Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Anim Sci J ; 95(1): e13929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38400743

RESUMO

This study aimed to investigate the effect of supplementing Isochrysis galbana (I. galbana) at levels of 0 (control), 1, 2, 3, 4, and 5 (g/100 g DM) of the diet on the gas production kinetics, methane production, rumen fermentation parameters, and relative microbial population in vitro. Supplementation of I. galbana at high level (5 g/100 g DM) caused a significant decrease in total gas production (p < 0.05). High supplementation rates (4 and 5 g/100 g DM) decreased CH4 production relative to the control by 18.4% and 23.2%, respectively. Although rumen ammonia nitrogen (N-NH3) and total volatile fatty acids (VFA) concentrations were affected by dietary treatments, but the VFA profile did not changed. The relative proportion of protozoa and methanogenic archaea as well as Anaerovibrio lipolytica, Prevotella spp., Ruminococcus flavefaciens, and Fibrobacter succinogenes were decreased significantly as a result of microalgae supplementation. However, the relative abundance of Ruminococcus albus, Butyrivibrio fibrisolvens and Selenomonas ruminantium were significantly increased (p < 0.05), related to the control group. As well, the pH was not affected by dietary treatments. It was concluded that I. galbana reduced in vitro CH4 production and methanogenic archaea that its worth to be investigated further in in vivo studies.


Assuntos
Suplementos Nutricionais , Haptófitas , Animais , Suplementos Nutricionais/análise , Rúmen/metabolismo , Fermentação , Dieta , Ácidos Graxos Voláteis/metabolismo , Archaea , Metano/metabolismo , Ração Animal/análise , Digestão
2.
Sci Total Environ ; 913: 169715, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160825

RESUMO

Inorganic phosphate limitation for phytoplankton may be intensified with water stratification by global warming, and with the increasing nitrogen: phosphorus (N:P) ratio in coastal zones resulting from continuous anthropogenic N overloading. Under these circumstances, phytoplankton's ability to use dissolved organic phosphorus (DOP) will give species a competitive advantage. In our previous study, we have shown that the haptophyte Isochrysis galbana can use glyphosate (Roundup) as a P nutrient source to support growth, but the mechanism of how remains unexplored. Here, we show that three genes encoding PhnC (IgPhnCs), which exhibit up-regulated expression in glyphosate-grown cultures, are probably responsible for glyphosate uptake, while homologs of PhnK and PhnL (IgPhnK and IgPhnL) probably provide auxiliary support for the intracellular degradation of glyphosate. Meanwhile, we found the use efficiency of glyphosate was low compared with phosphate, probably because glyphosate uptake and hydrolysis cost energy and because glyphosate induces oxidative stress in I. galbana. Meanwhile, genes encoding 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, the target of the herbicide, were up-regulated in glyphosate cultures. Furthermore, our data showed the up-regulation of P metabolisms (transcription) in glyphosate-grown cultures, which further induced the up-regulation of nitrate/nitrite transport and biosynthesis of some amino acids. Meanwhile, glyphosate-grown cells accumulated more C and N, resulting in remarkably high C:N:P ratio, and this, along with the up-regulated P metabolisms, was under transcriptional and epigenetic regulation. This study sheds lights on the mechanism of glyphosate utilization as a source of P nutrient by I. galbana, and these findings have biogeochemical implications.


Assuntos
Glifosato , Haptófitas , Fósforo/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Epigênese Genética , Fosfatos/metabolismo , Nutrientes
3.
Harmful Algae ; 127: 102483, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544668

