Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Phytomedicine ; 127: 155476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430586

RESUMO

BACKGROUND: Herpes simplex virus type 1 (HSV-1)-induced herpes simplex encephalitis (HSE) has a high mortality rate in clinically immunocompromised patients, while recovered patients often experience neurological sequelae due to neuroinflammation. Nucleoside drugs and nucleoside analogues such as acyclovir and ganciclovir are mainly used in clinical treatment, and the emergence of resistant viral strains makes the development of new anti-herpesvirus encephalitis drugs urgent. Resveratrol is a multifunctional, plant-derived bioactive compound and its antiviral potential is attracting much attention. PURPOSE: This study aimed to investigate the anti-HSV-1 mechanism of resveratrol in microglial cells and in the HSE mouse model. METHODS: The antiviral effect of resveratrol on HSV-1 infection was investigated by plaque assay, virus titer, immunofluorescence, Western blot and time-of-addition assay. The influence of resveratrol on stimulator of interferon gene (STING)/Nuclear Factor kappa B (NF-κB) signaling pathway-mediated neuroinflammation was examined by Western blot, RT-qPCR and ELISA. The interaction between resveratrol and STING/heat shock protein 90 beta (HSP90ß) was evaluated by molecular modeling, co-immunoprecipitation, and drug affinity responsive target stability assay. The therapeutic effect of resveratrol on HSE was evaluated in the HSE mouse model by analyzing weight loss, neurodegenerative symptoms and histopathological scores. RESULTS: Resveratrol inhibited the early process of HSV-1 infection, and interfered with the STING/NF-κB signaling pathway to attenuate HSV-1-induced neuroinflammation and microglial M1 polarization, independent of its classical target Sirtuin1. Mechanistically, resveratrol completely bound to Glu515 and Lys491 of HSP90ß, thus disrupting the HSP90ß-STING interaction and promoting STING degradation. Resveratrol also significantly alleviated viral encephalitis and neuroinflammation caused by HSV-1 in the HSE mouse model. CONCLUSION: Resveratrol acted as a non-classical HSP90ß inhibitor, binding to the STING-HSP90ß interaction site to promote STING degradation and attenuate HSV-1-induced encephalitis and neuroinflammation. These findings suggest the alternative strategy of targeting HSP90ß and resveratrol-mediated inhibition of HSP90ß as a potential antiviral approach.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Animais , Camundongos , Humanos , Encefalite por Herpes Simples/tratamento farmacológico , Encefalite por Herpes Simples/diagnóstico , Antivirais/farmacologia , Antivirais/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Herpes Simples/tratamento farmacológico
2.
J Nat Med ; 78(3): 525-536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38457082

RESUMO

Ipomoea muricata (L.) Jacq. seeds (Convolvulaceae) are used as a traditional laxative and carminative medicine. Muricatins XIV (1), XV (2), XVI (3), and XVII (4), were isolated from I. muricata seeds as four new resin glycosides, along with seven known compounds, three of which were isolated for the first time as natural products; their structures were determined using MS and NMR spectroscopy. Compounds 1-4 are macrolactones (jalapins); the sugar moieties of 1, 2, and 4 are partially acylated with 2S-methylbutyric acid, while that of 3 is esterified with 2S-methylbutyric and 2S-methyl-3S-hydroxybutyric acids. In addition, the antiviral activities of the seven compounds obtained in this study, together with five known compounds obtained in our previous study into resin glycosides from I. muricata seeds, were evaluated against herpes simplex virus type 1 (HSV-1); their cytotoxicities against HL-60 human promyelocytic leukemia cells were also investigated. All examined jalapins exhibited similar or slightly weaker anti-HSV-1 activities than acyclovir, the positive control; however, the glycosidic acid of 4 was inactive, while its methyl ester was weakly active. On the other hand, cytotoxicity testing against HL-60 cells showed similar results to those observed during anti-HSV-1 activity testing, with the exception that one jalapin was less active.


Assuntos
Antivirais , Glicosídeos , Ipomoea , Resinas Vegetais , Sementes , Ipomoea/química , Sementes/química , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Resinas Vegetais/química , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Estrutura Molecular , Herpesvirus Humano 1/efeitos dos fármacos , Células HL-60 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética
3.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338448

RESUMO

Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 µg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.


Assuntos
Herpesvirus Humano 1 , Colforsina/farmacologia , Colforsina/química , Catepsina L , Simulação de Acoplamento Molecular , Herpesvirus Humano 1/metabolismo , Antivirais/farmacologia , Antivirais/química
4.
Phytomedicine ; 124: 155308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185069

RESUMO

BACKGROUND: In the past decades, extensive research has been conducted to identify new drug targets for the treatment of Herpes simplex virus type 1 (HSV-1) infections. However, the emergence of drug-resistant HSV-1 strains remains a major challenge. This necessitates the identification of new drugs with novel mechanisms of action. Lanatoside C (LanC), a cardiac glycoside (CG) approved by the US Food and Drug Administration (FDA), has demonstrated anticancer and antiviral properties. Nevertheless, its potential as an agent against HSV-1 infections and the underlying mechanism of action are currently unknown. PURPOSE: This study aimed to investigate the antiviral activity of LanC against HSV-1 and elucidate its molecular mechanisms. METHODS: The in vitro antiviral activity of LanC was assessed by examining the levels of viral genes, proteins, and virus titers in HSV-1-infected ARPE-19 and Vero cells. Immunofluorescence (IF) analysis was performed to determine the intracellular distribution of NRF2. Additionally, an in vivo mouse model of HSV-1 infection was developed to evaluate the antiviral activity of LanC, using indicators such as intraepidermal nerve fibers (IENFs) loss and viral gene inhibition. RESULTS: Our findings demonstrate that LanC significantly inhibits HSV-1 replication both in vitro and in vivo. The antiviral effect of LanC is mediated by the perinuclear translocation of NRF2. CONCLUSIONS: LanC exhibits anti-HSV-1 effects in viral infections, which are associated with the intracellular translocation of NRF2. These findings suggest that LanC has the potential to serve as a novel NRF2 modulator in the treatment of viral diseases.


Assuntos
Herpesvirus Humano 1 , Lanatosídeos , Chlorocebus aethiops , Animais , Camundongos , Células Vero , Fator 2 Relacionado a NF-E2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
5.
Phytomedicine ; 124: 155314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190783

RESUMO

BACKGROUND: Herpesviruses are common animal and human pathogens that cause severe health problems in children, immunocompromised patients, and infected animals with a host range from fish to mammals. Anthocyanin-containing plant extracts have been described as potent antivirals, which might cause fewer harmful side effects than direct-acting antivirals. Here, we report that an extract of Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) (MBE) with a high content of the anthocyanin delphinidin suppresses lytic replication of equine, murine and human herpesviruses of replication in vitro. METHODS: We treated cultured cells with MBE and purified individual anthocyanins present in the extract to determine the most active compound at different concentrations. We subsequently infected the cultures with human herpesviruses 1 (HSV-1) or 8 (HHV-8), murine cytomegalovirus (CMV), or equine herpesviruses 1 (EHV-1) and determined the number of infected cells and viral infectivity. RESULTS: MBE inhibited the HSV-1, murine CMV, and EHV-1 by up to 2 orders of magnitude. In the presence of the stabilizing randomly methylated-beta-cyclodextrin, the inhibitory concentration could be lowered significantly. We identified delphinidin as an active antiviral compound and showed that the non-glycosylated delphinidin solved and stabilized with sulfobutylether-beta-cyclodextrin allowed usage of approximately 50 times lower concentrations. CONCLUSION: Glycosylated delphinidin derivatives were identified as active antiviral compounds of MBE. This suggests that plant extracts rich in delphinidin-anthocyanins have potent antiviral properties that could be used in treatment and prevention.


Assuntos
Infecções por Citomegalovirus , Elaeocarpaceae , Hepatite C Crônica , Herpesvirus Humano 1 , Criança , Humanos , Animais , Cavalos , Camundongos , Antocianinas/farmacologia , Antocianinas/análise , Antivirais/farmacologia , Extratos Vegetais/farmacologia , Mamíferos
6.
Int J Environ Health Res ; 34(2): 1113-1123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37029956

RESUMO

This study examined the antioxidant, anticancer and antiviral properties of the methanolic extracts from bigarade (Citrus aurantium L.) leaves at two development stages. Ferulic acid, naringin and naringenin were the principal phenolic components of young and old leaves. The highest total antioxidant capacity was obtained in young leaf extracts (YLE). These latter also exhibited the highest antiradical DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) activities, while the highest iron chelating and reducing power activities were observed in old leaf extracts (OLE). The potent anticancer activity was observed in YLE for human lung carcinoma (A-549) and in OLE for colon adenocarcinoma (DLD-1) cells. YLE showed the highest virucidal effects as compared to OLE and the positive control acyclovir against herpes simplex virus type-1 (HSV-1) propagation in Vero cells during the absorption and replication periods. The young and old leaves might be a source of natural antioxidants and protective agents against oxidative damage.


Assuntos
Adenocarcinoma , Citrus , Neoplasias do Colo , Herpesvirus Humano 1 , Animais , Chlorocebus aethiops , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Células Vero , Citrus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antivirais/farmacologia , Estresse Oxidativo , Pulmão
7.
Viruses ; 15(10)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37896801

RESUMO

(1) Background: Epigallocatechin gallate (EGCG) has been recognized as a flavonoid showing antiviral activity against various types of DNA and RNA viruses. In this work, we tested if EGCG-modified silver nanoparticles (EGCG-AgNPs) can become novel microbicides with additional adjuvant properties to treat herpes infections. (2) Methods: The anti-HSV and cytotoxic activities of EGCG-AgNPs were tested in human HaCaT and VK-2-E6/E7 keratinocytes. HSV-1/2 titers and immune responses after treatment with EGCG-AgNPs were tested in murine models of intranasal HSV-1 infection and genital HSV-2 infection. (3) Results: EGCG-AgNPs inhibited attachment and entry of HSV-1 and HSV-2 in human HaCaT and VK-2-E6/E7 keratinocytes much better than EGCG at the same concentration. Infected mice treated intranasally (HSV-1) or intravaginally (HSV-2) with EGCG-AgNPs showed lower virus titers in comparison to treatment with EGCG alone. After EGCG-AgNPs treatment, mucosal tissues showed a significant infiltration in dendritic cells and monocytes in comparison to NaCl-treated group, followed by significantly better infiltration of CD8+ T cells, NK cells and increased expression of IFN-α, IFN-γ, CXCL9 and CXCL10. (4) Conclusions: Our findings show that EGCG-AgNPs can become an effective novel antiviral microbicide with adjuvant properties to be applied upon the mucosal tissues.


Assuntos
Herpes Genital , Herpes Simples , Herpesvirus Humano 1 , Nanopartículas Metálicas , Animais , Humanos , Camundongos , Prata/farmacologia , Herpes Simples/tratamento farmacológico , Herpes Genital/tratamento farmacológico , Herpesvirus Humano 2 , Antivirais/farmacologia
8.
Viruses ; 15(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631995

RESUMO

The search for alternative clinical treatments to fight resistance and find alternative antiviral treatments for the herpes simplex virus (HSV) is of great interest. Plants are rich sources of novel antiviral, pharmacologically active agents that provide several advantages, including reduced side effects, less resistance, low toxicity, and different mechanisms of action. In the present work, the antiviral activity of Californian natural raw (NRRE) and roasted unsalted (RURE) pistachio polyphenols-rich extracts was evaluated against HSV-1 using VERO cells. Two different extraction methods, with or without n-hexane, were used. Results showed that n-hexane-extracted NRRE and RURE exerted an antiviral effect against HSV-1, blocking virus binding on the cell surface, affecting viral DNA synthesis as well as accumulation of ICP0, UL42, and Us11 viral proteins. Additionally, the identification and quantification of phenolic compounds by RP-HPLC-DAD confirmed that extraction with n-hexane exclusively accumulated tocopherols, carotenoids, and xanthophylls. Amongst these, zeaxanthin exhibited strong antiviral activity against HSV-1 (CC50: 16.1 µM, EC50 4.08 µM, SI 3.96), affecting both the viral attachment and penetration and viral DNA synthesis. Zeaxanthin is a dietary carotenoid that accumulates in the retina as a macular pigment. The use of pistachio extracts and derivates should be encouraged for the topical treatment of ocular herpetic infections.


Assuntos
Herpesvirus Humano 1 , Pistacia , Chlorocebus aethiops , Animais , Zeaxantinas/farmacologia , DNA Viral , Células Vero , Antivirais/farmacologia , Carotenoides , Extratos Vegetais/farmacologia
9.
Phytomedicine ; 120: 155020, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632997

RESUMO

BACKGROUND: The successive outbreaks of large-scale infectious diseases due to virus infection have been a major threat to human health in recent decades. Herpes simplex virus I (HSV-1) is a widely-disseminated DNA virus that infects the central nervous system to cause herpes labialis, keratitis and herpes simplex virus encephalitis (HSE), resulting in recurrent lifelong clinical or subclinical episodes. Luteolin is a plant flavone that has been extensively used in the treatment of various human diseases, including carcinogenesis, inflammation and chronic degenerative diseases. PURPOSE: The aim of this study was to investigate the antiviral molecular mechanism of luteolin against HSV-1 infection in vitro and in vivo. METHODS: The antiviral effect of luteolin in cell lines was examined by viral plaque assay, RT-qPCR, Western blot and time-of-addition assay. The interaction between luteolin and cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) was evaluated by molecular modeling and semi-denaturing detergent agarose gel electrophoresis. The efficacy of luteolin on HSE was evaluated in the HSE mouse model by analyzing weight loss, neurodegenerative symptoms and histopathological scores. Cytokine expression and protein levels were examined by RT-qPCR, Western blot and ELISA. RESULTS: Luteolin inhibited the early process of HSV-1 infection, without affecting the infection of acyclovir-resistant HSV-1 strains. In addition, luteolin enhanced antiviral type I interferon production and activated the cytoplasmic DNA-sensing cGAS-stimulator of interferon gene (STING) pathway. Luteolin directly bound the active substrate binding site and promoted the oligomerization of cGAS. Luteolin also inhibited HSE-related weight loss, neurodegeneration and neuroinflammation in mice caused by HSV-1 infection. Furthermore, luteolin enhanced type I interferon expression and stimulated the cGAS-STING signaling pathway in vivo. CONCLUSION: Luteolin inhibited the post-entry process of HSV-1 by activating the cGAS-STING pathway to promote antiviral interferon production. These results provided the rationale for luteolin as a potent cGAS activator and antiviral agent.


Assuntos
Herpesvirus Humano 1 , Interferon Tipo I , Humanos , Animais , Camundongos , Antivirais/farmacologia , Luteolina/farmacologia , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
10.
BMC Microbiol ; 23(1): 173, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391715

RESUMO

BACKGROUND: The emergence of different viral infections calls for the development of new, effective, and safe antiviral drugs. Glycyrrhiza glabra is a well-known herbal remedy possessing antiviral properties. OBJECTIVE: The objective of our research was to evaluate the effectiveness of a newly developed combination of the probiotics Lactobacillus acidophilus and G. glabra root extract against two viral models, namely the DNA virus Herpes simplex virus-1 (HSV-1) and the RNA virus Vesicular Stomatitis Virus (VSV), with regards to their antiviral properties. METHODOLOGY: To examine the antiviral impacts of various treatments, we employed the MTT assay and real-time PCR methodology. RESULTS: The findings of our study indicate that the co-administration of L. acidophilus and G. glabra resulted in a significant improvement in the survival rate of Vero cells, while also leading to a reduction in the titers of Herpes Simplex Virus Type 1 (HSV-1) and Vesicular Stomatitis Virus (VSV) in comparison to cells that were not treated. Additionally, an investigation was conducted on glycyrrhizin, the primary constituent of G. glabra extract, utilizing molecular docking techniques. The results indicated that glycyrrhizin exhibited a greater binding energy score for HSV-1 polymerase (- 22.45 kcal/mol) and VSV nucleocapsid (- 19.77 kcal/mol) in comparison to the cocrystallized ligand (- 13.31 and - 11.44 kcal/mol, respectively). CONCLUSIONS: The combination of L. acidophilus and G. glabra extract can be used to develop a new, natural antiviral agent that is safe and effective.


Assuntos
Glycyrrhiza , Herpes Simples , Herpesvirus Humano 1 , Probióticos , Estomatite Vesicular , Chlorocebus aethiops , Animais , Lactobacillus acidophilus , Antivirais/farmacologia , Ácido Glicirrízico , Simulação de Acoplamento Molecular , Células Vero , Extratos Vegetais/farmacologia
11.
Chem Biodivers ; 20(8): e202300669, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37340993

RESUMO

Propolis is one of the mixtures with the widest biological activity among natural products used in complementary medicine. HSV-1 is a highly contagious and endemic virus. Available drugs are insufficient for recurrent HSV-1 infections. Therefore, new approaches to treat HSV-1 infections are still being developed. In this study, it was aimed to investigate the inhibition effect of ethanolic Anatolian propolis extracts obtained from the Eastern Black Sea Region (Pazar, Ardahan, and Uzungöl) on HSV-1. In addition to the total phenolic (TPC) and the total flavonoid content (TFC), the phenolic profiles of the extracts were analyzed by HPLC-UV. The antiviral activity of the extracts were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), quantitative Real Time Polymerase Chain Reaction (qRT-PCR), and plaque reduction tests, and the results were evaluated statistically. It was determined that the total amount of phenolic substances varied between 44.12 and 166.91 mg GAE/g, and the total flavonoid content of the samples varied between 12.50 and 41.58 (mg QUE/g). It was shown that all propolis samples used in the current study were effective against HSV-1, but the higher phenolic compounds contained in the samples showed the higher activity. The results show that ethanolic propolis extracts are promising candidates for HSV-1 treatment.


Assuntos
Herpesvirus Humano 1 , Própole , Antivirais/farmacologia , Antivirais/uso terapêutico , Própole/farmacologia , Própole/química , Extratos Vegetais/química , Etanol/química , Fenóis/análise , Flavonoides/análise
12.
Braz J Microbiol ; 54(3): 1501-1511, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37338788

RESUMO

Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infect, respectively, 67% and 13% of the world population, most commonly causing mild symptoms, such as blisters/ulcers. However, severe conditions such as keratitis, encephalitis, and systemic infections may occur, generally associated with the patient's immunological condition. Although Acyclovir® (ACV) and its analogs are the reference drugs for herpetic infections, the number of ACV-resistant HSV infections is growing exponentially. Therefore, new natural products' bioactive compounds have been studied to develop novel effective anti-herpetics. Trichilia catigua is a plant widely used in traditional medicine, including the treatment of skin diseases and sexual infections. In our study, 16 extracts from the bark of T. catigua, obtained with different solvents and their combinations, were evaluated against HSV-1 AR and HSV-2, respectively, ACV resistance and genital strains in vitro. The extracts with the highest selectivity index were used to prepare new topical anti-herpetic formulations and confirmed in vivo. Two new topical formulations were suggested to treat cutaneous and genital herpetic recurrent lesions. The cytotoxicity and antiviral activity were tested using the MTT method. The cytotoxic (CC50) and inhibitory (IC50) concentrations of 50% and the selectivity index (SI: CC50/IC50) were determined. Tc12, Tc13, and Tc16 were added to the formulations. Infected BALB/c mice were treated for 8 days, and the severity of the herpetic lesions was analyzed daily. All CEs showed a CC50 value ranging from 143 to 400 µg/mL, except for Tc3 and Tc10. Tc12, Tc13, and Tc16 showed the best SI in the 0 h, virucidal, and adsorption inhibition assays. In the in vivo test against HSV-1 AR, the infected animals treated with creams were statistically different from the infected non-treated animals and similar to ACV-treated mice. In HSV-2-infected genitalia, similar effects were found for Tc13 and Tc16 gels. The present study demonstrated that extracts from the bark of T. catigua, traditionally used in folk medicine, are a valuable source of active compounds with anti-herpetic activity. The extracts showed a virucidal mechanism of action and prevented the initial stages of viral replication. The cutaneous and genital infections were strongly inhibited by the Tc12, Tc13, and Tc16 extracts. New topical therapeutic alternatives using Trichilia catigua extracts are suggested for patients infected with ACV-resistant strains of HSV.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Meliaceae , Camundongos , Animais , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Reinfecção , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 2/fisiologia , Genitália
13.
Viruses ; 15(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37376614

RESUMO

Herpes simplex virus-1 (HSV-1) and -2 (HSV-2) are large, spherically shaped, double-stranded DNA viruses that coevolved with Homo sapiens for over 300,000 years, having developed numerous immunoevasive mechanisms to survive the lifetime of their human host. Although in the continued absence of an acceptable prophylactic and therapeutic vaccine, approved pharmacologics (e.g., nucleoside analogs) hold benefit against viral outbreaks, while resistance and toxicity limit their universal application. Against these shortcomings, there is a long history of proven and unproven home remedies. With the breadth of purported alternative therapies, patients are exposed to risk of harm without proper information. Here, we examined the shortcomings of the current gold standard HSV therapy, acyclovir, and described several natural products that demonstrated promise in controlling HSV infection, including lemon balm, lysine, propolis, vitamin E, and zinc, while arginine, cannabis, and many other recreational drugs are detrimental. Based on this literature, we offered recommendations regarding the use of such natural products and their further investigation.


Assuntos
Produtos Biológicos , Herpes Simples , Herpesvirus Humano 1 , Humanos , Antivirais/uso terapêutico , Aciclovir/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 2 , Produtos Biológicos/uso terapêutico
14.
Phytomedicine ; 114: 154786, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002973

RESUMO

BACKGROUND: The transcription factor NRF2 is a master redox switch that regulates the cellular antioxidant response. However, recent advances have revealed new roles for NRF2, including the regulation of antiviral responses to various viruses, suggesting that pharmacological NRF2-activating agents may be a promising therapeutic drug for viral diseases. Isoliquiritigenin (ISL), a chalcone isolated from liquorice (Glycyrrhizae Radix) root, is reported to be a natural NRF2 agonist and has has antiviral activities against HCV (hepatitis C virus) and IAV (influenza A virus). However, the spectrum of antiviral activity and associated mechanism of ISL against other viruses are not well defined. PURPOSE: This study investigated the antiviral activity and underlying mechanism of ISL against vesicular stomatitis virus (VSV), influenza A virus (H1N1), encephalomyocarditis virus (EMCV), herpes simplex virus type 1 (HSV-1). METHODS: We evaluated the antiviral activity of ISL against VSV, H1N1, EMCV, and HSV-1 using flow cytometry and qRT-PCR analysis. RNA sequencing and bioinformatic analysis were performed to investigate the potential antiviral mechanism of ISL. NRF2 knockout cells were used to investigate whether NRF2 is required for the antiviral activity of ISL. The anti-apoptosis and anti-inflammatory activities of ISL were further measured by counting cell death ratio and assessing proinflammatory cytokines expression in virus-infected cells, respectively. In addition, we evaluated the antiviral effect of ISL in vivo by measuring the survival rate, body weights, histological analysis, viral load, and cytokine expression in VSV-infected mouse model. RESULTS: Our data demonstrated that ISL effectively suppressed VSV, H1N1, HSV-1, and EMCV replication in vitro. The antiviral activity of ISL could be partially impaired in NRF2-deficient cells. Virus-induced cell death and proinflammatory cytokines were repressed by ISL. Finally, we showed that ISL treatment protected mice against VSV infection by reducing viral titers and suppressing the expression of inflammatory cytokines in vivo. CONCLUSION: These findings suggest that ISL has antiviral and anti-inflammatory effects in virus infections, which are associated with its ability to activate NRF2 signaling, thus indicating that ISL has the potential to serve as an NRF2 agonist in the treatment of viral diseases.


Assuntos
Chalconas , Herpesvirus Humano 1 , Vírus da Influenza A Subtipo H1N1 , Viroses , Vírus , Camundongos , Animais , Chalconas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Vírus/metabolismo , Antivirais/farmacologia , Inflamação , Citocinas , Anti-Inflamatórios/farmacologia , Replicação Viral
15.
J Biomol Struct Dyn ; 41(21): 11484-11497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803674

RESUMO

Lichens are symbiotic organisms that have been traditionally used for treating different kinds of ailments. As there are only a few reports on the antiviral activity of lichens, we thought of evaluating the anti-Herpes simplex virus-1 (HSV-1) activity of methanolic extract of Roccella montagnei and their isolated compounds. Fractionation of crude methanolic extract of Roccella montagnei by column chromatography isolated two pure compounds. Antiviral activity was assessed using a CPE inhibition assay at non-cytotoxic concentrations on Vero cells. Molecular docking and dynamics studies were carried out against Herpes simplex type-1 thymidine kinase to understand the binding interactions of the isolated compounds with reference to acyclovir. Isolated compounds were characterized as methyl orsellinate and montagnetol by spectral methods. Methanolic extract of Roccella montagnei exhibited an EC50 value of 56.51 µg/ml, while the compounds methyl orsellinate and montagnetol offered EC50 values of 13.50 µg/ml and 37.52 µg/ml, respectively, against HSV-1 viral infection on Vero cell lines. The selectively index (SI) of montagnetol (10.93) was found to be higher when compared to that of methyl orsellinate (5.55), indicating its better anti-HSV-1 activity. The docking and dynamics studies showed montagnetol was stable throughout the 100 ns, having better interactions and docking scores with HSV-1 thymidine kinase than methyl orsellinate, as well as the standard. To understand the mechanism of montagnetol's anti-HSV-1 activity, more research is required, and this could lead to the discovery of new and effective antiviral agents.Communicated by Ramaswamy H. Sarma.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Líquens , Animais , Chlorocebus aethiops , Antivirais/química , Células Vero , Líquens/química , Simulação de Acoplamento Molecular , Timidina Quinase/farmacologia , Timidina Quinase/uso terapêutico , Herpes Simples/tratamento farmacológico , Extratos Vegetais/farmacologia
16.
Nat Prod Res ; 37(23): 4038-4041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36597612

RESUMO

Herpes simplex virus (HSV) can infect millions of people worldwide causing mild to life-threating infections. The current study demonstrates the first comparative anti-HSV type 1 activity and phytochemical investigation of Artemisia herba-alba and Thymus capitatus collected from Egypt and Libya. Liquid chromatography/mass spectrometry (LC/MS) analysis allowed the identification of 56 and 38 compounds in the Egyptian and Libyan Artemisia herba-alba ethanolic extracts, respectively, in addition to 46 and 50 compounds in the Egyptian and Libyan Thymus capitatus ethanolic extracts, respectively. Gas chromatography/mass spectrometry (GC/MS) analysis of their corresponding essential oils revealed the presence of 15, 17, 17 and 8 compounds in Egyptian and Libyan Artemisia herba-alba and Thymus capitatus, respectively. The major chemical classes of the identified compounds were phenolic acids, flavonoids and oxygenated monoterpenes. Evaluation of the anti-HSV1 activities of the studied extracts showed that the Egyptian Thymus capitatus ethanolic extracts were the most potent extract with more than 200-fold reduction in the viral PFU.


Assuntos
Artemisia , Herpesvirus Humano 1 , Lamiaceae , Humanos , África do Norte , Cromatografia Líquida , Egito , Etanol
17.
Virol J ; 20(1): 8, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647143

RESUMO

Herpes simplex virus type 1 (HSV-1) is a widely disseminated virus that establishes latency in the brain and causes occasional but fatal herpes simplex encephalitis. Currently, acyclovir (ACV) is the main clinical drug used in the treatment of HSV-1 infection, and the failure of therapy in immunocompromised patients caused by ACV-resistant HSV-1 strains necessitates the requirement to develop novel anti-HSV-1 drugs. Artemisia argyi, a Traditional Chinese Medicine, has been historically used to treat inflammation, bacterial infection, and cancer. In this study, we demonstrated the antiviral effect and mechanism of ethanol extract of A. argyi leaves (hereafter referred to as 'AEE'). We showed that AEE at 10 µg/ml exhibits potent antiviral effects on both normal and ACV-resistant HSV-1 strains. AEE also inhibited the infection of HSV-2, rotavirus, and influenza virus. Transmission electron microscopy revealed that AEE destroys the membrane integrity of HSV-1 viral particles, resulting in impaired viral attachment and penetration. Furthermore, mass spectrometry assay identified 12 major components of AEE, among which two new flavones, deoxysappanone B 7,3'-dimethyl ether, and 3,7-dihydroxy-3',4'-dimethoxyflavone, exhibited the highest binding affinity to HSV-1 glycoprotein gB at the surface site critical for gB-gH-gL interaction and gB-mediated membrane fusion, suggesting their involvement in inactivating virions. Therefore, A. argyi is an important source of antiviral drugs, and the AEE may be a potential novel antiviral agent against HSV-1 infection.


Assuntos
Antivirais , Artemisia , Herpesvirus Humano 1 , Extratos Vegetais , Aciclovir/farmacologia , Antivirais/química , Antivirais/farmacologia , Etanol , Herpesvirus Humano 1/efeitos dos fármacos , Envelope Viral , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Artemisia/química , Folhas de Planta/química
18.
J Ethnopharmacol ; 303: 115958, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470308

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthospermum species are used in traditional medicine for treating various pathologies, including bacterial and viral infections. In a screening study, we identified the activity of the ethanolic extracts of Acanthospermum australe and Acanthospermum hispidum against herpes simplex virus 1 (HSV-1). AIM OF THE STUDY: In this work, we analyzed the phytochemical profile and antiviral activity of the chemical fractionation products of Acanthospermum australe and Acanthospermum hispidum. Additionally, we identified the effect of these fractions on different steps of the viral cycle. MATERIALS AND METHODS: Acanthospermum samples were extracted with methanol and further partitioned with solvents of increasing polarities: hexane, chloroform, ethyl acetate, and butanol. Cytotoxicity and antiviral activity were analyzed for each fraction. The active fractions were tested to identify the virucidal effect and the inhibition of virus-cell binding. Further, the effect of these fractions on the replication and viral gene was quantitated by qPCR, and the expression of gD protein was evaluated by Western blot. RESULTS: The chloroform and hexane fractions of Acanthospermum hispidum and Acanthospermum australe showed dose-dependent antiviral activity. The chloroform fraction inhibited the virus-cell binding and virus cycle in a post-entry mechanism by decreasing replication and the expression of early and late viral genes. The hexane fraction did not inhibit virus binding; however, it showed antiviral activity in post-entry events by inhibiting the immediate-early, early, and late genes. We identified in both species the presence of 3.6-dimetoxiapigenin, axillarin, and penduletin in the chloroform fraction and methyl-(Z,Z)-9,12-octadecadienoate and phytol in the hexane fraction. CONCLUSIONS: Acanthospermum hispidum and Acanthospermum australe possess antiviral activity against HSV-1 and affect different steps of the viral cycle. These characteristics make them good candidates for developing phytotherapeutic products against HSV-1.


Assuntos
Asteraceae , Herpesvirus Humano 1 , Chlorocebus aethiops , Animais , Herpesvirus Humano 1/fisiologia , Extratos Vegetais/farmacologia , Hexanos , Antivirais/farmacologia , Clorofórmio , Células Vero , Replicação Viral
19.
Viruses ; 14(12)2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36560643

RESUMO

Punica granatum is a rich source of bioactive compounds which exhibit various biological effects. In this study, pomegranate peel and leaf ethanolic crude extracts (PPE and PLE, respectively) were phytochemically characterized and screened for antioxidant, antimicrobial and antiviral activity. LC-PDA-ESI-MS analysis led to the identification of different compounds, including ellagitannins, flavonoids and phenolic acids. The low IC50 values, obtained by DPPH and FRAP assays, showed a noticeable antioxidant effect of PPE and PLE comparable to the reference standards. Both crude extracts and their main compounds (gallic acid, ellagic acid and punicalagin) were not toxic on Vero cells and exhibited a remarkable inhibitory effect on herpes simplex type 1 (HSV-1) viral plaques formation. Specifically, PPE inhibited HSV-1 adsorption to the cell surface more than PLE. Indeed, the viral DNA accumulation, the transcription of viral genes and the expression of viral proteins were significantly affected by PPE treatment. Amongst the compounds, punicalagin, which is abundant in PPE crude extract, inhibited HSV-1 replication, reducing viral DNA and transcripts accumulation, as well as proteins of all three phases of the viral replication cascade. In contrast, no antibacterial activity was detected. In conclusion, our findings indicate that Punica granatum peel and leaf extracts, especially punicalagin, could be a promising therapeutic candidate against HSV-1.


Assuntos
Herpesvirus Humano 1 , Lythraceae , Punica granatum , Animais , Chlorocebus aethiops , Extratos Vegetais/química , Células Vero , DNA Viral , Lythraceae/química , Antioxidantes/farmacologia
20.
Pak J Pharm Sci ; 35(4(Special)): 1181-1190, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36218096

RESUMO

Garlic (known as; Allium sativum) is one of the most widely used medicinal plants in the world. Allicin is the major agent of garlic that gives its known pharmacological activities as anti-inflammatory, antibacterial, antifungal, antiviral and antioxidant agent. It could be extracted from bulbs of Allium sativum by water extraction to give allicin in low yield therefore other better methods were followed for extraction such as ultrasonic-assisted method that gives good yield. Attempts to optimize allicin extraction were found with sliced garlic at 25 °C for 90 minute of extraction for maximum yield (112µg/mL). Allicin was subjected to its evaluation as anti-herpetic against herpes simplex virus 1 (HSV-1) and exhibited a promising activity compared to acyclovir which was used as a reference standard. On the other hand, a novel synthetic amantadine derivative was evaluated as antiherpetic agent and prepared from the reaction of 2-thiouracil-5-sulphonyl chloride with amantadine hydrochloride in pyridine. The synergestic effect of allicin and the amantadine derivative was evaluated against HSV-1, using both in silico molecular docking as for dynamics simulations. Thymidine kinase target enzyme was chosen to analyze any possible interactions, as well as any protein-ligand stability. Furthermore, some of properties of the potential HSV-1 thymidine kinase target inhibitor of the amantadine derivative were analyzed.


Assuntos
Alho , Herpesvirus Humano 1 , Aciclovir/farmacologia , Amantadina , Antibacterianos , Antifúngicos , Antioxidantes , Antivirais/farmacologia , Cloretos , Dissulfetos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/farmacologia , Piridinas , Ácidos Sulfínicos , Tiouracila , Timidina Quinase , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA