Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurol ; 372: 114574, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852468

RESUMO

Neonatal intraventricular hemorrhage (IVH) releases blood products into the lateral ventricles and brain parenchyma. There are currently no medical treatments for IVH and surgery is used to treat a delayed effect of IVH, post-hemorrhagic hydrocephalus. However, surgery is not a cure for intrinsic brain injury from IVH, and is performed in a subacute time frame. Like many neurological diseases and injuries, innate immune activation is implicated in the pathogenesis of IVH. Innate immune activation is a pharmaceutically targetable mechanism to reduce brain injury and post-hemorrhagic hydrocephalus after IVH. Here, we tested the macrolide antibiotic azithromycin, which has immunomodulatory properties, to reduce innate immune activation in an in vitro model of microglial activation using the blood product hemoglobin (Hgb). We then utilized azithromycin in our in vivo model of IVH, using intraventricular blood injection into the lateral ventricle of post-natal day 5 rat pups. In both models, azithromycin modulated innate immune activation by several outcome measures including mitochondrial bioenergetic analysis, cytokine expression and flow cytometric analysis. This suggests that azithromycin, which is safe for neonates, could hold promise for modulating innate immune activation after IVH.


Assuntos
Lesões Encefálicas , Hidrocefalia , Ratos , Animais , Azitromicina/farmacologia , Encéfalo/patologia , Hemorragia Cerebral/patologia , Hidrocefalia/etiologia , Lesões Encefálicas/patologia , Hemoglobinas/farmacologia
2.
J Neuroinflammation ; 20(1): 82, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944982

RESUMO

BACKGROUND: Central post-stroke pain (CPSP) is an intractable and disabling central neuropathic pain that severely affects patients' lives, well-being, and socialization abilities. However, CPSP has been poorly studied mechanistically and its treatment remains challenging. Here, we used a rat model of CPSP induced by thalamic hemorrhage to investigate its underlying mechanisms and the effect of stellate ganglion block (SGB) on CPSP and emotional comorbidities. METHODS: Thalamic hemorrhage was produced by injecting collagenase IV into the ventral-posterolateral nucleus (VPL) of the right thalamus. The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Behavioral tests were carried out to examine depressive and anxiety-like behaviors including the open field test (OFT), elevated plus maze test (EPMT), novelty-suppressed feeding test (NSFT), and forced swim test (FST). The peri-thalamic lesion tissues were collected for immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA). Genetic knockdown of thalamic hypoxia-inducible factor-1α (HIF-1α) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) with microinjection of HIF-1α siRNA and NLRP3 siRNA into the VPL of thalamus were performed 3 days before collagenase injection into the same regions. Microinjection of lificiguat (YC-1) and MCC950 into the VPL of thalamus were administrated 30 min before the collagenase injection in order to inhibited HIF-1α and NLRP3 pharmacologically. Repetitive right SGB was performed daily for 5 days and laser speckle contrast imaging (LSCI) was conducted to examine cerebral blood flow. RESULTS: Thalamic hemorrhage caused persistent mechanical allodynia and anxiety- and depression-like behaviors. Accompanying the persistent mechanical allodynia, the expression of HIF-1α and NLRP3, as well as the activities of microglia and astrocytes in the peri-thalamic lesion sites, were significantly increased. Genetic knockdown of thalamic HIF-1α and NLRP3 significantly attenuated mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. Further studies revealed that intra-thalamic injection of YC-1, or MCC950 significantly suppressed the activation of microglia and astrocytes, the release of pro-inflammatory cytokines, the upregulation of malondialdehyde (MDA), and the downregulation of superoxide dismutase (SOD), as well as mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. In addition, repetitive ipsilateral SGB significantly restored the upregulated HIF-1α/NLRP3 signaling and the hyperactivated microglia and astrocytes following thalamic hemorrhage. The enhanced expression of pro-inflammatory cytokines and the oxidative stress in the peri-thalamic lesion sites were also reversed by SGB. Moreover, LSCI showed that repetitive SGB significantly increased cerebral blood flow following thalamic hemorrhage. Most strikingly, SGB not only prevented, but also reversed the development of mechanical allodynia and anxiety- and depression-like behaviors induced by thalamic hemorrhage. However, pharmacological activation of thalamic HIF-1α and NLRP3 with specific agonists significantly eliminated the therapeutic effects of SGB on mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. CONCLUSION: This study demonstrated for the first time that SGB could improve CPSP with comorbid anxiety and depression by increasing cerebral blood flow and inhibiting HIF-1α/NLRP3 inflammatory signaling.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Neuralgia , Acidente Vascular Cerebral , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Acidente Vascular Cerebral Hemorrágico/complicações , Acidente Vascular Cerebral Hemorrágico/patologia , Depressão/etiologia , Depressão/terapia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Gânglio Estrelado/metabolismo , Gânglio Estrelado/patologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Tálamo/metabolismo , Hemorragia Cerebral/patologia , Neuralgia/metabolismo , Ansiedade , Colagenases/metabolismo , Citocinas/metabolismo
3.
JAMA Netw Open ; 4(12): e2135773, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34860246

RESUMO

Importance: Intraventricular thrombolysis reduces intraventricular hemorrhage (IVH) volume in patients with spontaneous intracerebral hemorrhage (ICH), but it is unclear if a similar association with parenchymal ICH volume exists. Objective: To evaluate the association between intraventricular alteplase use and ICH volume as well as the association between a change in parenchymal ICH volume and long-term functional outcomes. Design, Setting, and Participants: This cohort study was a post hoc exploratory analysis of data from the Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage phase 3 randomized clinical trial with blinded outcome assessments. Between September 1, 2009, and January 31, 2015, patients with ICH and IVH were randomized to receive either intraventricular alteplase or normal saline via an external ventricular drain. Participants with primary IVH were excluded. Data analyses were performed between January 1 and June 30, 2021. Exposure: Randomization to receive intraventricular alteplase. Main Outcomes and Measures: The primary outcome was the change in parenchymal ICH volume between the hematoma stability and end-of-treatment computed tomography scans. Secondary outcomes were a modified Rankin Scale score higher than 3 and mortality, both of which were assessed at 6 months. The association between alteplase and change in parenchymal ICH volume was assessed using multiple linear regression, whereas the associations between change in parenchymal ICH volume and 6-month outcomes were assessed using multiple logistic regression. Prespecified subgroup analyses were performed for baseline IVH volume, admission ICH volume, and ICH location. Results: A total of 454 patients (254 men [55.9%]; mean [SD] age, 59 [11] years) were included in the study. Of these patients, 230 (50.7%) were randomized to receive alteplase and 224 (49.3%) to receive normal saline. The alteplase group had a greater mean (SD) reduction in parenchymal ICH volume compared with the saline group (1.8 [0.2] mL vs 0.4 [0.1] mL; P < .001). In the primary analysis, alteplase use was associated with a change in the parenchymal ICH volume in the unadjusted analysis per 1-mL change (ß, 1.37; 95% CI, 0.92-1.81; P < .001) and in multivariable linear regression analysis that was adjusted for demographic characteristics, stability ICH and IVH volumes, ICH location, and time to first dose of study drug per 1-mL change (ß, 1.20; 95% CI, 0.79-1.62; P < .001). In the secondary analyses, no association was found between change in parenchymal ICH volume and poor outcome (odds ratio [OR], 0.97; 95% CI 0.87-1.10; P = .64) or mortality (OR, 0.97; 95% CI 0.99-1.08; P = .59). Similar results were observed in the subgroup analyses. Conclusions and Relevance: This study found that intraventricular alteplase use in patients with a large IVH was associated with a small reduction in parenchymal ICH volume, but this association did not translate into improved functional outcomes or mortality. Intraventricular thrombolysis should be examined in patients with moderate to large ICH with IVH, especially in a thalamic location.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral Intraventricular/tratamento farmacológico , Fibrinolíticos/administração & dosagem , Hematoma/tratamento farmacológico , Ativador de Plasminogênio Tecidual/administração & dosagem , Idoso , Hemorragia Cerebral/patologia , Hemorragia Cerebral Intraventricular/patologia , Método Duplo-Cego , Drenagem , Feminino , Hematoma/patologia , Humanos , Infusões Intraventriculares , Masculino , Pessoa de Meia-Idade , Tálamo/patologia , Resultado do Tratamento
4.
World Neurosurg ; 155: 32-40, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34384917

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a severe form of stroke with limited treatment options. Statins have shown promise as a therapy for ICH in animal and human studies. We systematically reviewed and assessed the quality of preclinical studies exploring statin-use after ICH to guide clinical trial decision-making and design. METHODS: We identified preclinical trials assessing the efficacy of statins in ICH via a systematic review of the literature according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. In total, 16 studies were identified that described statin use in an animal model of ICH and assessed histological outcomes, behavioral scores, or both. Design characteristics were analyzed using Stroke Therapy Academic Industry Roundtable (STAIR) criteria modified for ICH. Meta-analysis was performed using a random effects model. RESULTS: Behavioral outcomes were assessed in 12 of the studies with 100% (n = 12) reporting that statins significantly improved ICH recovery. Histologic hematoma volume and brain water content outcomes were analyzed in 10 of the studies, with 50% (n = 5) reporting significant improvement. The ratio of means between experimental and control cases for modified Neurological Severity Score was 0.63 (95% confidence interval 0.49-0.82). The ratio of means between experimental and control cases for hemorrhagic volume was 0.85 (95% confidence interval 0.70-1.03). There was heterogeneity between studies (P < 0.0001) but no evidence of publication bias (P = 0.89, P = 0.59, respectively). CONCLUSIONS: Behavioral outcomes in ICH were found to consistently improve with administration of statins in preclinical studies suggesting that statin therapy may be suitable for randomized clinical trials in humans. In addition, the STAIR criteria can be modified to effectively evaluate preclinical studies in ICH.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Modelos Animais de Doenças , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Hemorragia Cerebral/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Acidente Vascular Cerebral/patologia
5.
Mol Neurobiol ; 58(10): 4999-5013, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34232477