RESUMO

Many harmful algae are mixoplanktonic, i.e. they combine phototrophy and phagotrophy, and this ability may explain their ecological success, especially when environmental conditions are not optimal for autotrophic growth. In this study, laboratory experiments were conducted with the mixotrophic and ichthyotoxic haptophyte Prymnesium parvum (strain CCAP 946/6) to test the effects of phosphorus (P) sufficiency and deficiency on its growth rate, phagotrophic and lytic activities. P-deficient P. parvum cultures were grown without or with addition of P in the form of inorganic phosphorus (nutrients) and/or living algal prey (i.e. the cryptophyte Teleaulax amphioxeia). The ingestion rate of P. parvum and prey mortality rate were calculated using flow cytometry measurements based on pigment-derived-fluorescence to distinguish between prey, predators and digesting predators. The first aim of the study was to develop a method taking into account the rate of digestion, allowing the calculation of ingestion rates over a two-week period. Growth rates of P. parvum were higher in the treatments with live prey, irrespective of the concentration of inorganic P, and maximum growth rates were found when both inorganic and organic P in form of prey were added (0.79 ± 0.07 d-1). In addition, the mortality rate of T. amphioxeia induced by lytic compounds was 0.2 ± 0.02 d-1 in the P-deficient treatment, while no mortality was observed under P-sufficiency in the present experiments. This study also revealed the mortality due to cell lysis exceeded that of prey ingestion. Therefore, additional experiments were conducted with lysed prey cells. When grown with debris from prey cells, the mean growth rate of P. parvum was similar to monocultures without additions of prey debris (0.30 ± 0.1 vs. 0.38 ± 0.03 d-1), suggesting that P. parvum is able to grow on prey debris, but not as fast as with live prey. These results provide the first quantitative evidence over two weeks of experiment that ingestion of organic P in the form of living prey and/or debris of prey plays an important role in P. parvum growth and may explain its ecological success in a nutrient-limited environments.


Assuntos
Haptófitas , Fósforo/farmacologia , Criptófitas , Processos Autotróficos , Processos Fototróficos
4.
Bioresour Technol ; 387: 129688, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595805

RESUMO

Spermidine is a type of important growth regulator, which involved in the biosynthesis of photosynthetic pigments, and has the function of promoting cell proliferation. In this study, Isochrysis sp. was selected as the research object to explore the effects of spermidine supplementation on the growth of algal cells and fucoxanthin synthesis under different light intensities. The results showed that the cell density (5.40 × 106 cells/mL) of algae were the highest at 11 days under the light intensity of 200 µmol·m-2·s-1 and spermidine content of 150 µM. The contents of diadinoxanthin (1.09 mg/g) and fucoxanthin (6.11 mg/g) were the highest when spermidine was added under low light intensity, and the growth of algal cells and fucoxanthin metabolism were the most significant. In the carotenoid synthesis pathway, PDS (phytoene desaturase) was up-regulated by 1.96 times and VDE (violaxanthin de-epoxidase) was down-regulated by 0.95 times, which may promote fucoxanthin accumulation.


Assuntos
Haptófitas , Espermidina/farmacologia , Luz , Carotenoides
5.
Harmful Algae ; 118: 102287, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195411

RESUMO

A bloom of the fish-killing haptophyte Chrysochromulina leadbeateri in northern Norway during May and June 2019 was the most harmful algal event ever recorded in the region, causing massive mortalities of farmed salmon. Accordingly, oceanographic and biodiversity aspects of the bloom were studied in unprecedented detail, based on metabarcoding and physico-chemical and biotic factors related with the dynamics and distribution of the bloom. Light- and electron-microscopical observations of nanoplankton samples from diverse locations confirmed that C. leadbeateri was dominant in the bloom and the primary cause of associated fish mortalities. Cell counts by light microscopy and flow cytometry were obtained throughout the regional bloom within and adjacent to five fjord systems. Metabarcoding sequences of the V4 region of the 18S rRNA gene from field material collected during the bloom and a cultured isolate from offshore of Tromsøy island confirmed the species identification. Sequences from three genetic markers (18S, 28S rRNA gene and ITS region) verified the close if not identical genetic similarity to C. leadbeateri from a previous massive fish-killing bloom in 1991 in northern Norway. The distribution and cell abundance of C. leadbeateri and related Chrysochromulina species in the recent incident were tracked by integrating observations from metabarcoding sequences of the V4 region of the 18S rRNA gene. Metabarcoding revealed at least 14 distinct Chrysochromulina variants, including putative cryptic species. C. leadbeateri was by far the most abundant of these species, but with high intraspecific genetic variability. Highest cell abundance of up to 2.7 × 107 cells L - 1 of C. leadbeateri was found in Balsfjorden; the high cell densities were associated with stratification near the pycnocline (at ca. 12 m depth) within the fjord. The cell abundance of C. leadbeateri showed positive correlations with temperature, negative correlation with salinity, and a slightly positive correlation with ambient phosphate and nitrate concentrations. The spatio-temporal succession of the C. leadbeateri bloom suggests independent initiation from existing pre-bloom populations in local zones, perhaps sustained and supplemented over time by northeastward advection of the bloom from the fjords.


Assuntos
Haptófitas , Animais , Peixes , Marcadores Genéticos , Haptófitas/genética , Nitratos , Fosfatos , RNA Ribossômico 18S/genética
6.
Sci Rep ; 12(1): 3127, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210548

RESUMO

Microalgae are natural sources of valuable bioactive compounds, such as polyunsaturated fatty acids (PUFAs), that show antioxidant, anti-inflammatory, anticancer and antimicrobial activities. The marine microalga Isochrysis galbana (I. galbana) is extremely rich in ω3 PUFAs, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Probiotics are currently suggested as adjuvant therapy in the management of diseases associated with gut dysbiosis. The Lactobacillus reuteri (L. reuteri), one of the most widely used probiotics, has been shown to produce multiple beneficial effects on host health. The present study aimed to present an innovative method for growing the probiotic L. reuteri in the raw seaweed extracts from I. galbana as an alternative to the conventional medium, under conditions of oxygen deprivation (anaerobiosis). As a result, the microalga I. galbana was shown for the first time to be an excellent culture medium for growing L. reuteri. Furthermore, the gas-chromatography mass-spectrometry analysis showed that the microalga-derived ω3 PUFAs were still available after the fermentation by L. reuteri. Accordingly, the fermented compound (FC), obtained from the growth of L. reuteri in I. galbana in anaerobiosis, was able to significantly reduce the adhesiveness and invasiveness of the harmful adherent-invasive Escherichia coli to intestinal epithelial cells, due to a cooperative effect between L. reuteri and microalgae-released ω3 PUFAs. These findings open new perspectives in the use of unicellular microalgae as growth medium for probiotics and in the production of biofunctional compounds.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Haptófitas/microbiologia , Limosilactobacillus reuteri/crescimento & desenvolvimento , Meios de Cultura/química , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Ácidos Graxos Ômega-3 , Ácidos Graxos Insaturados/química , Fermentação , Haptófitas/metabolismo , Microalgas/química , Probióticos/metabolismo
7.
Neurochem Int ; 154: 105292, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090980

RESUMO

Prenatal supplementation of high-value PUFA (HVPUFA) is essential for adequate brain development in infants. As marine microalgal derived omega-3 fatty acids are considered an alternative source of fish oil, their neuroprotective role on monosodium glutamate (MSG)-induced neurotoxicity, bioavailability, and disease prevention in first-generation (F1) animals need to be explored at molecular level. This study tested the long term supplementation of microalgal derived ω-3 PUFAs from parent rats to its offspring rats and studied the neuroprotective role in monosodium glutamate (MSG)-induced neurotoxicity in F1 rats. The parent animals were divided into three groups: control, microalgal-administered group (5.7 mg of EPA and 1.4 mg of DHA/kg BW from Isochrysis sp.), and fish oil-administered group (4.2 mg of EPA and 2.9 mg of DHA/kg BW derived from fish oil) (FG) and continued up to F1 generation. The F1 male rats from respective parents were separated for disease induction: group I animals (control) were administered with 500 µl of Milli-q water alone and group II (disease control), III (Microalga), and IV (fish oil) animals were administered with 2 g/kg bodyweight of MSG for 10 alternative days. Microalga-treated F1 rats showed significant HDL (43 mg/dl) levels when compared to their experimental groups. Brain tissues of microalga-treated F1 rats (MG) showed higher concentration of DHA (10.1 mg/100 mg tissue) and ARA (18.7 mg/100 mg tissue) levels and significant reduction of MDA (30 nM mg protein) levels. Furthermore, MSG induced neurotoxicity was ameliorated through the activation of CREB and BDNF genes The mRNA expressions of CREB and BDNF were 1.5-fold higher and NMDA levels were 2.0-fold higher in treated groups compared to disease control group. However, the expressions of antioxidant genes (SOD, catalase, and GPX) and apoptotic genes (Bcl-2 and Caspase-3) were significantly reduced in MG treated F1 rats when compared to disease control rats. Histopathological results also showed minimal focal damage in the tissues of MG F1 rats. Prenatal and continuous supply of microalgal biomass improves brain DHA and greatly reduced the consequences of MSG neurotoxicity in F1 rats.


Assuntos
Haptófitas , Glutamato de Sódio , Animais , Biomassa , Suplementos Nutricionais , Masculino , Ratos , Ratos Wistar , Glutamato de Sódio/toxicidade
8.
Sci Rep ; 11(1): 12672, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135441

RESUMO

Prymnesium parvum is an environmentally harmful algae and well known for its toxic effects to the fish culture. However, there is a dearth of studies on the growth behavior of P. parvum and information on how the availability of nutrients and environmental factors affect their growth rate. To address this knowledge gap, we used a uniform design approach to quantify the effects of major nutrients (N, P, Si and Fe) and environmental factors (water temperature, pH and salinity) on the biomass density of P. parvum. We also generated the growth model for P. parvum as affected by each of these nutrients and environmental factors to estimate optimum conditions of growth. Results showed that P. parvum can reach its maximum growth rate of 0.789, when the water temperature, pH and salinity is 18.11 °C, 8.39, and 1.23‰, respectively. Moreover, maximum growth rate (0.895-0.896) of P. parvum reached when the concentration of nitrogen, phosphorous, silicon and iron reach 3.41, 1.05, 0.69 and 0.53 mg/l, respectively. The order of the effects of the environmental factors impacting the biomass density of P. parvum was pH > salinity > water temperature, while the order of the effects of nutrients impacting the biomass density of P. parvum was nitrogen > phosphorous > iron > silicon. These findings may assist to implement control measures of the population of P. parvum where this harmful alga threatens aquaculture industry in the waterbodies such as Ningxia region in China.


Assuntos
Haptófitas/crescimento & desenvolvimento , Aquicultura , Biomassa , Água Doce/química , Ferro , Microalgas/crescimento & desenvolvimento , Nitrogênio , Nutrientes , Controle de Pragas , Fósforo , Salinidade
9.
Mar Drugs ; 19(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801258

RESUMO

This study was designed to profile the metabolites of Isochrysis galbana, an indigenous and less explored microalgae species. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LCMS) were used to establish the metabolite profiles of five different extracts of this microalga, which are hexane (Hex), ethyl acetate (EtOAc), absolute ethanol (EtOH), EtOH:water 1:1 (AqE), and 100% water (Aq). Partial least square discriminant analysis (PLS-DA) of the generated profiles revealed that EtOAc and Aq extracts contain a diverse range of metabolites as compared to the other extracts with a total of twenty-one metabolites, comprising carotenoids, polyunsaturated fatty acids, and amino acids, that were putatively identified from the NMR spectra. Meanwhile, thirty-two metabolites were successfully annotated from the LCMS/MS data, ten of which (palmitic acid, oleic acid, α-linolenic acid, arachidic acid, cholesterol, DHA, DPA, fucoxanthin, astaxanthin, and pheophytin) were similar to those present in the NMR profile. Another eleven glycerophospholipids were discovered using MS/MS-based molecular network (MN) platform. The results of this study, besides providing a better understanding of I.galbana's chemical make-up, will be of importance in exploring this species potential as a feed ingredient in the aquaculture industry.


Assuntos
Haptófitas/metabolismo , Metabolômica , Aminoácidos/isolamento & purificação , Carotenoides/isolamento & purificação , Cromatografia Líquida , Ácidos Graxos Insaturados/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espectrometria de Massas em Tandem
10.
Microb Ecol ; 82(4): 981-993, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33661311

RESUMO

Mixotrophy combines autotrophy and phagotrophy in the same cell. However, it is not known to what extent the phagotrophy influences metabolism, cell composition, and growth. In this work, we assess, on the one hand (first test), the role of phagotrophy on the elemental and biochemical composition, cell metabolism, and enzymes related to C, N, and S metabolism of Isochrysis galbana Parke, 1949. On the other hand, we study how a predicted increase of phagotrophy under environmental conditions of low nutrients (second test) and low light (third test) can affect its metabolism and growth. Our results for the first test revealed that bacterivory increased the phosphorous and iron content per cell, accelerating cell division and improving the cell fitness; in addition, the stimulation of some C and N enzymatic routes help to maintain, to some degree, compositional homeostasis. Under nutrient or light scarcity, I. galbana grew more slowly despite greater bacterial consumption, and the activities of key enzymes involved in C, N, and S metabolism changed according to a predominantly phototrophic strategy of nutrition in this alga. Contrary to recent studies, the stimulation of phagotrophy under low nutrient and low irradiance did not imply greater and more efficient C flux.


Assuntos
Haptófitas , Processos Autotróficos , Bactérias , Luz , Nutrientes , Fósforo
11.
Microbiologyopen ; 10(1): e1156, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650795

RESUMO

To realize the potential of microalgae in the biorefinery context, exploitation of multiple products is necessary for profitability and bioproduct valorization. Appropriate analytical tools are required for growth optimization, culture monitoring, and quality control purposes, with safe, low-tech, and low-cost solutions favorable. Rapid, high-throughput, and user-friendly methodologies were devised for (a) determination of phycobiliproteins, chlorophylls, carotenoids, proteins, carbohydrates, and lipids and (b) qualitative and quantitative carotenoid profiling using UPLC-PDA-MSE . The complementary methods were applied on 11 commercially important microalgal strains including prasinophytes, haptophytes, and cyanobacteria, highlighting the suitability of some strains for coproduct exploitation and the method utility for research and industrial biotechnology applications. The UPLC method allowed separation of 41 different carotenoid compounds in <15 min. Simple techniques are described for further quantification and comparison of pigment profiles, allowing for easy strain selection and optimization for pigment production, with suitability for biotechnological or biomedical applications.


Assuntos
Reatores Biológicos/microbiologia , Carotenoides/análise , Cianobactérias/metabolismo , Microalgas/metabolismo , Ficobiliproteínas/análise , Pigmentos Biológicos/análise , Biocombustíveis/análise , Carboidratos/análise , Clorofila/análise , Cromatografia Líquida/métodos , Haptófitas/metabolismo , Lipídeos/análise , Espectrometria de Massas/métodos
12.
Genes (Basel) ; 12(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535615

RESUMO

Hermetia illucens larvae are among the most promising insects for use as food or feed ingredients due to their ability to convert organic waste into biomass with high-quality proteins. In this novel food or feed source, the absence of antibiotic-resistant bacteria and their antibiotic resistance (AR) genes, which could be horizontally transferred to animal or human pathogens through the food chain, must be guaranteed. This study was conducted to enhance the extremely scarce knowledge on the occurrence of AR genes conferring resistance to the main classes of antibiotics in a rearing chain of H. illucens larvae and how they were affected by rearing substrates based on coffee silverskin supplemented with increasing percentages of Schizochytrium limacinum or Isochrysis galbana microalgae. Overall, the PCR and nested PCR assays showed a high prevalence of tetracycline resistance genes. No significant effect of rearing substrates on the distribution of the AR genes in the H. illucens larvae was observed. In contrast, the frass samples were characterized by a significant accumulation of AR genes, and this phenomenon was particularly evident for the samples collected after rearing H. illucens larvae on substrates supplemented with high percentages (>20%) of I. galbana. The latter finding indicates potential safety concerns in reusing frass in agriculture.


Assuntos
Dípteros/genética , Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Microalgas/química , Ração Animal , Animais , Antibacterianos/farmacologia , Café/química , Dípteros/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Haptófitas/química , Humanos , Larva/efeitos dos fármacos
13.
Mar Pollut Bull ; 158: 111392, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32753178

RESUMO

Using in situ data of 2014-2018, the summers Emiliania huxleyi blooms in the Barents Sea were studied. The blooms were recorded in the upper mixed layer in July and August every year, during which they spread to cover large areas and were associated with Atlantic waters. The E. huxleyi abundance revealed interannual variability, with the highest values (up to 12 × 106 cells/L) in July 2016. Bloom is characterized by a sharp seasonal thermocline, water surface temperature of about 7.14-11.7 °C, low silicate (0.45 ± 0.08 µM) and nitrogen (0.74 ± 0.16 µM) concentration, high phosphorus concentration (0.09 ± 0.01 µM) and nitrogen to phosphorus ratio significantly below the Redfield ratio. Data confirming the hypothesis of limiting the growth of diatoms by nitrogen concentration are presented. When E. huxleyi bloomed, its biomass exceeded 70% of the total phytoplankton biomass, species diversity was low, and diatoms were practically absent, and dinoflagellates were usually represented by large species.


Assuntos
Diatomáceas , Haptófitas , Nitrogênio , Fósforo , Fitoplâncton
14.
Molecules ; 25(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708275

RESUMO

Microalgal biomass is a sustainable and valuable source of lipids with omega-3 fatty acids. The efficient extraction of lipids from microalgae requires fast and alternative extraction methods, frequently combined with biomass pre-treatment by different procedures. In this work, Pressurized liquid extraction (PLE) was optimized and compared with traditional lipid extraction methods, Folch and Bligh and Dyer, and with a new Ultrasound Assisted Extraction (UAE) method for lipids from microalgae Isochrysis galbana. To further optimize PLE and UAE, enzymatic pre-treatment of microalga Isochrysis galbana was studied with commercial enzymes Viscozyme and Celluclast. No significant differences were found for lipid yields among different extraction techniques used. However, advanced extraction techniques with or without pre-treatment are a green, fast, and toxic solvent free alternative to traditional techniques. Lipid composition of Isochrysis was determined by HPLC-ELSD and included neutral and polar lipids, showing that each fraction comprised different contents in omega-3 polyunsaturated fatty acids (PUFA). The highest polar lipids content was achieved with UAE (50 °C and 15 min) and PLE (100 °C) techniques. Moreover, the highest omega-3 PUFA (33.2%), eicosapentaenoic acid (EPA) (3.3%) and docosahexaenoic acid (DHA) (12.0%) contents were achieved with the advanced technique UAE, showing the optimized method as a practical alternative to produce valuable lipids for food and nutraceutical applications.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Enzimas/metabolismo , Haptófitas/química , Lipídeos/isolamento & purificação , Suplementos Nutricionais , Ácido Eicosapentaenoico/química , Ácidos Graxos Ômega-3/química , Extração Líquido-Líquido , Microalgas/química , Pressão , Solventes/química , Ondas Ultrassônicas
15.
J Agric Food Chem ; 68(15): 4411-4423, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212693

RESUMO

Microalgae are primary producers with multiple nutrients in aquatic environments and mostly have applications in biological feed and fuel industry. There are few studies assessing the angiotensin-I-converting enzyme (ACE) inhibition potential of Isochrysis zhanjiangensis, other than its antioxidant potential. In this study, we evaluated a peptide from I. zhanjiangensis (PIZ, FEIHCC) and its vascular endothelial factors and mechanism in human umbilical vein endothelial cells (HUVEC). The results reveal that PIZ (IC50 = 61.38 µM) acts against ACE in a non-competitive binding mode. In addition, PIZ inhibits angiotensin II (Ang II)-induced vascular factor secretion and expression by blocking inflammation and apoptosis through nuclear factor κB (NF-κB), nuclear erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinases (MAPKs), and the serine/threonine kinase (Akt) signal pathways. This study reveals that PIZ has potential to be developed as a therapeutic agent for hypertension and provides a new method of high-value utilization of I. zhanjiangensis.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Haptófitas/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Microalgas/química , Peptídeos/farmacologia , Extratos Vegetais/farmacologia , Lesões do Sistema Vascular/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Inibidores da Enzima Conversora de Angiotensina/química , Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Peptídeos/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Extratos Vegetais/química , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/genética
16.
J Phycol ; 56(4): 908-922, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32215912

RESUMO

The domesticated marine microalga Diacronema lutheri is of great interest for producing various highly valuable molecules like lipids, particularly long-chain polyunsaturated fatty acids (LC-PUFA). In this study, we investigated the impact of phosphorus (P) and nitrogen (N) starvation on growth, carbon fixation (photosynthetic activity) and partitioning, and membrane lipid remodeling in this alga during batch culture. Our results show that the photosynthetic machinery was similarly affected by P and N stress. Under N starvation, we observed a much lower photosynthetic rate and biomass productivity. The degradation and re-use of cellular N-containing compounds contributed to triacylglycerol (TAG) accumulation. On the other hand, P-starved cells maintained pigment content and a carbon partitioning pattern more similar to the control, ensuring a high biomass. Betaine lipids constitute the major compounds of non-plastidial membranes, which are rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Under P and N starvations, EPA was transferred from the recycling of membrane polar lipids, most likely contributing to TAG accumulation.


Assuntos
Haptófitas , Microalgas , Carbono , Lipídeos , Nitrogênio , Fósforo
17.
Environ Microbiol ; 22(5): 1847-1860, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32064744

RESUMO

The widespread coccolithophore Emiliania huxleyi is an abundant oceanic phytoplankton, impacting the global cycling of carbon through both photosynthesis and calcification. Here, we examined the transcriptional responses of populations of E. huxleyi in the North Pacific Subtropical Gyre to shifts in the nutrient environment. Using a metatranscriptomic approach, nutrient-amended microcosm studies were used to track the global metabolism of E. huxleyi. The addition of nitrate led to significant changes in transcript abundance for gene pathways involved in nitrogen and phosphorus metabolism, with a decrease in the abundance of genes involved in the acquisition of nitrogen (e.g. N-transporters) and an increase in the abundance of genes associated with phosphate acquisition (e.g. phosphatases). Simultaneously, after the addition of nitrate, genes associated with calcification and genes unique to the diploid life stages of E. huxleyi significantly increased. These results suggest that nitrogen is a major driver of the physiological ecology of E. huxleyi in this system and further suggest that the addition of nitrate drives shifts in the dominant life-stage of the population. Together, these results underscore the importance of phenotypic plasticity to the success of E. huxleyi, a characteristic that likely underpins its ability to thrive across a variety of marine environments.


Assuntos
Haptófitas/genética , Haptófitas/metabolismo , Proteínas de Membrana Transportadoras/genética , Fitoplâncton/metabolismo , Transcrição Gênica/genética , Carbono/metabolismo , Ecologia , Nitrogênio/metabolismo , Nutrientes/metabolismo , Oceanos e Mares , Oceano Pacífico , Fósforo/metabolismo , Fotossíntese/fisiologia
18.
Int J Biol Sci ; 15(13): 2844-2858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31853222

RESUMO

Pleurochrysis genus algae are widely distributed in ocean waters. Pleurochrysis sp. algae are popularly known for its coccolithophores. Calcium carbonate (CaCO3) shells are major components of the coccolithophore, and they are key absorbers of carbondioxide. In this study, we have reported the effects of potassium nitrate (KNO3) concentration on calcium accumulation and total lipid, carbohydrate and protein contents of Pleurochrysis dentata. Results obtained from complexometric titration and scanning electron microscopy analysis showed higher rates of CaCO3 accumulation on Pleurochrysis dentata cell surface. We have also observed that overall cell size of Pleurochrysis dentata reached maximum when it was cultured at 0.75 mmol L-1 of KNO3. During 10 days of Pleurochrysis dentata culture total lipids and carbohydrate contents decreased, with slightly increased protein content. Results obtained from Fourier-Transform Infrared Spectroscopy (FTIR) also reported an increase in protein and decrease in lipids and carbohydrate contents, respectively. Similarly, Pleurochrysis dentata cultured at 1 mmol L-1 concentration of KNO3 exhibited the lowest carbohydrate (21.08%) and highest protein (32.87%) contents. Interestingly, Pleurochrysis dentata cultured without KNO3 exhibited 33.61% of total lipid content which reduced to a total lipid content of 13.67% when cultured at 1 mmol L-1 concentration of KNO3. Thus, culture medium containing higher than 1 mmol L-1 of KNO3 could inhibit the cell size of Pleurochrysis dentata and CaCO3 accumulation in shells but it could promote its cell growth. For the first time we have reported a relatively complete coccolith structure devoid of its protoplast. In this study, we have also described about the special planar structure of Pleurochrysis dentata CaCO3 shells present on its inner tube of the R unit and parallel to the outer tube of the V unit which we named it as "doornail structure". We believe that this doornail structure provides structural stability and support to the developing coccoliths in Pleurochrysis dentata. Also, we have discussed about the "double-disc" structure of coccoliths which are closely arranged and interlocked with each other. The double-disc structure ensures fixation of each coccolith and objecting its free horizontal movement and helps in attaining a complementary coccolith structure.


Assuntos
Carbonato de Cálcio/metabolismo , Haptófitas/metabolismo , Calcificação Fisiológica , Haptófitas/citologia , Nitratos/metabolismo , Compostos de Potássio/metabolismo
19.
Food Funct ; 10(11): 7333-7342, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646314

RESUMO

Microalgae have strong potential as novel sources of nutraceuticals, as they contain significant amounts of highly valuable bioactive compounds. This study focuses on the bioprospection of biomass of the microalga Isochrysis galbana and its extracts (aqueous and ethanolic), determining total polyphenols, laminarin, fucoxanthin, coenzyme Q10, and ß-carotene contents, and also assessing several biological activities (antioxidant, cytotoxicity, and hypocholesterolemic). I. galbana exhibited high phenolic content, both in aqueous and ethanolic extracts. The microalgal freeze-dried biomass presented a low laminarin content and higher content of fucoxanthin (6.10 mg per g dw), and relevant ß-carotene and Coenzyme Q10 contents were detected. I. galbana aqueous extracts presented a high antioxidant capacity (approximately 90% inhibition by the ABTS method). Furthermore, I. galbana biomass and ethanolic extract showed significant cytotoxicity against HeLa human cervical cancer cells, with IC50 values of 0.32 and 0.28 mg ml-1 respectively, demonstrating potential for further anticancer studies. The aqueous extract of I. galbana induced a significant decrease of cholesterol absorption through Caco-2 monolayers, modelling the human intestinal barrier, which suggests that it may contribute to decreasing the dietary cholesterol absorption.


Assuntos
Suplementos Nutricionais , Haptófitas/química , Microalgas/química , Compostos de Bifenilo , Células CACO-2 , Sobrevivência Celular , Colesterol/metabolismo , Sequestradores de Radicais Livres , Humanos , Picratos , Polifenóis , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Xantofilas , beta Caroteno , beta-Glucanas
20.
Sci Total Environ ; 696: 133930, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31470329

RESUMO

Harmful algal blooms (HABs) and the invasion of smooth cordgrass (Spartina alterniflora) have become important environmental problems in intertidal zones of China, which caused serious damage on the coastal ecological systems. By using S. alterniflora as algaecide, this helps to utilize this invasive plant, in addition, is expected to help to control the expansion of S. alterniflora. The potential of S. alterniflora in HABs mitigation was investigated on controlling Phaeocystis globosa (haptophyceae) and Prorocentrum donghaiense (dinophyceae). The growth of both HABs species was significantly inhibited at high concentrations, and P. globosa was more sensitive than P. donghaiense. Furthermore, the extracts of S. alterniflora reduced the effective quantum yield, photosynthetic efficiency, and relative maximal electron transport rate of both algal species at high concentrations, which implies a disruption on their photosynthetic system. Flavonoids, which were previously known as antialgal chemicals, were found to be abundant in the extracts of S. alterniflora by UPLC-MS detection. Our results revealed that the potential of S. alterniflora as a novel antialgal agent for controlling HABs, simultaneously, resource utilization possibility for the invasive plant S. alterniflora.


Assuntos
Dinoflagellida , Desinfetantes/toxicidade , Haptófitas , Extratos Vegetais/toxicidade , Poaceae , China , Proliferação Nociva de Algas/efeitos dos fármacos , Espécies Introduzidas , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA