Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 463(1): 89-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22083644

RESUMO

Modulation of the standing outward current (I (SO)) by muscarinic acetylcholine (ACh) receptor (MAChR) stimulation is fundamental for the state-dependent change in activity mode of thalamocortical relay (TC) neurons. Here, we probe the contribution of MAChR subtypes, G proteins, phospholipase C (PLC), and two pore domain K(+) (K(2P)) channels to this signaling cascade. By the use of spadin and A293 as specific blockers, we identify TWIK-related K(+) (TREK)-1 channel as new targets and confirm TWIK-related acid-sensitve K(+) (TASK)-1 channels as known effectors of muscarinic signaling in TC neurons. These findings were confirmed using a high affinity blocker of TASK-3 and TREK-1, namely, tetrahexylammonium chloride. It was found that the effect of muscarinic stimulation was inhibited by M(1)AChR-(pirenzepine, MT-7) and M(3)AChR-specific (4-DAMP) antagonists, phosphoinositide-specific PLCß (PI-PLC) inhibitors (U73122, ET-18-OCH(3)), but not the phosphatidylcholine-specific PLC (PC-PLC) blocker D609. By comparison, depleting guanosine-5'-triphosphate (GTP) in the intracellular milieu nearly completely abolished the effect of MAChR stimulation. The block of TASK and TREK channels was accompanied by a reduction of the muscarinic effect on I (SO). Current-clamp recordings revealed a membrane depolarization following MAChR stimulation, which was sufficient to switch TC neurons from burst to tonic firing under control conditions but not during block of M(1)AChR/M(3)AChR and in the absence of intracellular GTP. These findings point to a critical role of G proteins and PLC as well as TASK and TREK channels in the muscarinic modulation of thalamic activity modes.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Colinérgicos/fisiologia , Transdução de Sinais/fisiologia , Sono/fisiologia , Tálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Expressão Gênica/genética , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Guanosina Trifosfato/antagonistas & inibidores , Guanosina Trifosfato/metabolismo , Concentração de Íons de Hidrogênio , Núcleos Laterais do Tálamo/citologia , Núcleos Laterais do Tálamo/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Técnicas de Patch-Clamp , Fosfolipase C beta/antagonistas & inibidores , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos , Ratos Long-Evans , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tálamo/citologia , Tionucleotídeos/farmacologia
2.
Neurosurgery ; 45(5): 1208-14; discussion 1214-5, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10549939

RESUMO

OBJECTIVE: Preliminary studies have demonstrated that the Ras family and related guanosine triphosphate-dependent proteins are overactivated in malignant gliomas and that inhibition of the activation of such proteins, by blockade of their post-translational processing, reduces tumor cell growth in vitro. The current study evaluates the utility of this therapeutic strategy in vivo, using preclinical glioma model systems. METHODS: We examined the efficacy against U-87 human malignant glioma cells, in both subcutaneous and intracranial nude mouse models, of selective peptidomimetic inhibitors of farnesyltransferase (FTI-276) and geranylgeranyltransferase (GGTI-297), which are involved in critical steps in the post-translational processing of Ras and related guanosine triphosphate-dependent proteins. For the subcutaneous model, 2 x 10(5) U-87 cells were implanted; after measurable tumors were detected on Day 7, animals were treated with either FTI-276, GGTI-297, or vehicle, administered by continuous infusion for 7 days. Differences in tumor volumes among the treatment groups were examined for significance using a Student's t test. For the intracranial model, 2 x 10(5) U-87 cells were implanted in the right frontal lobe and treatment was initiated on Day 7. In initial studies, animals received a 7-day course of either FTI-276, GGTI-297, or vehicle. In subsequent studies, a 28-day treatment period was used. Comparisons of survival times among treatment groups were performed using a rank-sum test. RESULTS: Although the two agents exhibited comparable antiproliferative activities in previous in vitro studies, an obvious difference in efficacy was apparent in this study. Whereas the geranylgeranyltransferase inhibitor failed to improve survival rates, compared with those observed for control animals, in either the subcutaneous or intracranial model, the farnesyltransferase inhibitor produced objective regression of tumor growth in the subcutaneous model and significant prolongation of survival times in the intracranial model, without apparent toxicity. In the subcutaneous model, tumor volumes for the control, GGTI-297-treated, and FTI-276-treated animals on Day 28 after implantation were 621+/-420, 107+/-104, and 18.5+/-12.7 mm3, respectively (P < 0.05). In the 7-day-treated intracranial model, survival times for the control, GGTI-297-treated, and FTI-276-treated groups were 27.7+/-2.9, 29.8+/-2.1, and 43.6+/-2.7 days, respectively (P < 0.001). In the 28-day-treated intracranial model, survival times for the control, GGTI-297-treated, and FTI-276-treated groups were 29.2+/-3.7, 28.3+/-3.9, and 58.7+/-6.2 days, respectively, with five of six animals in the latter group surviving more than 55 days after tumor implantation (P < 0.001). CONCLUSION: These studies demonstrate that farnesyltransferase inhibition is effective in diminishing the growth of human glioma cells in vivo. Evaluation of this treatment approach in clinical trials is warranted.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Benzamidas/farmacologia , Neoplasias Encefálicas/patologia , Divisão Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glioma/patologia , Guanosina Trifosfato/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Farnesiltranstransferase , Geraniltranstransferase , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Resultado do Tratamento , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA