Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Hepatol ; 29(2): 101174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38579127

RESUMO

INTRODUCTION AND OBJECTIVES: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease with a high prevalence worldwide and poses serious harm to human health. There is growing evidence suggesting that the administration of specific supplements or nutrients may slow NAFLD progression. Silymarin is a hepatoprotective extract of milk thistle, but its efficacy in NAFLD remains unclear. MATERIALS AND METHODS: Relevant studies were searched in PubMed, Embase, the Cochrane Library, Web of Science, clinicaltrails.gov, and China National Knowledge Infrastructure and were screened according to the eligibility criteria. Data were analyzed using Revman 5.3. Continuous values and dichotomous values were pooled using the standard mean difference (SMD) and odds ratio (OR). Heterogeneity was evaluated using the Cochran's Q test (I2 statistic). A P<0.05 was considered statistically significant. RESULTS: A total of 26 randomized controlled trials involving 2,375 patients were included in this study. Administration of silymarin significantly reduced the levels of TC (SMD[95%CI]=-0.85[-1.23, -0.47]), TG (SMD[95%CI]=-0.62[-1.14, -0.10]), LDL-C (SMD[95%CI]=-0.81[-1.31, -0.31]), FI (SMD[95%CI]=-0.59[-0.91, -0.28]) and HOMA-IR (SMD[95%CI]=-0.37[-0.77, 0.04]), and increased the level of HDL-C (SMD[95%CI]=0.46[0.03, 0.89]). In addition, silymarin attenuated liver injury as indicated by the decreased levels of ALT (SMD[95%CI]=-12.39[-19.69, -5.08]) and AST (SMD[95% CI]=-10.97[-15.51, -6.43]). The levels of fatty liver index (SMD[95%CI]=-6.64[-10.59, -2.69]) and fatty liver score (SMD[95%CI]=-0.51[-0.69, -0.33]) were also decreased. Liver histology of the intervention group revealed significantly improved hepatic steatosis (OR[95%CI]=3.25[1.80, 5.87]). CONCLUSIONS: Silymarin can regulate energy metabolism, attenuate liver damage, and improve liver histology in NAFLD patients. However, the effects of silymarin will need to be confirmed by further research.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Silimarina , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Silimarina/efeitos adversos , Testes de Função Hepática , Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Ecotoxicol Environ Saf ; 272: 115850, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290310

RESUMO

Polystyrene microplastics (MPs) are persistent environmental pollutants commonly encountered in daily human life. Numerous studies have demonstrated their ability to induce liver damage, including oxidative stress, inflammation, and lipid accumulation. However, limited information exists regarding preventive measures against this issue. In our study, we investigated the potential preventive role of selenium nanoparticles (YC-3-SeNPs) derived from Yak-derived Bacillus cereus, a novel nanobiomaterial known for its antioxidant properties and lipid metabolism regulation. Using transcriptomic and metabolomic analyses, we identified key genes and metabolites associated with oxidative stress and lipid metabolism imbalance induced by MPs. Upregulated genes (Scd1, Fasn, Irs2, and Lpin) and elevated levels of arachidonic and palmitic acid accumulation were observed in MP-exposed mice, but not in those exposed to SeNPs. Further experiments confirmed that SeNPs significantly attenuated liver lipid accumulation and degeneration caused by MPs. Histological results and pathway screening validated our findings, revealing that MPs suppressed the Pparα pathway and Nrf2 pathway, whereas SeNPs activated both pathways. These findings suggest that MPs may contribute to the development of nonalcoholic fatty liver disease (NAFLD), while SeNPs hold promise as a future nanobio-product for its prevention.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Selênio , Camundongos , Humanos , Animais , Selênio/farmacologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Plásticos , Microplásticos/toxicidade , Estresse Oxidativo , Lipídeos
3.
Sci Total Environ ; 892: 164746, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301390

RESUMO

Arsenic, a common environmental hazard, is a risk factor for nonalcoholic fatty liver disease (NAFLD). However, the mechanism remains unclear. Here, we found that chronic exposure to environmental-related doses of arsenic disturbed fatty acid and methionine metabolism in mice, caused liver steatosis, increased arsenic (3) methyltransferase (As3MT), sterol regulatory element binding protein 1 (SREBP1) and lipogenic gene levels, and decreased N6-methyladenosine (m6A) and S-adenosylmethionine (SAM) levels. Mechanistically, arsenic blocks m6A-mediated miR-142-5p maturation by consuming SAM via As3MT. miR-142-5p was involved in arsenic-induced cellular lipid accumulation by targeting SREBP1. SAM supplementation or As3MT deficiency blocked arsenic-induced lipid accumulation by promoting the maturation of miR-142-5p. Moreover, in mice, folic acid (FA) and vitamin B12 (VB12) supplementation blocked arsenic-induced lipid accumulation by restoring SAM levels. Arsenic-exposed heterozygous As3MT mice showed low liver lipid accumulation. Our study demonstrates that SAM consumption caused by arsenic, through As3MT, blocks m6A-mediated miR-142-5p maturation, thereby elevating the levels of SREBP1 and lipogenic genes, leading to NAFLD, which provides a new mechanism and biological insights into the therapy of NAFLD induced by environmental factors.


Assuntos
Arsênio , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Fígado/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , S-Adenosilmetionina/metabolismo , Ácidos Graxos/metabolismo , MicroRNAs/genética
4.
J Nutr Biochem ; 119: 109402, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311490

RESUMO

Non-alcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease, affecting 24% of the global population. Accumulating evidence demonstrates that copper deficiency (CuD) is implicated in the development of NAFLD, besides, high fructose consumption by promoting inflammation contributes to NAFLD. However, how CuD and/or fructose (Fru) causes NAFLD is not clearly delineated. The present study aims to investigate the role of CuD and/or fructose supplement on hepatic steatosis and hepatic injury. We established a CuD rat model by feeding weaning male Sprague-Dawley rats for 4 weeks with CuD diet. Fructose was supplemented in drinking water. We found the promoting role of CuD or Fructose (Fru) in the progress of NAFLD, which was aggravated by combination of the two. Furthermore, we presented the alteration of hepatic lipid profiles (including content, composition, and saturation), especially ceramide (Cer), cardiolipin (CL), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was closely associated with CuD and/or Fru fed induced-NAFLD in rat models. In conclusion, insufficient copper intake or excessive fructose supplement resulted in adverse effects on the hepatic lipid profile, and fructose supplement causes a further hepatic injury in CuD-induced NAFLD, which illuminated a better understanding of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Frutose/efeitos adversos , Cobre/farmacologia , Ratos Sprague-Dawley , Fígado , Lipídeos/farmacologia
5.
J Ethnopharmacol ; 317: 116827, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37348794

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nonalcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome in the liver and the leading cause of chronic liver disease worldwide. Digeda-4 decoction (DGD-4) is a commonly prescribed Mongolian herbal drug for treating acute and chronic liver injury and fatty liver. However, the mechanisms underlying the improvement of dislipidemia and liver injury via treatment with DGD-4 remain unclear. Disassembling a prescription is an effective approach to studying the effects and mechanisms underlying Mongolian medicine prescriptions. By disassembling a prescription, it is feasible to discover effective combinations of individual herbs to optimize a given prescription. Accordingly, we disassembled DGD-4 into two groups: the single Lomatogonium rotatum (L.) Fries ex Nym (LR) (DGD-1) and non-LR (DGD-3). AIM OF THIS STUDY: To study whether DGD-4 and its disassembled prescriptions have protective effects against tyloxapol (TY)-induced NAFLD and to explore the underlying mechanisms of action and compatibility of prescriptions. MATERIAL AND METHODS: NAFLD mice were developed by TY induction. Biochemical horizontal analyses, enzyme-linked immunosorbent assay, and liver histological staining were performed to explore the protective effects of DGD-4 and its disassembled prescriptions DGD-3 and DGD-1. Furthermore, we performed immunohistochemical analyses and Western blotting to further explore the expression of target proteins. RESULTS: DGD-4 and its disassembled prescriptions could inhibit TY-induced dislipidemia and liver injury. In addition, DGD-4 and its disassembled prescriptions increased the levels of p-AMPKα and p-ACC, but decreased the levels of SREBP1c, SCD-1, SREBP-2, and HMGCS1 proteins. The activation of lipid metabolic pathways SIRT1, PGC-1α, and PPARα improved lipid accumulation in the liver. Moreover, DGD-4 could inhibit hepatocyte apoptosis and treat TY-induced liver injury by upregulating the Bcl-2 expression, downregulating the expression of Bax, caspase-3, caspase-8, and the ratio of Bax/Bcl-2, and positively regulating the imbalance of oxidative stress (OxS) markers (such as superoxide dismutase [SOD], catalase [CAT], malondialdehyde [MDA], and myeloperoxidase [MPO]). DGD-1 was superior to DGD-3 in regulating lipid synthesis-related proteins such as SREBP1c, SCD-1, SREBP-2, and HMGCS1. DGD-3 significantly affected the expression of lipid metabolic proteins SIRT1, PGC-1α, PPARα, apoptotic proteins Bcl-2, Bax, caspase-3, caspase-8, and the regulation of Bax/Bcl-2 ratio. However, DGD-1 showed no regulatory effects on Bax and Bcl-2 proteins. CONCLUSION: This study demonstrates the protective effects of DGD-4 in the TY-induced NAFLD mice through a mechanism involving improvement of dyslipidemia and apoptosis by regulating the AMPK/SIRT1 pathway. Although the Monarch drug DGD-1 reduces lipid accumulation and DGD-3 inhibits apoptosis and protects the liver from injury, DGD-4 can be more effective overall as a therapy when compared to DGD-1 and DGD-3.


Assuntos
Dislipidemias , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Proteína X Associada a bcl-2/metabolismo , Sirtuína 1/metabolismo , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fígado/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Dislipidemias/induzido quimicamente , Dislipidemias/tratamento farmacológico , Dislipidemias/complicações , Prescrições , Lipídeos/farmacologia
6.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G419-G421, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976807

RESUMO

Coffee consumption is associated with a variety of positive health outcomes in patients with chronic liver disease, including decreased liver-related mortality. The evidence for this has come from a wide variety of epidemiological studies over the past decade and remains consistent. Because coffee contains a large number of constituent molecules, many of which vary based on coffee source, roasting approach, and preparation, it has been difficult to identify the mechanisms by which coffee improves liver-related health. The caffeine hypothesis suggests that the primary active ingredient in coffee in this context is caffeine, which is an antagonist of liver adenosine receptors. However, some lines of data suggest caffeine-independent effects as well. This review examines the biological plausibility for caffeine-independent effects in the context of a recent publication in this journal.


Assuntos
Café , Hepatopatia Gordurosa não Alcoólica , Humanos , Café/efeitos adversos , Cafeína/efeitos adversos , Cirrose Hepática/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente
7.
J Ethnopharmacol ; 301: 115806, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36216198

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qushi Huayu Decoction (QHD) is a traditional Chinese medicine formula consisting of five herbs, which has been used for non-alcoholic fatty liver disease (NAFLD) treatment in clinic for decades in China and validated in several NAFLD animal models. The hepatic de novo lipogenesis (DNL) is enhanced greatly to contribute to steatosis in NAFLD. The spliced form of X-box binding protein 1 (XBP1s) initiates DNL independently of sterol regulatory element-binding protein (SREBP) and carbohydrate-responsive element-binding protein (ChREBP). AIM OF THE STUDY: To disclose the mechanism of inhibition on hepatic DNL by QHD and the responsible compounds. METHODS: The effects of QHD on hepatic DNL were evaluated in mice induced by high-fructose diet (HFru). The effects of the serum-absorbed compounds of QHD on XBP1s were evaluated in HepG2 cells induced by tunicamycin. Hepatic histology, triglyceride (TG) and nonesterified fatty acids were observed. Hepatic apolipoprotein B100 and very low-density lipoprotein were measured to reflect lipid out-transport. The mRNA expression of XBP1s and its target genes were detected by real-time polymerase chain reaction. The protein expression of TG synthetases and DNL enzymes, and inositol requirement enzyme 1 alpha (IRE1α), phosphorylated IRE1α and XBP1s were detected in liver tissue and HepG2 cells by western-blot. The binding activity of SREBP1, protein expression of ChREBP and XBP1s were detected in the nuclear extracts of liver tissue. RESULTS: Dynamical observing suggested feeding with HFru for 2 weeks was sufficient to induce hepatic lipogenesis and XBP1s. QHD ameliorated liver steatosis without enhancing out-transport of lipids, accompanied with more inhibitory effects on DNL enzymes than TG synthetases. QHD inhibits the nuclear XBP1s without affecting ChREBP and SREBP1. In QHD, chlorogenic acid, geniposide and polydatin inhibit lipogenesis initiated by XPB1s. CONCLUSION: QHD probably decreases hepatic DNL by inhibiting XBP1s independent of SREBP1 and ChREBP. Chlorogenic acid, geniposide and polydatin are the potential responsible compounds.