RESUMO

Mitochondrial damage has been reported to be a critical factor for secondary brain injury (SBI) induced by intracerebral hemorrhage (ICH). MIC60 is a key element of the mitochondrial contact site and cristae junction organizing system (MICOS), which takes a principal part in maintaining mitochondrial structure and function. The role of MIC60 and its underlying mechanisms in ICH-induced SBI are not clear, which will be investigated in this present study. To establish and emulate ICH model in vivo and in vitro, autologous blood was injected into the right basal ganglia of Sprague-Dawley (SD) rats; and primary-cultured cortical neurons were treated by oxygen hemoglobin (OxyHb). First, after ICH induction, mitochondria were damaged and exhibited mitochondrial crista-structure remodeling, and MIC60 protein levels were reduced. Furthermore, MIC60 overexpression reduced ICH-induced neuronal death both in vivo and in vitro. In addition, MIC60 upregulation reduced ICH-induced cerebral edema, neurobehavioral impairment, and cognitive dysfunction; by contrast, MIC60 knockdown had the opposite effect. Additionally, in primary-cultured neurons, MIC60 overexpression could reverse ICH-induced neuronal cell death and apoptosis, mitochondrial membrane potential collapse, and decrease of mitophagy, indicating that MIC60 overexpression can maintain the integrity of mitochondrial structures. Moreover, loss of MIC60 is after ICH-induced reduction in PINK1 levels and mislocalization of Parkin in primary-cultured neurons. Taken together, our findings suggest that MIC60 plays an important role in ICH-induced SBI and may represent a promising target for ICH therapy.


Assuntos
Morte Celular/fisiologia , Hemorragia Cerebral/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Neurônios/metabolismo , Animais , Transfusão de Sangue Autóloga/efeitos adversos , Células Cultivadas , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/patologia , Masculino , Mitocôndrias/patologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
6.
Stroke ; 52(7): 2393-2403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102854

RESUMO

Background and Purpose: Hemorrhage-caused gene changes in the thalamus likely contribute to thalamic pain genesis. RNA N6-methyladenosine modification is an additional layer of gene regulation. Whether FTO (fat-mass and obesity-associated protein), an N6-methyladenosine demethylase, participates in hemorrhage-induced thalamic pain is unknown. Methods: Expression of Fto mRNA and protein was assessed in mouse thalamus after hemorrhage caused by microinjection of Coll IV (type IV collagenase) into unilateral thalamus. Effect of intraperitoneal administration of meclofenamic acid (a FTO inhibitor) or microinjection of adeno-associated virus 5 (AAV5) expressing Cre into the thalamus of Ftofl/fl mice on the Coll IV microinjection­induced TLR4 (Toll-like receptor 4) upregulation and nociceptive hypersensitivity was examined. Effect of thalamic microinjection of AAV5 expressing Fto (AAV5-Fto) on basal thalamic TLR4 expression and nociceptive thresholds was also analyzed. Additionally, level of N6-methyladenosine in Tlr4 mRNA and its binding to FTO or YTHDF2 (YTH N6-methyladenosine RNA binding protein 2) were observed. Results: FTO was detected in neuronal nuclei of thalamus. Level of FTO protein, but not mRNA, was time-dependently increased in the ipsilateral thalamus on days 1 to 14 after Coll IV microinjection. Intraperitoneal injection of meclofenamic acid or adeno-associated virus-5 expressing Cre microinjection into Ftofl/fl mouse thalamus attenuated the Coll IV microinjection­induced TLR4 upregulation and tissue damage in the ipsilateral thalamus and development and maintenance of nociceptive hypersensitivities on the contralateral side. Thalamic microinjection of AAV5-Fto increased TLR4 expression and elicited hypersensitivities to mechanical, heat and cold stimuli. Mechanistically, Coll IV microinjection produced an increase in FTO binding to Tlr4 mRNA, an FTO-dependent loss of N6-methyladenosine sites in Tlr4 mRNA and a reduction in the binding of YTHDF2 to Tlr4 mRNA in the ipsilateral thalamus. Conclusions: Our findings suggest that FTO participates in hemorrhage-induced thalamic pain by stabilizing TLR4 upregulation in thalamic neurons. FTO may be a potential target for the treatment of this disorder.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/biossíntese , Hemorragia Cerebral/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Tálamo/metabolismo , Receptor 4 Toll-Like/biossíntese , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Técnicas de Silenciamento de Genes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microinjeções/métodos , Neuralgia/genética , Neuralgia/patologia , Neurônios/patologia , Tálamo/patologia , Receptor 4 Toll-Like/genética
7.
Mol Med Rep ; 24(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955500

RESUMO

The acupuncture penetrating line of Baihui (GV20) to Qubin (GB7) spans the parietal, frontal and temporal lobes. The present study aimed to elucidate the mechanism by which electroacupuncture (EA) at GV20­GB7 regulates mitophagy in intracerebral hemorrhage (ICH) and whether it serves a neuroprotective role. A whole blood­induced ICH model was used. Mitophagy­regulating proteins, including BCL/adenovirus E1B 19 kDa­interacting protein 3 (BNIP3), PTEN­induced putative kinase 1 (PINK1), Parkin and apoptosis­associated proteins were detected by western blotting; autophagy following ICH was evaluated by immunofluorescent techniques; morphological characteristics of mitophagy were observed using transmission electron microscopy; and TUNEL assay was performed to determine the number of apoptotic cells. Immunohistochemistry was used to detect p53 expression. The protective role of EA (GV20­GB7) via enhanced mitophagy and suppressed apoptosis in ICH was further confirmed by decreased modified neurological severity score. The results showed that EA (GV20­GB7) treatment upregulated mitochondrial autophagy following ICH and inhibited apoptotic cell death. The mechanism underlying EA (GV20­GB7) treatment may involve inhibition of p53, an overlapping protein of autophagy and apoptosis. EA (GV20­GB7) treatment decreased neurobehavioral deficits following ICH but pretreatment with 3­methyladenine counteracted the beneficial effects of EA (GV20­GB7) treatment. In conclusion, EA (GV20­GB7) improved recovery from ICH by regulating the balance between mitophagy and apoptosis.


Assuntos
Hemorragia Cerebral/terapia , Eletroacupuntura/métodos , Pontos de Acupuntura , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Caspase 3/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Masculino , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Int J Nanomedicine ; 16: 775-788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33574665

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a common neurological crisis leading to high mortality and morbidity. Oxidative stress-induced secondary injury plays a critical role in neurological deterioration. Previously, we synthesized a porous Se@SiO2 nanocomposite and identified their therapeutic role in osteonecrosis of the femoral head. Whether this nanocomposite is neuroprotective remains to be elucidated. METHODS: A porous Se@SiO2 nanocomposite was synthesized, and its biosafety was determined using a CCK-8 assay. The neuroprotective effect was evaluated by TUNEL staining, and intracellular ROS were detected with a DCFH-DA probe in SH-SY5Y cells exposed to hemin. Furthermore, the effect of the nanocomposite on cell apoptosis, brain edema and blood-brain barrier permeability were evaluated in a collagenase-induced ICH mouse model. The potential mechanism was also explored. RESULTS: The results demonstrated that Se@SiO2 treatment significantly improved neurological function, increased glutathione peroxidase activity and downregulated malonaldehyde levels. The proportion of apoptotic cells, brain edema and blood-brain barrier permeability were reduced significantly in ICH mice treated with Se@SiO2 compared to vehicle-treated mice. In vitro, Se@SiO2 protected SH-SY5Y cells from hemin-induced apoptosis by preventing intracellular reactive oxygen species accumulation. CONCLUSION: These results suggested that the porous Se@SiO2 nanocomposite exerted neuroprotection by suppressing oxidative stress. Se@SiO2 may be a potential candidate for the clinical treatment of ICH and oxidative stress-related brain injuries.


Assuntos
Encéfalo/patologia , Hemorragia Cerebral/patologia , Nanocompostos/química , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Linhagem Celular Tumoral , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Citoproteção/efeitos dos fármacos , Modelos Animais de Doenças , Hemina/toxicidade , Humanos , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Nanocompostos/toxicidade , Nanocompostos/ultraestrutura , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Selênio/uso terapêutico , Dióxido de Silício/farmacologia , Testes de Toxicidade
10.
Neurobiol Aging ; 100: 39-47, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33477010

RESUMO

The aim of this study is to investigate the relationship between aging and brain vasculature health. Three groups of mice, 3, 17-18, and 24 months, comparable to young adult, middle age, and old human were studied. Prussian blue histology and fast imaging with steady precession T2∗-weighted magnetic resonance imaging were used to quantify structural changes in the brain across age groups. The novel object recognition test was used to assess behavioral changes associated with anatomical changes. This study is the first to show that the thalamus is the most vulnerable brain region in the mouse model for aging-induced vascular damage. Magnetic resonance imaging data document the timeline of accumulation of thalamic damage. Histological data reveal that the majority of vascular damage accumulates in the ventroposterior nucleus and mediodorsal thalamic nucleus. Functional studies indicate that aging-induced vascular damage in the thalamus is associated with memory and sensorimotor deficits. This study points to the possibility that aging-associated vascular disease is a factor in irreversible brain damage as early as middle age.


Assuntos
Envelhecimento/patologia , Envelhecimento/psicologia , Hemorragia Cerebral/patologia , Transtornos da Memória/patologia , Distúrbios Somatossensoriais/patologia , Acidente Vascular Cerebral/patologia , Tálamo/patologia , Animais , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Humanos , Masculino , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Camundongos Endogâmicos C57BL , Distúrbios Somatossensoriais/diagnóstico por imagem , Distúrbios Somatossensoriais/etiologia , Acidente Vascular Cerebral/complicações , Tálamo/diagnóstico por imagem
11.
J Cereb Blood Flow Metab ; 41(5): 1103-1118, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32791876

RESUMO

Diffuse white matter (WM) disease is highly prevalent in elderly with cerebral small vessel disease (cSVD). In humans, cSVD such as cerebral amyloid angiopathy (CAA) often coexists with Alzheimer's disease imposing a significant impediment for characterizing their distinct effects on WM. Here we studied the burden of age-related CAA pathology on WM disease in a novel transgenic rat model of CAA type 1 (rTg-DI). A cohort of rTg-DI and wild-type rats was scanned longitudinally using MRI for characterization of morphometry, cerebral microbleeds (CMB) and WM integrity. In rTg-DI rats, a distinct pattern of WM loss was observed at 9 M and 11 M. MRI also revealed manifestation of small CMB in thalamus at 6 M, which preceded WM loss and progressively enlarged until the moribund disease stage. Histology revealed myelin loss in the corpus callosum and thalamic CMB in all rTg-DI rats, the latter of which manifested in close proximity to occluded and calcified microvessels. The quantitation of CAA load in rTg-DI rats revealed that the most extensive microvascular Aß deposition occurred in the thalamus. For the first time using in vivo MRI, we show that CAA type 1 pathology alone is associated with a distinct pattern of WM loss.


Assuntos
Encéfalo/irrigação sanguínea , Angiopatia Amiloide Cerebral/patologia , Hemorragia Cerebral/patologia , Substância Branca/patologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Calcinose/complicações , Estudos de Casos e Controles , Angiopatia Amiloide Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Corpo Caloso/patologia , Imagem de Tensor de Difusão/métodos , Modelos Animais de Doenças , Feminino , Carga Global da Doença/estatística & dados numéricos , Imageamento por Ressonância Magnética/métodos , Masculino , Microvasos/metabolismo , Microvasos/patologia , Ratos , Ratos Transgênicos , Tálamo/patologia , Substância Branca/diagnóstico por imagem
12.
Mol Pharm ; 18(2): 593-609, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926630

RESUMO

Deferoxamine mesylate (DFO) is an FDA-approved, hexadentate iron chelator routinely used to alleviate systemic iron burden in thalassemia major and sickle cell patients. Iron accumulation in these disease states results from the repeated blood transfusions required to manage these conditions. Iron accumulation has also been implicated in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD), and secondary injury following intracerebral hemorrhage (ICH). Chelation of brain iron is thus a promising therapeutic strategy for improving behavioral outcomes and slowing neurodegeneration in the aforementioned disease states, though the effectiveness of DFO treatment is limited on several accounts. Systemically administered DFO results in nonspecific toxicity at high doses, and the drug's short half-life leads to low patient compliance. Mixed reports of DFO's ability to cross the blood-brain barrier (BBB) also appear in literature. These limitations necessitate novel DFO formulations prior to the drug's widespread use in managing neurodegeneration. Herein, we discuss the various dosing regimens and formulations employed in intranasal (IN) or systemic DFO treatment, as well as the physiological and behavioral outcomes observed in animal models of AD, PD, and ICH. The clinical progress of chelation therapy with DFO in managing neurodegeneration is also evaluated. Finally, the elimination of intranasally administered particles via the glymphatic system and efflux transporters is discussed. Abundant preclinical evidence suggests that intranasal DFO treatment improves memory retention and behavioral outcome in rodent models of AD, PD, and ICH. Several other biochemical and physiological metrics, such as tau phosphorylation, the survival of tyrosine hydroxylase-positive neurons, and infarct volume, are also positively affected by intranasal DFO treatment. However, dosing regimens are inconsistent across studies, and little is known about brain DFO concentration following treatment. Systemic DFO treatment yields similar results, and some complex formulations have been developed to improve permeability across the BBB. However, despite the success in preclinical models, clinical translation is limited with most clinical evidence investigating DFO treatment in ICH patients, where high-dose treatment has proven dangerous and dosing regimens are not consistent across studies. DFO is a strong drug candidate for managing neurodegeneration in the aging population, but before it can be routinely implemented as a therapeutic agent, dosing regimens must be standardized, and brain DFO content following drug administration must be understood and controlled via novel formulations.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Desferroxamina/administração & dosagem , Portadores de Fármacos/química , Doença de Parkinson/tratamento farmacológico , Sideróforos/administração & dosagem , Administração Intranasal , Doença de Alzheimer/patologia , Animais , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Desferroxamina/farmacocinética , Modelos Animais de Doenças , Meia-Vida , Humanos , Injeções Intramusculares , Injeções Intraventriculares , Injeções Espinhais , Injeções Subcutâneas , Ferro/metabolismo , Adesão à Medicação , Nanopartículas/química , Mucosa Nasal/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/patologia , Permeabilidade , Sideróforos/farmacocinética , Distribuição Tecidual
13.
Drug Des Devel Ther ; 14: 2573-2584, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753840

RESUMO

BACKGROUND: This study sought to investigate a novel effect of melatonin in reducing brain injury in an in vivo hyperglycemic intracerebral hemorrhage (ICH) model and further explore the mechanisms of protection. METHODS: Hyperglycemia ICH was induced in Sprague-Dawley rats by streptozocin injection followed by autologous blood injection into the striatum. A combined approach including RNA-specific depletion, electron microscopy, magnetic resonance, Western blots, and immunohistological staining was applied to quantify the brain injuries after ICH. RESULTS: Hyperglycemia resulted in enlarged hematoma volume, deteriorated brain edema, and aggravated neuronal mitochondria damage 3 days after ICH. Post-treatment with melatonin 2 hours after ICH dose-dependently improved neurological behavioral performance lasting out to 14 days after ICH. This improved neurological function was associated with enhanced structural and functional integrity of mitochondria. Mechanistic studies revealed that melatonin alleviated mitochondria damage in neurons via activating the PPARδ/PGC-1α pathway. Promisingly, melatonin treatment delayed until 6 hours after ICH still reduced brain edema and improved neurological functions. Melatonin supplementation reduces neuronal damage after hyperglycemic ICH by alleviating mitochondria damage in a PPARδ/PGC-1α-dependent manner. CONCLUSION: Melatonin may represent a therapeutic strategy with a wide therapeutic window to reduce brain damage and improve long-term recovery after ICH.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Melatonina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Injeções Intraperitoneais , Masculino , Melatonina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley
14.
Am J Forensic Med Pathol ; 41(3): 213-216, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32541393

RESUMO

Acute myeloid leukemia (AML) is characterized by the rapid growth of abnormal white blood cells in the bone marrow that interferes with the production of normal blood cells. This disease is burdened by a high risk of bleeding complications involving central nervous system hemorrhages, purpura, gingival bleeding, and gastrointestinal bleeding. In this article, the authors report a case of a fatal intracerebral hemorrhage in a 21-year-old man who was affected by an undiagnosed AML. The subject practiced a combat sport (Muay Thai), and 2 days before his last training, he was involved in a fight where the aggressor punched him in the face; however, after the fight, he did not claim of any symptoms. The current case highlights the importance of the role of the forensic pathologist because only through a careful and complete circumstantial, autoptic, and histological analysis it is possible to date the origin of a cerebral hemorrhage and establish whether it is spontaneous or posttraumatic in subjects with undiagnosed preexisting diseases. Through an integrated study, it is also important to date the lesion and identify the traumatic event responsible of the bleeding. Finally, this case has a relevant clinical importance relatively to sports medicine, where it would be appropriate that athletes undergo blood test as a preventive measure. In fact, in presence of an acute hematological disease, such as AML, even mild traumatic injuries may be fatal.


Assuntos
Hemorragia Cerebral/patologia , Leucemia Mieloide Aguda/diagnóstico , Artes Marciais , Doenças não Diagnosticadas , Evolução Fatal , Humanos , Leucemia Promielocítica Aguda/diagnóstico , Masculino , Adulto Jovem
15.
Sci Rep ; 10(1): 10389, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587368

RESUMO

The surgical efficacy for supratentorial intracerebral hemorrhage (ICH) remains unknown. We compared the advantages of the widely practiced endoscopic hematoma removal under local anesthesia with that of craniotomy under general anesthesia for ICH. We also focused on our novel operative concept of intentional hematoma leaving technique to avoid further damage to the brain. We retrospectively analyzed 134 consecutive patients (66 endoscopies and 68 craniotomies) who were surgically treated for supratentorial ICH. The characteristics of the 134 patients were as follows: The median (interquartile range) age was 73 (61-82) years. The median Glasgow Coma Scale scores at admission, on day 7, and the median modified Rankin Scale (mRS) score at 6 months were 10 (7-13), 13 (10-14), and 4 (3-5) respectively. The statistical comparison revealed there were no differences in GCS score on day seven between the endoscopy 13 (12-14) and craniotomy group 12 (9-14). No differences were observed in mRS scores at 6 months between the endoscopy 4 (2-5) and craniotomy group 4 (3-5). However, the patients treated with our technique tended to have favorable outcomes. Multivariate analysis revealed the operative time was significantly decreased in the endoscopy group compared to the craniotomy group (p < 0.001).


Assuntos
Anestesia Local/métodos , Hemorragia Cerebral/cirurgia , Craniotomia/métodos , Endoscopia/métodos , Hematoma/cirurgia , Duração da Cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
16.
BMC Neurosci ; 21(1): 24, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471341

RESUMO

BACKGROUND: Cerebral stroke occurs following ischemic and hemorrhagic lesions in the brain. Survival and recovery of stroke patients depend on the severity of the initial injury but also the therapeutic approaches applied for emergent lifesaving and continuing post-stroke management. Dl-3-n-Butylphthalide (NBP), an active compound derived from Chinese celery seeds, has shown clinical efficacy in the treatment of ischemic cerebral stroke. RESULTS: In the present study we explored the therapeutic effect of NBP in a rat model of intracerebral hemorrhage (ICH), focusing on its potential role in promoting neovascularization in the perihemorrhagic zone. ICH was induced in male Sprague-Dawley rats by unilateral injection of autologous blood into the globus pallidus, with sham-operated (Sham group), vehicle-treated (ICH) and NBP-treated (at 10 and 25 mg/kg/Bid, p.o., ICH + NBP10 and ICH + NBP25, respectively) groups examined behaviorally, macroscopically, histologically and biochemically at 1, 3, 7 and 15 days (d) post operation. Rats in the ICH + NBP10 and ICH + NBP25 groups showed reduced Longa's motor scores relative to the ICH groups at the 3 and 7d time points, while the hematoma volume was comparable in the two NBP relative to the ICH groups as measured at 7d and 15d. In the perihemorrhagic zone, the numeric density of blood vessels immunolabeled by CD34, an angiogenic marker, was greater in the ICH + NBP10 and ICH + NBP25 than ICH groups, more so in the higher dosage group, at 1, 3, 7 and 15d. Levels of the vascular endothelial growth factor (VEGF) and angiopoietins-2 (Ang-2) proteins were elevated in the NBP groups relative to the sham and vehicle controls in immunoblotting of tissue lysates from the injection region. CONCLUSION: These results suggest that NBP can alleviate neurological defects following experimentally induced local brain hemorrhage, which is associated with a potential role of this drug in promoting neovascularization surrounding the bleeding loci.


Assuntos
Benzofuranos/farmacologia , Encéfalo/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Masculino , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
J Integr Neurosci ; 19(1): 101-109, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259890

RESUMO

Medicinal plant breviscapine is shown to exhibit a protective role in tissue damage after cerebral hemorrhage. The effects of breviscapine on neurological deficit score, brain tissue water content, brain pathological tissue changes, blood-brain barrier bidirectional regulation, and inflammatory factors after cerebral hemorrhage in rats were observed. Western blot and real-time quantitative polymerase chain reaction were performed to explore how Periostin and nuclear factor kappa-B pathway-related factors protein expression contribute to the protective effects of breviscapine on brain injury. Breviscapine inhalation could reduce neurological deficit scores and brain tissue water content. Hematoxylin-eosin staining showed that breviscapine could improve the pathological changes of brain tissue and alleviate brain damage. Breviscapine reduced the abnormal increase of Evans blue content caused by a cerebral hemorrhage, and could significantly inhibit the levels of inflammatory factors interleukin-6 and tumor necrosis factor-α. Also, breviscapine significantly inhibited the expressions of Periostin and nuclear factor kappa-B pathway-related factors after cerebral hemorrhage, and alleviate brain damage by down-regulating Periostin expression and inhibiting nuclear factor kappa-ß signaling pathway.


Assuntos
Encéfalo/efeitos dos fármacos , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Flavonoides/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Moléculas de Adesão Celular/metabolismo , Hemorragia Cerebral/prevenção & controle , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Plantas Medicinais , Ratos Sprague-Dawley , Transdução de Sinais
18.
JCI Insight ; 5(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32051342

RESUMO

Central poststroke pain (CPSP) is one of the neuropathic pain syndromes that can occur following stroke involving the somatosensory system. However, the underlying mechanism of CPSP remains largely unknown. Here, we established a CPSP mouse model by inducing a focal hemorrhage in the thalamic ventrobasal complex and confirmed the development of mechanical allodynia. In this model, microglial activation was observed in the somatosensory cortex, as well as in the injured thalamus. By using a CSF1 receptor inhibitor, we showed that microglial depletion effectively prevented allodynia development in our CPSP model. In the critical phase of allodynia development, c-fos-positive neurons increased in the somatosensory cortex, accompanied by ectopic axonal sprouting of the thalamocortical projection. Furthermore, microglial ablation attenuated both neuronal hyperactivity in the somatosensory cortex and circuit reorganization. These findings suggest that microglia play a crucial role in the development of CPSP pathophysiology by promoting sensory circuit reorganization.


Assuntos
Axônios/patologia , Hemorragia Cerebral/patologia , Hiperalgesia/prevenção & controle , Microglia/patologia , Tálamo/patologia , Animais , Hemorragia Cerebral/complicações , Modelos Animais de Doenças , Camundongos , Neuralgia/complicações
19.
Folia Neuropathol ; 58(4): 317-323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33480236

RESUMO

INTRODUCTION: This study investigated the protective effects of antcin C against cerebral haemorrhage injury. MATERIAL AND METHODS: Cerebral haemorrhage was treated with antcin C 100 mg/kg i.p. at 60 min after the induction of cerebral injury. Neurological scores and volumes of cerebral injury were assessed to determine the effects of antcin C, based on oxidative stress and serum mediators of inflammation by ELISA. qRT-PCR was used to estimate the mRNA expression of Toll-like receptor 4 (TLR-4) and interleukin-1 receptor-associated kinase 4 (IRAK4) proteins in the cerebral tissue of rats with cerebral haemorrhage. Western blot assay and histopathology were also performed. RESULTS: The findings suggest that treatment with antcin C reduced the neurological scores and volumes of cerebral injury in cerebral injured rats. Parameters of oxidative stress and cytokine levels were reduced in the serum of the antcin C-treated group compared with the negative control group. Treatment with antcin C ameliorated the expression of TLR-4, IRAK4, and zonula occludens-1 (ZO-1) proteins in the cerebral tissue of cerebral injured rats. CONCLUSIONS: The results revealed that treatment with antcin C protected against cerebral haemorrhage damage by controlling microglia inflammation through the TLR-4 pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Hemorragia Cerebral/patologia , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polyporales , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Inflamação/patologia , Masculino , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
20.
Sci Rep ; 9(1): 13838, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554852

RESUMO

The mechanical response of brain tissue closely relates to cerebral blood flow and brain diseases. During intracerebral haemorrhage (ICH), a mass effect occurs during the initial bleeding and results in significant tissue deformation. However, fewer studies have focused on the brain damage mechanisms and treatment approaches associated with mass effects compared to the secondary brain injuries after ICH, which may be a result of the absence of acceptable animal models mimicking a mass effect. Thus, a thermo-sensitive poly (N-isopropylacrylamide) (PNIPAM) hydrogel was synthesized and injected into the rat brain to establish an ICH model for mass effect research. The PNIPAM hydrogel or autologous blood was injected to establish an ICH animal model, and the space-occupying volumes, brain tissue elasticity, brain oedema, neuronal cell death, iron deposition and behavioural recovery were evaluated. The lower critical solution temperature of PNIPAM hydrogel was 32 °C, and the PNIPAM hydrogel had a rough surface with similar topography and pore structure to a blood clot. Furthermore, the ICH model animals who received an injection of PNIPAM and blood produced similar lesion volumes, elasticity changes and mechanically activated ion channel piezo-2 upregulation in brain tissue. Meanwhile, slight iron deposition, neuronal cell death and brain oedema were observed in the PNIPAM hydrogel model compared to the blood model. In addition, the PNIPAM hydrogel showed good biocompatibility and stability in vivo via subcutaneous implantation. Our findings show that PNIPAM hydrogel cerebral infusion can form a mass effect similar to haematoma and minimize the interference of blood, and the establishment of a mass effect ICH model is beneficial for understanding the mechanism of primary brain injury and the role of mass effects in secondary brain damage after ICH.


Assuntos
Resinas Acrílicas/química , Transfusão de Sangue Autóloga/efeitos adversos , Encéfalo/patologia , Hemorragia Cerebral/diagnóstico por imagem , Hidrogéis/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Técnicas de Imagem por Elasticidade , Hidrogéis/efeitos adversos , Hidrogéis/síntese química , Hidrogéis/química , Canais Iônicos/metabolismo , Ferro/metabolismo , Masculino , Ratos , Termodinâmica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA