Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(17): 8378-8389, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602041

RESUMO

Bacterial infection is one of the most serious clinical complications, with life-threatening outcomes. Nature-inspired biomaterials offer appealing microscale and nanoscale architectures that are often hard to fabricate by traditional technologies. Inspired by the light-harvesting nature, we engineered sulfuric acid-treated sunflower sporopollenin exine-derived microcapsules (HSECs) to capture light and bacteria for antimicrobial photothermal therapy. Sulfuric acid-treated HSECs show a greatly enhanced photothermal performance and a strong bacteria-capturing ability against Gram-positive bacteria. This is attributed to the hierarchical micro/nanostructure and surface chemistry alteration of HSECs. To test the potential for clinical application, an in situ bacteria-capturing, near-infrared (NIR) light-triggered hydrogel made of HSECs and curdlan is applied in photothermal therapy for infected skin wounds. HSECs and curdlan suspension that spread on bacteria-infected skin wounds of mice first capture the local bacteria and then form hydrogels on the wound upon NIR light stimulation. The combination shows a superior antibacterial efficiency of 98.4% compared to NIR therapy alone and achieved a wound healing ratio of 89.4%. The current study suggests that the bacteria-capturing ability and photothermal properties make HSECs an excellent platform for the phototherapy of bacteria-infected diseases. Future work that can fully take advantage of the hierarchical micro/nanostructure of HSECs for multiple biomedical applications is highly promising and desirable.


Assuntos
Biopolímeros , Cápsulas , Carotenoides , Helianthus , Terapia Fototérmica , Pólen , Animais , Camundongos , Helianthus/química , Pólen/química , Cápsulas/química , Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Raios Infravermelhos
2.
J Sci Food Agric ; 104(9): 5541-5552, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38362946

RESUMO

BACKGROUND: Olive and sunflower seeds are by-products generated in large amounts by the plant oil industry. The technological and biological properties of plant-based substrates, especially protein hydrolysates, have increased their use as functional ingredients for food matrices. The present study evaluates the physical and oxidative stabilities of 50 g kg-1 fish oil-in-water emulsions where protein hydrolysates from olive and sunflower seeds were incorporated at 20 g kg-1 protein as natural emulsifiers. The goal was to investigate the effect of protein source (i.e. olive and sunflower seeds), enzyme (i.e. subtilisin and trypsin) and degree of hydrolysis (5%, 8% and 11%) on the ability of the hydrolysate to stabilize the emulsion and retard lipid oxidation over a 7-day storage period. RESULTS: The plant protein hydrolysates displayed different emulsifying and antioxidant capacities when incorporated into the fish oil-in-water emulsions. The hydrolysates with degrees of hydrolysis (DH) of 5%, especially those from sunflower seed meal, provided higher physical stability, regardless of the enzymatic treatment. For example, the average D [2, 3] values for the emulsions containing sunflower subtilisin hydrolysates at DH 5% only slightly increased from 1.21 ± 0.02 µm (day 0) to 2.01 ± 0.04 µm (day 7). Moreover, the emulsions stabilized with sunflower or olive seed hydrolysates at DH 5% were stable against lipid oxidation throughout the storage experiment, with no significant variation in the oxidation indices between days 0 and 4. CONCLUSION: The results of the present study support the use of sunflower seed hydrolysates at DH 5% as natural emulsifiers for fish oil-in-water emulsions, providing both physical and chemical stability against lipid oxidation. © 2024 Society of Chemical Industry.


Assuntos
Emulsões , Óleos de Peixe , Helianthus , Olea , Oxirredução , Proteínas de Plantas , Hidrolisados de Proteína , Sementes , Emulsões/química , Helianthus/química , Olea/química , Hidrolisados de Proteína/química , Óleos de Peixe/química , Sementes/química , Proteínas de Plantas/química , Água/química , Antioxidantes/química , Hidrólise , Emulsificantes/química
3.
Int J Biol Macromol ; 246: 125505, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355071

RESUMO

Inflammatory bowel disease (IBD) is a public health challenge and the use of pectin for symptom amelioration is a promising option. In this work, sunflower pectin has been extracted without (CHP) and with assistance of ultrasound (USP) using sodium citrate as a food-grade extracting agent. At optimal conditions (64 °C, 23 min) the highest yield was obtained with ultrasound application (15.5 vs. 8.1 %). Both pectins were structurally characterized by 1H NMR, HPSEC-ELSD, FT-IR and GC-FID. Unlike CHP, USP showed a lower molecular weight, higher galacturonic acid, lower degree of methyl-esterification and, overall, higher viscosity. These characteristics could affect the anti-inflammatory activity of pectins, evaluated using DSS-induced IBD model mice. So, USP promoted the defence (ICAM-1) and repair of the gastrointestinal mucosa (TFF3, ZO-1) more effectively than CHP. These results demonstrate the potential amelioration of acute colitis in IBD mice through USP supplementation. Taking into account the biomarkers analysed, these results demonstrate, for the first time, the positive impact of sunflower pectin extracted by ultrasound under very soft conditions on inflammatory bowel disease that might open up new possibilities in the treatment of this serious pathology.


Assuntos
Helianthus , Doenças Inflamatórias Intestinais , Animais , Camundongos , Pectinas/farmacologia , Pectinas/química , Helianthus/química , Espectroscopia de Infravermelho com Transformada de Fourier , Citrato de Sódio , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/tratamento farmacológico
4.
Ultrason Sonochem ; 95: 106413, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37088026

RESUMO

Lactic acid bacteria (LAB) are being used for probiotic and starter cultures to prevent global damage to microbial cells. To retain the benefits of LAB in the commercially used powdered form, highly efficient cryoprotective agents are required during the manufacturing process. This study suggests a novel cryoprotective agent derived from Jerusalem artichoke (JA; Helianthus tuberous L.) and describes the mechanism of cryoprotective effect improvement by sonication treatment. The cryoprotective effect of JA extract was verified by examining the viability of Leuconostoc mesenteroides WiKim33 after freeze-drying (FD). Sonication of JA extract improved the cryoprotective effect. Sonication reduced fructose and glucose contents, which increased the induction of critical damage during FD by 15.84% and 46.81%, respectively. The cryoprotective effects of JA and sonication-treated JA extracts were determined using the viable cell count of Leu. mesenteroides WiKim33. Immediately after FD and storage for 24 weeks, the viability of Leu. mesenteroides WiKim33 with JA extract was 82.8% and 76.3%, respectively, while that of the sonication-treated JA extract was 95.2% and 88.8%, respectively. Our results show that reduction in specific monosaccharides was correlated with improved cryoprotective effect. This study adopted sonication as a novel treatment for improving the cryoprotective effect and verified its efficiency.


Assuntos
Helianthus , Lactobacillales , Leuconostoc mesenteroides , Crioprotetores , Helianthus/química , Monossacarídeos , Extratos Vegetais/farmacologia
5.
Food Funct ; 13(22): 11503-11517, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36278790

RESUMO

The main focus of this study was on the protection mechanism of Jerusalem artichoke inulin (DI) against type 2 diabetes mellitus (T2DM) associated with abnormal hepatic lipid metabolism and gut microbiota dysfunction in high-fat diet and streptozotocin-induced diabetic mice. It was determined that the consumption of DI significantly improved the biochemical parameters and physiological indices linked to T2DM, including the reduction in blood glucose, HbA1c, triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels as well as the contents of serum pro-inflammatory cytokines. Supplementation with DI also ameliorated abnormal hepatic lipid metabolism by altering the expression of genes involved in the production and breakdown of lipids and cholesterol. Microbiological analysis showed that DI supplementation resulted in an enrichment of Prevotellaceae UCG-001, Parasutterella, Prevotellaceae UCG-003, and Dubosiella. Metabolomics revealed 89 differential metabolites closely related to DI intervention, and showed that DI supplementation regulated amino acid metabolism (e.g., indole), lipid metabolism (e.g., phosphocholine), cofactor and vitamin metabolism (e.g., cholecalciferol), nucleotide metabolism (e.g., thymine) and the digestive system (e.g., 7-ketolithocholic acid). Overall, Jerusalem artichoke inulin has a remarkable capacity to ameliorate abnormal hepatic lipid metabolism and gut microbiota dysfunction linked to T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Helianthus , Camundongos , Animais , Inulina/farmacologia , Helianthus/química , Metabolismo dos Lipídeos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Metaboloma , Dieta Hiperlipídica/efeitos adversos , Colesterol , Suplementos Nutricionais
6.
J Sci Food Agric ; 102(13): 5957-5964, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35470899

RESUMO

BACKGROUND: Due to the increasing incidence of obesity and cardiovascular diseases, consumers are demanding products with lower sugar content. In this sense, the reformulation of traditional foods with improved, safe and tasty ingredients is arousing a huge interest. Jams are conventionally produced with elevated amounts of sucrose, which increase the glycaemic index and must be avoided in certain kinds of consumers. RESULTS: This paper describes for the first time the elaboration of strawberry jams using low-methoxyl pectins from sunflower by-products, which allowed the addition of low amounts of sucrose (10-30%). These jams were compared with best-selling commercial samples. An in-depth physicochemical, compositional, sensorial and rheological characterization was carried out. The obtained jams were safe considering aw and pH values; samples presented enough acidity to avoid microorganism development and syneresis. The stabilizing role of sunflower pectin is noteworthy in terms of colour and other physicochemical characteristics. The organoleptic analysis showed that the taste and sweetness of laboratory samples were highly valued, although the presence of pieces of fruits was disliked some panellists. After knowing the content of added sugar used in each jam, the tasters preferred samples with 20% and 30% of sucrose over commercial samples. CONCLUSIONS: The results show the usefulness of sunflower pectin for the elaboration of jams of low glycaemic index. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Fragaria , Helianthus , Frutas , Helianthus/química , Pectinas/química , Sacarose
7.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164180

RESUMO

Minor compounds in vegetable oils are of health interest due to their powerful biological antioxidant properties. In order to extend the shelf life of sunflower oil, it is generally subjected to a refining process that can affect these desirable compounds. The main purpose of this study was to determine the effect of this chemical/physical refining process on selected minor components of sunflower oil in order to establish the nutritional quality and health properties of the oil. The oxidative stability, contents of fatty acids, tocopherols, phytosterols, reducing capacity, ß-carotene, chlorophyll, and squalene were studied during six refining steps. Quantitative data showed the evolution of oil quality according to its degree of refinement. The results showed a significant decrease for all of the minor compounds analyzed, with losses in carotenoids of 98.6%, 8.5% in tocopherols, 19.5% in phytosterols and 45.0% in squalene. The highest reductions were recorded for the compounds that alter the most the visual aspects of the oil (waxes, carotenoids and chlorophylls) whereas reduction was limited for the compounds with no impact on the organoleptic quality. The losses in the compounds of health interest should be minimized by improving the refining processes and/or having a greater content of those molecules in crude oil by breeding new performing varieties.


Assuntos
Antioxidantes/análise , Qualidade dos Alimentos , Tecnologia de Alimentos , Óleo de Girassol/química , Carotenoides/análise , Ácidos Graxos/análise , Tecnologia de Alimentos/métodos , Helianthus/química , Oxirredução , Fitosteróis/análise , Tocoferóis/análise
8.
Nat Prod Res ; 36(4): 1009-1013, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33111556

RESUMO

The main targets of this work were to evaluate the antioxidative properties of flavonoids in Jerusalem artichoke (Helianthus tuberosus L.) leaves and quantitatively determine their contents. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3-ethylbenzothiazoline)-6-sulphonic acid (ABTS) and hydroxyl free radicals scavenging assays were performed to determine their antioxidative capacities. The validated ultra high-performance liquid chromatography-quadrupole-time-of-flight/mass spectrometry (UHPLC-Q-TOF/MS) method was subsequently applied to the quality evaluation of eleven batches of Jerusalem artichoke leaves grown in different habitats at different harvesting time. Results indicated that two flavonoids isolated from Jerusalem artichoke leaves showed stronger antioxidant effects than the positive control, butylated hydroxytoluene (BHT). And the total contents of the two flavonoids in the Jerusalem artichoke leaves of flowering stage from Dalian, Liaoning Province, China, were the highest, their contents varied significantly depending on region and harvesting time. This study indicated that the leaves of Jerusalem artichoke possessed excellent antioxidant properties, highlighting their candidacy as natural antioxidants, which could be utilized therapeutically to protect the body from diseases caused by oxidative stress.


Assuntos
Helianthus , Antioxidantes/química , Flavonoides/química , Helianthus/química , Extratos Vegetais/química , Folhas de Planta/química
9.
Glycoconj J ; 38(5): 599-607, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34313918

RESUMO

An inulin polysaccharide with a molecular weight of ~ 2600 Da was derived from Jerusalem artichoke tubers and referred to as "JAP". Previous studies have shown that inulin can improve glucose tolerance and the liver lipid profile; however, its antitumor activity remains to be examined in detail. Therefore, to investigate the possible improvement of the antitumor activity of JAP, a novel nanostructured biomaterial was constructed by capping Se nanoparticles with JAP using sodium selenite, via a redox reaction with ascorbic acid, and referred to as "JAP-SeNPs". Transmission electron microscopy revealed that the average diameter of JAP-SeNPs is ~ 50 nm, and the C:Se mass ratio in JAP-SeNPs was found to be 15.4:1 by energy-dispersive X-ray spectroscopy. The well-dispersed JAP-SeNPs exhibited a significant in vitro antiproliferative effect on mouse forestomach carcinoma cells at a concentration of 400 µg/mL when incubated for 48 h, with an inhibition rate of 41.5%. Moreover, 38.9% of later apoptotic cells were observed. These results reveal that a combination of Se and JAP can effectively enhance the antitumor activity of polysaccharides obtained from Jerusalem artichoke tubers.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Helianthus/química , Inulina/química , Nanopartículas/química , Tubérculos/química , Selênio/química , Animais , Antineoplásicos/química , Linhagem Celular , Camundongos , Neoplasias Gástricas
10.
Food Funct ; 12(16): 7185-7197, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34169299

RESUMO

Structured fat phases are the basis of many consumer relevant properties of fat-containing foods. To realise a nutritional improvement - less saturated, more unsaturated fatty acids - edible oleogels could be remedy. The feasibility of traditional fat phases structured by oleogel in culinary products has been evaluated in this study. In this contribution the oleogel application in bouillon cubes as model system for culinary products is discussed. Three different gelators (sunflower wax (SFW), a mixture of ß-Sitosterol and γ-Oryzanol (SO) and ethylcellulose (EC)), at two concentration levels (5% and 10% (w/w)) each, were evaluated with respect to their physical properties, in the food matrix and application. The application of pure and structured canola oil (CO) was benchmarked against the reference, palm fat (PO). The assessment of the prototypes covered attempts to correlate the physicochemical analyses and sensory data. Organoleptic and analytical studies covered storage stability (up to 6 months) monitoring texture, color and fat oxidation. The results indicate that the substitution of palm fat by oleogel is essentially possible. The characteristics of the bouillon cubes are tuneable by gelator choice and inclusion level. Most importantly, the data show that the anticipated risk of intolerable effects of oxidation during shelf life is limited if antioxidants are used.


Assuntos
Substitutos da Gordura/química , Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Valor Nutritivo , Celulose/análogos & derivados , Celulose/química , Fenômenos Químicos , Helianthus/química , Humanos , Compostos Orgânicos/química , Fenilpropionatos/química , Óleo de Brassica napus/química , Sitosteroides/química , Paladar , Ceras/química
11.
Food Chem ; 362: 130204, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091162

RESUMO

Selective removal of phenolic compounds (PCs) from de-oiled sunflower kernel is generally considered a key step for food applications, but this often leads to protein loss. PC removal yield and protein loss were assessed during an aqueous or aqueous ethanol washing process with different temperatures, pH-values and ethanol contents. PC yield and protein loss increased when the ethanol content was < 60% or when a higher temperature was applied. Our main finding is that preventing protein loss should be the key objective when selecting process conditions. This can be achieved using solvents with high ethanol content. Simulation of the multi-step exhaustive process showed that process optimization is possible with additional washing steps. PC yield of 95% can be achieved with only 1% protein loss using 9 steps and 80% ethanol content at 25℃. The functional properties of the resulting concentrates were hardly altered with the use of high ethanol solvents.


Assuntos
Etanol/química , Helianthus/química , Fenóis/isolamento & purificação , Sementes/química , Concentração de Íons de Hidrogênio , Fenóis/química , Proteínas de Plantas/química , Solventes/química , Óleo de Girassol/química , Temperatura , Água/química
12.
Int J Biol Macromol ; 183: 2227-2237, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34087307

RESUMO

Commercial pectin production is based on vacuum evaporation and alcohol precipitation (VEAP) using large quantities of expensive and flammable alcohol. This process has high production costs that have greatly limited the commercial use of refined pectins. This study demonstrates a new technology using a diaultrafiltration (DUF) process in a pilot plant, which is a low-cost, green, and ecologically friendly way to produce pectin. In terms of the structure and quality of their products, a comparison of the two methods suggest that DUF provides significant (p < 0.05) flux enhancement, high pectin purity, and separation of the main pectin backbones, with higher molar mass (Mw) and less polydispersity (Mw/Mn) of pectin samples. An analysis of the 1D and 2D NMR spectra reveals that the DUF process removes most free impurities extracted along with the pectin macromolecules, making this method preferable to use. An analysis of power and chemical consumption demonstrates that the new process is preferable over existing methods due to lower energy consumption and higher product quality. It also possesses a flexible technical design that allows it to produce semi-products from various raw materials.


Assuntos
Flores/química , Frutas/química , Química Verde , Helianthus/química , Malus/química , Pectinas/isolamento & purificação , Álcoois/química , Precipitação Química , Química Verde/instrumentação , Estrutura Molecular , Peso Molecular , Controle de Qualidade , Ultrafiltração , Vácuo , Resíduos
13.
J Med Chem ; 64(13): 9042-9055, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34162205

RESUMO

The rising opioid crisis has become a worldwide societal and public health burden, resulting from the abuse of prescription opioids. Targeting the κ-opioid receptor (KOR) in the periphery has emerged as a powerful approach to develop novel pain medications without central side effects. Inspired by the traditional use of sunflower (Helianthus annuus) preparations for analgesic purposes, we developed novel stabilized KOR ligands (termed as helianorphins) by incorporating different dynorphin A sequence fragments into a cyclic sunflower peptide scaffold. As a result, helianorphin-19 selectively bound to and fully activated the KOR with nanomolar potency. Importantly, helianorphin-19 exhibited strong KOR-specific peripheral analgesic activity in a mouse model of chronic visceral pain, without inducing unwanted central effects on motor coordination/sedation. Our study provides a proof of principle that cyclic peptides from plants may be used as templates to develop potent and stable peptide analgesics applicable via enteric administration by targeting the peripheral KOR for the treatment of chronic abdominal pain.


Assuntos
Dor Abdominal/tratamento farmacológico , Analgésicos/farmacologia , Peptídeos Cíclicos/farmacologia , Extratos Vegetais/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Analgésicos/síntese química , Analgésicos/química , Animais , Células Cultivadas , Doença Crônica , Relação Dose-Resposta a Droga , Desenho de Fármacos , Células HEK293 , Helianthus/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Extratos Vegetais/síntese química , Extratos Vegetais/química , Receptores Opioides kappa/metabolismo , Sementes/química , Relação Estrutura-Atividade
14.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946573

RESUMO

The present study aimed to evaluate the effect of Jerusalem artichoke processing methods and drying methods (freeze drying, sublimation drying, vacuum drying) on the basic physicochemical parameters, profiles and contents of sugars and polyphenolic compounds, and health-promoting properties (antioxidant activity, inhibition of the activities of α-amylase, α-glucosidase, and pancreatic lipase) of the produced purée. A total of 25 polyphenolic compounds belonging to hydroxycinnamic phenolic acids (LC-PDA-MS-QTof) were detected in Jerusalem artichoke purée. Their average content in the raw material was at 820 mg/100 g dm (UPLC-PDA-FL) and was 2.7 times higher than in the cooked material. The chemical composition and the health-promoting value of the purées were affected by the drying method, with the most beneficial values of the evaluated parameters obtained upon freeze drying. Vacuum drying could offer an alternative to freeze drying, as both methods ensured relatively comparable values of the assessed parameters.


Assuntos
Fenômenos Químicos , Alimento Funcional/análise , Helianthus/química , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/química , Açúcares/química
15.
J Sci Food Agric ; 101(14): 5827-5833, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33792064

RESUMO

BACKGROUND: Sunflower seeds are in the top five most abundant oilseeds in the world, as well as sunflower oil in the edible oils group. Recently, increasing attention has been paid to cold-pressed sunflower oil because less processing is involved and no solvent is used. The present study was carried out to investigate dimensions (length, width, thickness), firmness, general (moisture content and hull content, mass of 1000 seeds), gravimetric (true and bulk density, porosity) and geometric characteristics (equivalent diameter, surface area, seed volume, sphericity) of 20 new sunflower hybrid seeds. Steps to determine most of these parameters are quite simple and easy since the process does not require long time or special equipment. RESULTS: Principal component analysis and cluster analysis confirmed differences in the mentioned characteristics between oily and confectionary sunflower hybrid seeds. One of the major differences between two groups of samples was in extraction oil yield. Mechanical extraction oil yield of the oily hybrid seeds was significantly (P Ë‚ 0.05) higher (from 68.72 ± 4.21% to 75.61 ± 1.99%) compared to confectionary hybrids (from 20.10 ± 2.82% to 39.91 ± 6.23%). Extraction oil yield values are known only after oil extraction. CONCLUSION: Knowledge of the extraction oil yield value before the mechanical extraction enables better management of the process. By application of the artificial neural network approach, an optimal neural network model was developed. The developed model showed a good generalization capability to predict the mechanical extraction oil yield of new sunflower hybrids based on the experimental data, which was a main goal of this paper. © 2021 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Helianthus/química , Óleo de Girassol/isolamento & purificação , Manipulação de Alimentos/instrumentação , Helianthus/genética , Redes Neurais de Computação , Sementes/química , Sementes/genética , Óleo de Girassol/análise
16.
J Sci Food Agric ; 101(14): 5775-5783, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33788966

RESUMO

BACKGROUND: This study reports the use of low glycemic sunflower pectin gel, elaborated with calcium and without or with sweeteners (sucrose, stevia and saccharin) as an edible coating and its possible combination with two modified atmosphere packaging (MAP), in order to extend shelf life, maintaining the quality, of strawberries during the storage at 4 °C. RESULTS: This pectin coating, formed with only calcium and/or stevia or saccharin, extended the shelf life of strawberries with respect to uncoating fruits, up to 12 days, keeping the microbial load constant, the firmness and less weight loss. With the same edible coatings, the shelf life of strawberries was extended up to 23 days when they were combined with MAP [10% carbon dioxide (CO2 ), 85% nitrogen (N2 ) and 5% oxygen (O2 )], maintaining the quality of strawberries, while the other MAP, with a higher CO2 concentration (20% CO2 , 75% N2 and 5% O2 ), had no effect. CONCLUSIONS: These results highlight the suitability of the combination of edible pectin coating combined with MAP to obtain an important shelf life extension, maintaining the good quality of the fruit. © 2021 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Fragaria/química , Frutas/química , Helianthus/química , Pectinas/química , Extratos Vegetais/química , Filmes Comestíveis , Conservação de Alimentos/instrumentação , Armazenamento de Alimentos , Índice Glicêmico
17.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466694

RESUMO

This study was focused on extraction, radical scavenging activities, and chemical composition identification of total flavonoids in sunflower (Helianthus annuus L.) receptacles (TFSR). We investigated the optimal extract parameters of TFSR using response surface methodology. The highest yield of TFSR was 1.04% with the ethanol concentration 58%, the material-to-liquid ratio 1:20 (v/w), the extraction time 2.6 h, and the extraction temperature 67 °C. The results of radical scavenging activities showed that ethyl acetate fraction (EAF) was the strongest by using 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis (3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS) and iron ion reducing analysis. The EAF had the highest flavonoids contents. Four fractions A, B, C and D were enrichment from EAF by polyamide resin. Fraction B had the highest flavonoids content. Thirteen chemical components of flavonoids in fraction B were first identified by Ultimate 3000 Nano LC System coupled to a Q Exactive HF benchtop Orbitrap mass spectrometer (UHPLC-HRMS/MS). Among of the thirteen chemical components, isoquercetin and daidzein were identified accurately by comparing with standard samples. Radical scavenging analysis showed that isoquercetin and EAF had strong activities. Therefore, sunflower receptacles can be used as a source of natural flavonoids. TFSR as a natural radical scavenger has potential applications in pharmaceutical industry.


Assuntos
Acetatos/química , Antioxidantes/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Sequestradores de Radicais Livres/farmacologia , Helianthus/química , Extratos Vegetais/farmacologia , Flavonoides/isolamento & purificação
18.
J Sci Food Agric ; 101(2): 794-804, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32898305

RESUMO

BACKGROUND: Peptide-Ca complexes can promote Ca absorption. The present study aimed to determine the transport mechanism and structural characteristics of sunflower seed and peanut peptides with high Ca binding capacity with respect to developing third-generation Ca supplements and functional food ingredients. RESULTS: High Ca-binding fractions of 1-3 kDa sunflower seed peptide (SSP4 ) and ≥ 10 kDa peanut peptide (PP1 ) had higher amount of Ca transported than CaCl2 and two hydrolyzed proteins in Caco-2 cells. SSP4 and PP1 were separated by Ca ion metal chelate affinity chromatography, and high Ca-binding fractions were observed for SSP4 -P2 and PP1 -P2 . The amino acid sequences of SSP4 -P2 and PP1 -P2 were characterized by high-performance liquid chromatography-electrospray ionization-time of flight mass spectrometry. Seven and eight peptides were identified from SSP4 -P2 and PP1 -P2 , respectively. These peptides had molecular weights ranging from 1500 Da to 2500 Da and a large number of characteristic amino acid sequences, such as EEEQQQ, EQ-QQQ-QQ, QQ-QQQQQ, E-EEE, EE-EEQ, RR, Q-QQ-QQQ, EE-EQ-EE-Q, QQ-QQQQ, and Q-QQQQ, where 'E' is glutamic acid and 'Q' is glutamine. CONCLUSION: SSP4 and PP1 can promote Ca transport in Caco-2 cells without affecting cell permeability. The amino acid sequences of SSP4 -P2 and PP1 -P2 with high Ca-binding abilities contain characteristic sequences, such as continuous glutamic acid and glutamine, and have low molecular weights. © 2020 Society of Chemical Industry.


Assuntos
Arachis/química , Cálcio/química , Cálcio/metabolismo , Helianthus/química , Peptídeos/química , Sequência de Aminoácidos , Transporte Biológico , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Humanos , Sementes/química
19.
J Sci Food Agric ; 101(1): 101-109, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32613642

RESUMO

BACKGROUND: Phytosterols are plant components with health benefits. Oleaginous seed hybridization can be relevant to increase phytosterols in diet through enriched oils. Sunflower oils obtained by press (PO) and subsequent solvent extraction (SO) from three types of phytosterol-enriched seeds were characterized. One presented a phytosterol composition of common sunflower seeds, whereas the other two were rich in campesterol and Δ7-stigmasterol, respectively. Seeds from two different harvests, 2015 and 2017, were studied. RESULTS: The type of extraction did not have a significant influence on the fatty acid composition. However, considerable differences were found between harvests. The oleic-to-linoleic ratio decreased from 0.71 in 2015 to 0.47 in 2017. The phytosterol compositions of the PO were similar to their SO homologues and no substantial differences were found between harvests. However, the SO presented higher total contents of phytosterols (4849-9249 mg kg-1 ) than the PO (2839-5284 mg kg-1 ) and the oils of 2017 showed higher levels (4476-9249 mg kg-1 ) compared to 2015 (2839-5754 mg kg-1 ). Unlike phytosterols, no significant differences were found in the tocopherol contents between the PO and SO or between harvests. The PO met Codex specifications for edible oils, except for trace metals, with concentrations close or above the limits for Cu, Fe, Pb and As. CONCLUSIONS: Differences in environmental and/or cultivation conditions between harvests may result in substantial differences in the fatty acid composition and phytosterol content in oils from the new sunflower seeds. Rigorous measures and controls to avoid trace metal contamination are required so that the PO can be considered as edible virgin oils. © 2020 Society of Chemical Industry.


Assuntos
Fracionamento Químico/métodos , Manipulação de Alimentos/métodos , Helianthus/química , Fitosteróis/química , Óleo de Girassol/química , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Fitosteróis/isolamento & purificação , Sementes/química , Vitamina E/análise , Vitamina E/isolamento & purificação
20.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187052

RESUMO

Sunflower (Helianthus annuus L.) contains active ingredients, such as flavonoids, alkaloids and tannins. Nevertheless, few studies have focused on essential oil from the receptacle of sunflower (SEO). In this work, we investigated the chemical composition and antimicrobial and antioxidant activities of SEO. The yield of SEO was about 0.42% (v/w) by hydrodistillation. A total of 68 volatile components of SEO were putatively identified by gas chromatography-mass spectrometry (GC-MS). The main constituents of SEO were α-pinene (26.00%), verbenone (7.40%), terpinolene (1.69%) and α-terpineol (1.27%). The minimum inhibitory concentration (MIC) of SEO against P. aeruginosa and S. aureus was 0.2 mg/mL. The MIC of SEO against S. cerevisiae was 3.2 mg/mL. The MIC of SEO against E. coli and Candida albicans was 6.4 mg/mL. The results showed that SEO had high antibacterial and antifungal activities. Three different analytical assays (DPPH, ABTS and iron ion reducing ability) were used to determine the antioxidant activities. The results showed that SEO had antioxidant activities. To summarize, the results in this study demonstrate the possibility for the development and application of SEO in potential natural preservatives and medicines due to its excellent antimicrobial and antioxidant activities.


Assuntos
Antibacterianos/química , Antioxidantes/química , Helianthus/química , Óleos Voláteis/química , Óleos de Plantas/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Monoterpenos Bicíclicos/química , Candida albicans/efeitos dos fármacos , Monoterpenos Cicloexânicos/química , Escherichia coli/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Radicais Livres , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA