybibenzyl (9), longicornuol A (10), N-trans-cinnamoyltyramine (11), paprazine (12), N-trans-feruloyl 3'-O-methyldopamine (13), moupinamide (14), dihydroconiferyl dihydro-p-coumarate (15), dihydrosinapyl dihydro-p-coumarate (16), 3-isopropyl-5-acetoxycyclohexene-2-one-1 (17), p-hydroxybenzaldehyde (18), vanillin (19), p-hydroxyphenylpropionic acid (20), vanillic acid (21), protocatechuic acid (22), (+)-syringaresinol (23), ß-sitosterol (24) and daucosterol (25). Compounds 3, 4, 13, 16, 17 and 20 were isolated from the Dendrobium genus for the first time, and compounds 2, 5, 7, 9-12, 14, 15, 18, 21 and 22 were originally obtained from D. moniliforme.
Assuntos
Dendrobium/química , Fenantrenos/química , Benzaldeídos/química , Benzaldeídos/isolamento & purificação , Bibenzilas/química , Bibenzilas/isolamento & purificação , Cinamatos/química , Cinamatos/isolamento & purificação , Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Furanos/química , Furanos/isolamento & purificação , Guaiacol/análogos & derivados , Guaiacol/química , Guaiacol/isolamento & purificação , Lignanas/química , Lignanas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fenantrenos/isolamento & purificação , Fenilpropionatos/química , Fenilpropionatos/isolamento & purificação , Plantas Medicinais/química , Sitosteroides/química , Sitosteroides/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Tiramina/análogos & derivados , Tiramina/química , Tiramina/isolamento & purificaçãoRESUMO
Humans have been using natural products for medicinal use for ages. Natural products of therapeutic importance are compounds derived from plants, animals, or any microorganism. Ginger is also one of the most commonly used condiments and a natural drug in vogue. It is a traditional medicine, having some active ingredients used for the treatment of numerous diseases. During recent research on ginger, various ingredients like zingerone, shogaol, and paradol have been obtained from it. Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) is a nontoxic and inexpensive compound with varied pharmacological activities. It is the least pungent component of Zingiber officinale. Zingerone is absent in fresh ginger but cooking or heating transforms gingerol to zingerone. Zingerone closely related to vanillin from vanilla and eugenol from clove. Zingerone has potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic, and so forth properties. Besides, it displays the property of enhancing growth and immune stimulation. It behaves as appetite stimulant, anxiolytic, antithrombotic, radiation protective, and antimicrobial. Also, it inhibits the reactive nitrogen species which are important in causing Alzheimer's disease and many other disorders. This review is written to shed light on the various pharmacological properties of zingerone and its role in alleviating numerous human and animal diseases.
Assuntos
Guaiacol/análogos & derivados , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antidiarreicos/química , Antidiarreicos/farmacologia , Antidiarreicos/uso terapêutico , Antieméticos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Zingiber officinale/química , Guaiacol/química , Guaiacol/farmacologia , Guaiacol/uso terapêutico , Humanos , Lipólise/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêuticoRESUMO
Fruit ripening associated full length cDNA of a peroxidase from papaya was cloned and heterologously expressed. The expressed peroxidase was activated by in-vitro re-folding in the presence of hemin and calcium. The purified recombinant peroxidase exhibited broad substrate affinity in the order of o-dianisidine>pyrogallol>guaiacol and was found to be a homotetramer of 155kDa with each subunit having a size of 38kDa. The basis of the distinctive preferences for various substrates was investigated through in-silico molecular modeling approaches. Thus, when the modeled papaya peroxidase-heme complex was docked with these substrates, the in-silico binding efficiency was found to be in agreement with those of wet lab results with the involvement of Arg37, Phe40, His41, Pro137, Asn138, His139, His167, and Phe239 as the common interacting residues in all the cases. However, the binding of the different substrates were found to be associated with conformational changes in the peroxidase. Thus, in the case of o-dianisidine (the most efficient substrate), the protein was folded in the most compact fashion when compared to guaiacol (the least efficient substrate). Protein function annotation analyses revealed that the papaya peroxidase may have biological roles in oxidation-reduction processes, stresses, defense responses etc. In order to further validate its role in lignifications, the papaya peroxidase was compared with a lignin biosynthetic peroxidase from Leucaena leucocephala, a tree legume. Thus, based on 3D structure superimposition and docking, both peroxidases exhibited a great extent of similarity suggesting the papaya peroxidase having a role in lignification (defense response) too. The predicted functions of papaya peroxidase in defense response and lignification were further validated experimentally using qRT-PCR analyses and measurement of oxidation of coniferyl alcohol.
Assuntos
Carica/enzimologia , Peroxidases/fisiologia , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Carica/fisiologia , Cromatografia de Afinidade , Clonagem Molecular , DNA Complementar/metabolismo , Dianisidina/química , Escherichia coli/metabolismo , Guaiacol/química , Heme/química , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pirogalol/química , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , TemperaturaRESUMO
Pyroligneous acid (PA) is a complex highly oxygenated aqueous liquid fraction obtained by the condensation of pyrolysis vapors, which result from the thermochemical breakdown or pyrolysis of plant biomass components such as cellulose, hemicellulose, and lignin. PA produced by the slow pyrolysis of plant biomass is a yellowish brown or dark brown liquid with acidic pH and usually comprises a complex mixture of guaiacols, catechols, syringols, phenols, vanillins, furans, pyrans, carboxaldehydes, hydroxyketones, sugars, alkyl aryl ethers, nitrogenated derivatives, alcohols, acetic acid, and other carboxylic acids. The phenolic components, namely guaiacol, alkyl guaiacols, syringol, and alkyl syringols, contribute to the smoky odor of PA. PA finds application in diverse areas, as antioxidant, antimicrobial, antiinflammatory, plant growth stimulator, coagulant for natural rubber, and termiticidal and pesticidal agent; is a source for valuable chemicals; and imparts a smoky flavor for food.
Assuntos
Biomassa , Preparações de Plantas/química , Terpenos/análise , Catecóis/química , Celulose/química , Fenômenos Químicos , Aromatizantes/química , Guaiacol/química , Temperatura Alta , Lignina/química , Fenóis/química , Polissacarídeos/química , Pirogalol/análogos & derivados , Pirogalol/química , Madeira/químicaRESUMO
Gigantol is a typical bibenzyl compound isolated from Dendrobii Caulis that has been widely used as a medicinal herb in China for the treatment of diabetic cataract, cancer and arteriosclerosis obliterans and as a tonic for stomach nourishment, saliva secretion promotion and fever reduction. However, few studies have been carried out on its in vivo metabolism. In the present study, a rapid and sensitive method based on ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) in positive ion mode was developed and applied to identify the metabolites of gigantol in rat urine after a single oral dose (100 mg/kg). Chromatographic separation was performed on an Acquity UPLC HSS T3 column (100 × 2.1 mm i. d., 1.8 µm) using acetonitrile and 0.1% aqueous formic acid as mobile phases. A total of 11 metabolites were detected and identified as all phase II metabolites. The structures of the metabolites were identified based on the characteristics of their MS, MS(2) data and chromatographic retention times. The results showed that glucuronidation is the principal metabolic pathway of gigantol in rats. The newly identified metabolites are useful to understand the mechanism of elimination of gigantol and, in turn, its effectiveness and toxicity. As far as we know, this is the first attempt to investigate the metabolic fate of gigantol in vivo.
Assuntos
Bibenzilas , Cromatografia Líquida de Alta Pressão/métodos , Guaiacol/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Animais , Bibenzilas/química , Bibenzilas/metabolismo , Bibenzilas/urina , Guaiacol/química , Guaiacol/metabolismo , Guaiacol/urina , Masculino , Redes e Vias Metabólicas , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
BACKGROUND: Alpinia oxyphylla is a common remedy in traditional Chinese medicine. Yakuchinone A is a major constituent of A. oxyphylla and exhibits anti-inflammatory, antitumor, antibacterial, and gastric protective activities. METHODS: Antioxidant and antitumor characteristics of yakuchinone A in skin cancer cells as well as novel mechanisms for the inhibition of adipocyte differentiation, cestocidal activities against Hymenolepis nana adults, and nematocidal activities against Anisakis simplex larvae are investigated. RESULTS: Yakuchinone A presents the ability of the removal of DPPH·and ABTS+ free radicals and inhibition of lipid peroxidation. Yakuchinone A suppresses intracellular lipid accumulation during adipocyte differentiation in 3 T3-L1 cells and the expressions of leptin and peroxisome proliferator-activated receptor γ (PPARγ). Yakuchinone A induces apoptosis and inhibits cell proliferation in skin cancer cells. The inhibition of cell growth by yakuchinone A is more significant for non-melanoma skin cancer (NMSC) cells than for melanoma (A375 and B16) and noncancerous (HaCaT and BNLCL2) cells. Treatment BCC cells with yakuchinone A shows down-regulation of Bcl-2, up-regulation of Bax, and an increase in cleavage poly (ADP-ribose) polymerase (PARP). This suggests that yakuchinone A induces BCC cells apoptosis through the Bcl-2-mediated signaling pathway. The anthelmintic activities of yakuchinone A for A. simplex are better than for H. nana. CONCLUSIONS: In this work, yakuchinone A exhibits antioxidative properties, anti-adipocyte differentiation, antitumor activity, and anthelmintic activities against A. simplex and H. nana.
Assuntos
Alpinia/química , Anti-Helmínticos/farmacologia , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Guaiacol/análogos & derivados , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Anisakis/efeitos dos fármacos , Anti-Helmínticos/química , Antioxidantes/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Guaiacol/química , Guaiacol/farmacologia , Humanos , Hymenolepis nana/efeitos dos fármacos , Larva/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Two new diarylheptanoids, 1-(3',5'-dihydroxy-4'-methoxyphenyl)-7-phenyl-3-heptanone (1) and 1-(2',4'-dihydroxy-3'-methoxyphenyl)-7-(4â³-methoxyphenyl)-3-heptanone (2), along with known diarylheptanoid yakuchinone A (3), and five flavanoids, tectochrysin (4), chrysin (5), izalpinin (6), kaempferol 7, 4'-dimethyl ether (7), and kaempferide (8) were isolated from the fruits of Alpinia oxyphylla Miq. Their structures were determined by means of spectroscopic methods. Antioxidant activities of all the isolated compounds were evaluated using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Compounds 1-3 and 6-8 exhibited potent antioxidant activities in the DPPH assay.