Assuntos
Lipogênese , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Ácido Clorogênico/farmacologia , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Endorribonucleases/uso terapêutico , Frutose , Ligases/metabolismo , Ligases/farmacologia , Ligases/uso terapêutico , Fígado , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases , Triglicerídeos/metabolismo
8.
Nutrients ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432581

RESUMO

Interruptins A and B exhibited anti-diabetic, anti-inflammatory, and anti-oxidative effects. This study aimed to investigate the therapeutic ability of extract enriched by interruptins A and B (EEI) from an edible fern Cyclosorus terminans on insulin resistance and non-alcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-induced obese rats and elucidate their possible mechanisms. HFD-induced obese rats were treated with EEI for 2 weeks. Real-time polymerase chain reaction (PCR) was used to examine the molecular basis. We found that EEI supplementation significantly attenuated body and liver weight gain, glucose intolerance, and insulin resistance. Concurrently, EEI increased liver and soleus muscle glycogen storage and serum high-density lipoprotein (HDL) levels. EEI also attenuated NAFLD, as indicated by improving liver function. These effects were associated with enhanced expression of insulin signaling genes (Slc2a2, Slc2a4, Irs1 and Irs2) along with diminished expression of inflammatory genes (Il6 and Tnf). Furthermore, EEI led to the suppression of lipogenesis genes, Srebf1 and Fasn, together with an increase in fatty acid oxidation genes, Ppara and Cpt2, in the liver. These findings suggest that EEI could ameliorate HFD-induced insulin resistance and NAFLD via improving insulin signaling pathways, inflammatory response, lipogenesis, and fatty acid oxidation.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Traqueófitas , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Resistência à Insulina/genética , Obesidade/tratamento farmacológico , Obesidade/etiologia , Insulina/metabolismo , Anti-Inflamatórios/farmacologia , Traqueófitas/metabolismo , Ácidos Graxos/efeitos adversos
9.
Bratisl Lek Listy ; 123(7): 496-504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35907056

RESUMO

OBJECTIVES: Non-communicable diseases are estimated to account for 90 % of total deaths and 19 % of premature deaths in Slovakia. Major preventable risk factors of premature mortality are overweight, obesity and alcohol consumption. BACKGROUND: Screening of risk factors related to alcoholic and nonalcoholic fatty liver diseases (AFLD and NAFLD, respectively) in Slovak outpatients with liver disease. METHODS: A total group of 923 patients, aged 19-91 years were included in the study. Self-administered anonymous questionnaires (Q) were filled in by them. Twelve questions were included relating to age, gender, education, BMI, intake of vegetable, fruit, fish, alcohol, and coffee, as well as to smoking and physical exercise. RESULTS: Overweight/obesity was detected in 59 % of patients, insufficient fiber intake in 87 % of patients, insufficient fish intake in 85 % of patients, and insufficient physical exercise in 68 % of patients. BMI over 25 together with the risk of alcohol consumption was present in 68 % of patients. Smoking was present in 19 % of patients and insufficient coffee intake (from its hepatoprotective point of view) was in 35 % of patients. A total proportion of 75 % of patients were at risk for NAFLD. The risk of alcohol consumption was present in 64 % of patients. CONCLUSIONS: An anonymous questionnaire is a useful screening tool for searching for the risks of NAFLD and AFLD in general practice. Recommendation of a screening schedule for general practitioners is implemented (Tab. 2, Fig. 4, Ref. 36).


Assuntos
Hepatopatia Gordurosa não Alcoólica , Café/efeitos adversos , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Obesidade , Sobrepeso , Fatores de Risco , Inquéritos e Questionários
10.
Environ Res ; 213: 113647, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35691383

RESUMO

BACKGROUND & AIMS: Chronic liver disease is a growing health burden worldwide. Chronic metal exposures may be associated with non-alcoholic fatty liver disease (NAFLD). We aimed to evaluate the association of blood cadmium (Cd), mercury (Hg), lead (Pb), manganese (Mn), and selenium (Se) with two hallmark features of NAFLD: liver steatosis and fibrosis in the general U.S. METHODS: We analyzed transient liver elastography data from participants of the National Health and Nutrition Examination Survey (NHANES) 2017-18, using ordinal logistic regression analyses to evaluate the cross-sectional association between blood metal concentrations and clinical stages of steatosis and fibrosis. We applied survey weights, strata, and primary sampling units and analyses were conducted using the R survey package. RESULTS: 4,154 participants were included. Median (IQR) for blood Mn and blood Se were 9.28 (7.48-11.39) and 191.08 (176.55-207.16) µg/L, respectively. Per interquartile range increase of natural log transformed blood Mn, the adjusted odds ratio (OR) (95% CI) was 1.59 (1.13-2.23) for a higher grade of steatosis and 1.16 (0.67-2.00) for liver fibrosis. The corresponding OR for steatosis was 2.00 (1.24-3.24) and 2.14 (1.04-4.42) in Black and Mexican American participants, respectively. The corresponding OR for liver fibrosis was 2.96 (1.42-6.17) for females. Per interquartile range increase of natural log transformed blood Se, the adjusted OR was 2.25 (1.30-3.89) for steatosis but 0.31 (0.13-0.72) for liver fibrosis. The inverse association of blood Se with liver fibrosis was also observed in males and White participants. Blood Cd, Hg, and Pb were not associated with liver steatosis and fibrosis in fully-adjusted models overall. CONCLUSIONS: In NHANES 2017-18, higher blood Mn was positively associated with liver steatosis, and higher Se was positively associated with liver steatosis but negatively associated with liver fibrosis. Longitudinal studies are needed to examine the association of Mn and Se with fibrosis progression.


Assuntos
Mercúrio , Hepatopatia Gordurosa não Alcoólica , Selênio , Cádmio , Estudos Transversais , Feminino , Humanos , Chumbo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/epidemiologia , Masculino , Manganês/toxicidade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Inquéritos Nutricionais
11.
Mar Drugs ; 20(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447899

RESUMO

Fucoxanthin, a xanthophyll carotenoid abundant in brown algae, is reported to have several biological functions, such as antioxidant, anti-inflammatory, and anti-tumor activities, in mice. We investigated the effects and mechanisms of fucoxanthin in the mixture oleate/palmitate = 2/1(FFA)-induced nonalcoholic fatty liver disease (NAFLD) cell model in this study. The results showed that the content of superoxide dismutase in the FFA group was 9.8 ± 1.0 U/mgprot, while that in the fucoxanthin high-dose (H-Fx) group (2 µg/mL) increased to 22.9 ± 0.6 U/mgprot. The content of interleukin-1ß in the FFA group was 89.3 ± 3.6 ng/mL, while that in the H-Fx group was reduced to 53.8 ± 2.8 ng/mL. The above results indicate that fucoxanthin could alleviate the FFA-induced oxidative stress and inflammatory levels in the liver cells. Oil red-O staining revealed visible protrusions and a significant decrease in the number of lipid droplets in the cytoplasm of cells in the fucoxanthin group. These findings on the mechanisms of action suggest that fucoxanthin can repair FFA-induced NAFLD via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and nuclear factor erythroid-2-related factor 2-mediated (Nrf2) signaling pathway, as well as by downregulating the expression of the Toll-like receptor 4-mediated (TLR4) signaling pathway. Fucoxanthin exhibited alleviating effects in the FFA-induced NAFLD model and could be explored as a potential anti-NAFLD substance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácidos Graxos não Esterificados/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Xantofilas/metabolismo , Xantofilas/farmacologia
12.
Nutrients ; 14(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35277054

RESUMO

The hepatic adiponectin and farnesoid X receptor (FXR) signaling pathways play multiple roles in modulating lipid and glucose metabolism, reducing hepatic inflammation and fibrosis, and altering various metabolic targets for the management of non-alcoholic fatty liver disease (NAFLD). Alisma orientale (AO, Ze xie in Chinese and Taeksa in Korean) is an herbal plant whose tubers are enriched with triterpenoids, which have been reported to exhibit various bioactive properties associated with NAFLD. Here, the present study provides a preclinical evaluation of the biological functions and related signaling pathways of AO extract for the treatment of NAFLD in a Western diet (WD)-induced mouse model. The findings showed that AO extract significantly reversed serum markers (liver function, lipid profile, and glucose) and improved histological features in the liver sections of mice fed WD for 52 weeks. In addition, it also reduced hepatic expression of fibrogenic markers in liver tissue and decreased the extent of collagen-positive areas, as well as inhibited F4/80 macrophage aggregation and inflammatory cytokine secretion. The activation of adiponectin and FXR expression in hepatic tissue may be a major mechanistic signaling cascade supporting the promising role of AO in NAFLD pharmacotherapy. Collectively, our results demonstrated that AO extract improves non-alcoholic steatohepatitis (NASH) resolution, particularly with respect to NASH-related fibrosis, along with the regulation of liver enzymes, postprandial hyperglycemia, hyperlipidemia, and weight loss, probably through the modulation of the hepatic adiponectin and FXR pathways.


Assuntos
Alisma , Dieta Ocidental , Hepatopatia Gordurosa não Alcoólica , Adiponectina/metabolismo , Alisma/química , Animais , Dieta Ocidental/efeitos adversos , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/etiologia , Extratos Vegetais/uso terapêutico
13.
Food Funct ; 13(2): 933-943, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35005749

RESUMO

The purpose of this study was to investigate the protective effect of sniffing orange essential oil (OEO) on the formation of non-alcoholic fatty liver disease (NAFLD) caused by a high-fat diet. The results confirmed that sniffing OEO could reduce obesity caused by a high-fat diet (HFD) by reducing the levels of triglycerides (TGs), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In addition, the observation of liver tissue sections showed that sniffing OEO could reduce lipid accumulation in liver cells. Further analysis by western blot analysis showed that OEO treatment made the expression levels of acetyl-CoA carboxylase (ACC) and Cytochrome P450 2E1 (CYP2E1) down-regulated and the expression levels of peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) up-regulated. These results indicate that the treatment of sniffing OEO could enhance the antioxidant capacity of mice and reduce liver damage caused by a high-fat diet. Furthermore, sniffing OEO could inhibit lipid synthesis and oxidative stress stimulated by a high-fat diet. Overall, OEO treatment had a certain protective effect on NAFLD-related diseases caused by a high-fat diet. Therefore, aromatherapy may be introduced as a treatment of long-term chronic diseases.


Assuntos
Citrus sinensis/química , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal , Comportamento Alimentar , Masculino , Camundongos , Óleos Voláteis/química , Óleos de Plantas/química
14.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946689

RESUMO

Pomaces of sea buckthorn berry were usually side-products during the processing of juice. Due to a lack of an economical and effective extraction method, it was typically recognized as waste. For the purpose of resource utilization, the mechanochemical-assisted extraction (MCAE) method was applied to develop an ecofriendly extraction method and product with better pharmacology activity. The parameters were investigated through response surface methodology (RSM) design experiments. The processing conditions were optimized as follows: amount of Na2CO3 40%, ball-to-material rate 29:1 g/g, milling speed 410 rpm, milling time 24 min, extraction temperature 25 °C, extraction time 20 min and the solid-to-solution ratio 1:10 g/mL. Under these conditions, the yields of flavonoids from sea buckthorn pomaces were 26.82 ± 0.53 mg/g, which corresponds to an increase of 2 times in comparison with that extracted by the heat reflux extraction method. Meanwhile, the hepatoprotective activity of sea buckthorn pomaces extracts was studied by the liver injury induced by ip injection of tetracycline. Biochemical and histopathological studies showed that biomarkers in serum and liver of nonalcoholic fatty liver disease (NAFLD) mice were significantly ameliorated when sea buckthorn flavonoids extracted by MCAE were used. Altogether, these results demonstrate that, as a green and efficient extraction, MCAE treatment could increase the extraction yield of sea buckthorn flavonoids, meanwhile it could exhibit significant activity of improving liver function. This research provided a new way to use pomaces of sea buckthorn as a functional food. It also has great value on the comprehensive utilization of nature's resources.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Flavonoides , Hippophae/química , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Flavonoides/química , Flavonoides/farmacologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Tetraciclina/efeitos adversos , Tetraciclina/farmacologia
15.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768813

RESUMO

Liver disorders are a major health concern. Saikosaponin-d (SSd) is an effective active ingredient extracted from Bupleurum falcatum, a traditional Chinese medicinal plant, with anti-inflammatory and antioxidant properties. However, its hepatoprotective properties and underlying mechanisms are unknown. We investigated the effects and underlying mechanisms of SSd treatment for thioacetamide (TAA)-induced liver injury and high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in male C57BL/6 mice. The SSd group showed significantly higher food intake, body weight, and hepatic antioxidative enzymes (catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)) and lower hepatic cyclooxygenase-2 (COX-2), serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and fibroblast growth factor-21 (FGF21) compared with controls, as well as reduced expression of inflammation-related genes (nuclear factor kappa B (NF-κB) and inducible nitric oxide synthase (iNOS)) messenger RNA (mRNA). In NAFLD mice, SSd reduced serum ALT, AST, triglycerides, fatty acid-binding protein 4 (FABP4) and sterol regulatory element-binding protein 1 (SREBP1) mRNA, and endoplasmic reticulum (ER)-stress-related proteins (phosphorylated eukaryotic initiation factor 2α subunit (p-eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). SSd has a hepatoprotective effect in liver injury by suppressing inflammatory responses and acting as an antioxidant.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Doença Hepática Induzida por Substâncias e Drogas , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Alanina Transaminase/análise , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Aspartato Aminotransferases/análise , Catalase/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Saponinas/uso terapêutico , Superóxido Dismutase/análise , Tioacetamida/toxicidade
16.
Pharm Biol ; 59(1): 922-932, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34243681

RESUMO

CONTEXT: Esculin, an active coumarin compound, has been demonstrated to exert anti-inflammatory effects. However, its potential role in non-alcoholic steatohepatitis (NASH) remains unclear. OBJECTIVE: This study explored the hepatoprotective effect and the molecular mechanism of esculin in methionine choline-deficient (MCD) diet-induced NASH. MATERIALS AND METHODS: Fifty C57BL/6J mice were divided into five groups: control, model, low dosage esculin (oral, 20 mg/kg), high dosage esculin (oral, 40 mg/kg), and silybin (oral, 105 mg/kg). All animals were fed a MCD diet, except those in the control group (control diet), for 6 weeks. RESULTS: Esculin (20 and 40 mg/kg) inhibited MCD diet-induced hepatic lipid content (triglyceride: 16.95 ± 0.67 and 14.85 ± 0.78 vs. 21.21 ± 1.13 mg/g; total cholesterol: 5.10 ± 0.34 and 4.08 ± 0.47 vs. 7.31 ± 0.58 mg/g), fibrosis, and inflammation (ALT: 379.61 ± 40.30 and 312.72 ± 21.45 vs. 559.51 ± 37.01 U/L; AST: 428.22 ± 34.29 and 328.23 ± 23.21 vs. 579.36 ± 31.93 U/L). In vitro, esculin reduced tumour necrosis factor-α, interleukin-6, fibronectin, and collagen 4A1 levels, but had no effect on lipid levels in HepG2 cells induced by free fatty acid. Esculin increased Sirt1 expression levels and decreased NF-κB acetylation levels in vivo and in vitro. Interfering with Sirt1 expression attenuated the beneficial effect of esculin on inflammatory and fibrotic factor production in HepG2 cells. CONCLUSIONS: These findings demonstrate that esculin ameliorates MCD diet-induced NASH by regulating the Sirt1/ac-NF-κB signalling pathway. Esculin could thus be employed as a therapy for NASH.


Assuntos
Esculina/farmacologia , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuína 1/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Sobrevivência Celular/efeitos dos fármacos , Deficiência de Colina , Citocinas/efeitos dos fármacos , Ácidos Graxos não Esterificados , Fibrose/tratamento farmacológico , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , RNA Interferente Pequeno , Transdução de Sinais , Silibina/farmacologia , Sirtuína 1/genética
17.
Food Funct ; 12(17): 7836-7850, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34235516

RESUMO

Fatty liver is associated with intestinal microbiota dysbiosis and low-grade chronic inflammation. Herein we report the interaction of the flavonoid extract from Smilax glabra Roxb. (FSGR) with gut microbiota. Then, FSGR's function of modulating microbiota in a rat model of high-fat diet (HFD) induced fatty liver has been explored. These investigations indicated that the main compound in FSGR, such as astilbin and its isomers, could be metabolized to aglycone, while further splitting resulted in some phenolic acid compounds through a redox reaction. The data obtained clearly showed that FSGR not only alleviated the steatosis degree of liver cells and modulated the contents of short chain fatty acids (SCFAs) in the intestinal tract, but also reversed gut dysbiosis induced by HFD as prognosticated by the decreased ratio of Firmicutes/Bacteroidetes (F/B) and altered gene expression. The results demonstrated that FSGR probably could be used as a prebiotic agent to impede gut dysbiosis and fatty liver-related metabolic disorders.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Flavonoides/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/microbiologia , Smilax/química , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Prebióticos/análise , Ratos , Ratos Sprague-Dawley
18.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062716

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.


Assuntos
Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Compostos Benzidrílicos/toxicidade , Cumestrol/toxicidade , Dioxinas/toxicidade , Disruptores Endócrinos/classificação , Genisteína/toxicidade , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/patologia , Fenóis/toxicidade , Fitoestrógenos/toxicidade , Bifenilos Policlorados/toxicidade
19.
J Nutr Biochem ; 94: 108646, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33838229

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition in the absence of significant alcohol intake. Since extra virgin olive oil (EVOO) reduces fat accumulation, we analyzed the involvement of nitro-fatty acids (NO2-FA) on the beneficial effects of EVOO consumption on NAFLD. Nitro-fatty acids formation was observed during digestion in mice supplemented with EVOO and nitrite. Mice fed with a high-fat diet (HF) presented lower plasma NO2-FA levels than normal chow, and circulating concentrations recovered when the HF diet was supplemented with 10% EVOO plus nitrite. Under NO2-FA formation conditions, liver hemoxygenase-1 expression significantly increased while decreased body weight and fat liver accumulation. Mitochondrial dysfunction plays a central role in the pathogenesis of NAFLD while NO2-FA has been shown to protect from mitochondrial oxidative damage. Accordingly, an improvement of respiratory indexes was observed when mice were supplemented with both EVOO plus nitrite. Liver mitochondrial complexes II and V activities were greater in mice with EVOO supplementation and further improved in the presence of nitrite. Overall, our results strongly suggest a positive correlation between NO2-OA formation from EVOO and the observed improvement of mitochondrial function in NAFLD. The formation of NO2-FA can account for the health benefits associated with EVOO consumption.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/farmacologia , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Animais , Composição Corporal , Peso Corporal , Suplementos Nutricionais , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Azeite de Oliva , Tamanho do Órgão
20.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33808007

RESUMO

Obesity and its associated conditions, such as type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD), are a particular worldwide health problem at present. Momordica cochinchinensis (MC) is consumed widely in Southeast Asia. However, whether it has functional effects on fat-induced metabolic syndrome remains unclear. This study was conducted to examine the prevention effect of Momordica cochinchinensis aril (MCA) on obesity, non-alcoholic fatty liver and insulin resistance in mice. MCA protected the mice against high-fat diet (HFD)-induced body weight gain, hyperlipidemia and hyperglycemia, compared with mice that were not treated. MCA inhibited the expansion of adipose tissue and adipocyte hypertrophy. In addition, the insulin sensitivity-associated index that evaluates insulin function was also significantly restored. MCA also regulated the secretion of adipokines in HFD-induced obese mice. Moreover, hepatic fat accumulation and liver damage were reduced, which suggested that fatty liver was prevented by MCA. Furthermore, MCA supplementation suppressed hepatic lipid accumulation by activation of the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-alpha (PPAR-alpha) signaling pathway in the human fatty liver HuS-E/2 cell model. Our data indicate that MCA altered the microbial contents of the gut and modulated microbial dysbiosis in the host, and consequently is involved in the prevention of HFD-induced adiposity, insulin resistance and non-alcoholic fatty liver disease.


Assuntos
Frutas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Momordica/química , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA