Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6872, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519553

RESUMO

Leontodon hispidulus Boiss is a wild annual plant growing in Egypt. The present study aims for the first time, to evaluate the phytochemical profile of the main secondary metabolites of the optimized ethanolic extract of the plant using Quadrupole Time-of-Flight Liquid chromatography-mass spectrometry and Gas chromatography-mass spectrometry. It also aims to assess the anticancer activity of its different fractions against the prostate carcinoma cell line. Moreover, an in-silico docking study was performed using the Hexokinase-two enzyme. LC-qToF-MS analysis revealed the tentative identification of 36 phenolic compounds including the glycosides of (luteolin, quercetin, kaempferol, apigenin, isorhamnetin, and daidzein), coumarines (esculin, esculetin, and daphnetin), and phenolic acids (chlorogenic, caffeic, quinic, P-coumaric, and rosmarinic). GC-MS/MS analysis revealed the presence of 18 compounds where palmitic acid, myristic acid, alpha-amyrin, and beta-amyrin were the major ones. The cytotoxic activity results revealed that methylene chloride and ethyl acetate fractions showed the highest cytotoxic activity against the PC3 cell line, with IC50 values of 19, and 19.6 µg/ml, respectively. Interestingly, the docking study demonstrated that apigenin-7-O-glucoside, luteolin-7-O-glucoside, kaempferol-3-O-glucuronide, quercetin-4'-O-glucoside, esculin, rosmarinic acid, chlorogenic acid, and α-amyrin exhibited high affinity to the selected target, HEK-2 enzyme.


Assuntos
Asteraceae , Triterpenos Pentacíclicos , Espectrometria de Massas em Tandem , Apigenina , Quercetina , Hexoquinase , Esculina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosídeos/química , Antioxidantes/química
2.
Mol Plant Microbe Interact ; 37(1): 25-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37717227

RESUMO

The potato cyst nematode (Globodera rostochiensis) is an obligate root pathogen of potatoes. G. rostochiensis encodes several highly expanded effector gene families, including the Gr4D06 family; however, little is known about the function of this effector family. We cloned four 29D09 genes from G. rostochiensis (named Gr29D09v1/v2/v3/v4) that share high sequence similarity and are homologous to the Hg29D09 and Hg4D06 effector genes from the soybean cyst nematode (Heterodera glycines). Phylogenetic analysis revealed that Gr29D09 genes belong to a subgroup of the Gr4D06 family. We showed that Gr29D09 genes are expressed exclusively within the nematode's dorsal gland cell and are dramatically upregulated in parasitic stages, indicating involvement of Gr29D09 effectors in nematode parasitism. Transgenic potato lines overexpressing Gr29D09 variants showed increased susceptibility to G. rostochiensis. Transient expression assays in Nicotiana benthamiana demonstrated that Gr29D09v3 could suppress reactive oxygen species (ROS) production and defense gene expression induced by flg22 and cell death mediated by immune receptors. These results suggest a critical role of Gr29D09 effectors in defense suppression. The use of affinity purification coupled with nanoliquid chromatography-tandem mass spectrometry identified potato hexokinase 1 (StHXK1) as a candidate target of Gr29D09. The Gr29D09-StHXK1 interaction was further confirmed using in planta protein-protein interaction assays. Plant HXKs have been implicated in defense regulation against pathogen infection. Interestingly, we found that StHXK1 could enhance flg22-induced ROS production, consistent with a positive role of plant HXKs in defense. Altogether, our results suggest that targeting StHXK1 by Gr29D09 effectors may impair the positive function of StHXK1 in plant immunity, thereby aiding nematode parasitism. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Nematoides , Solanum tuberosum , Tylenchoidea , Animais , Hexoquinase/genética , Espécies Reativas de Oxigênio , Filogenia , Proteínas/genética , Tylenchoidea/fisiologia
3.
Tissue Cell ; 86: 102265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37948956

RESUMO

Acetamiprid (ACMP) is a second-generation neonicotinoid that has been extensively used in the last few years. The present study examined the toxic effects of ACMP on the pancreas and glucose homeostasis through the evaluation of histological and biochemical changes and the possible ameliorative role of fenugreek seed extract (FG). Fifty adult albino rats were divided into 5 groups: negative control, positive control, FG-treated, ACMP-treated, and ACMP + FG-treated groups by oral gavage for 12 weeks. The ACMP-treated group highlighted significant elevations in plasma glucose, glycosylated haemoglobin levels (HbA1c), serum amylase, and serum lipase, along with a decrease in plasma insulin levels. In addition, significant increases in tumour necrosis factor- alpha (TNF-α) and malondialdehyde (MDA) were associated with reductions in the levels of interleukin 10 (IL-10), glutathione peroxidase, and catalase. Moreover, glucose-6-phosphatase and glycogen phosphorylase were significantly increased, with a significant reduction in hexokinase and liver glycogen stores. These biochemical changes were associated with histological changes in pancreatic sections stained by haematoxylin and eosin, Masson stain, and Orcein stain. ACMP-treated cells showed a marked reduction in ß- cell immune reactivity to insulin, with pronounced p53, and beclin 1 immune expression. The use of FG with ACMP induced partial protection except for hexokinase and glycogen phosphorylase.


Assuntos
Aminopiridinas , Antioxidantes , Hexoquinase , Trigonella , Ratos , Animais , Antioxidantes/metabolismo , Hexoquinase/metabolismo , Ratos Wistar , Estresse Oxidativo , Pâncreas/metabolismo , Extratos Vegetais/farmacologia , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Insulina/metabolismo , Apoptose , Homeostase , Autofagia , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/farmacologia , Glucose/metabolismo
4.
ACS Appl Mater Interfaces ; 15(21): 25898-25908, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191997

RESUMO

The heat tolerance of tumor cells induced by heat shock proteins (HSPs) is the major factor that seriously hinders further application of PTT, as it can lead to tumor inflammation, invasion, and even recurrence. Therefore, new strategies to inhibit HSPs expression are essential to improve the antitumor efficacy of PTT. Here, we prepared a novel nanoparticle inhibitor by synthesizing molecularly imprinted polymers with a high imprinting factor (3.1) on the Prussian Blue surface (PB@MIP) for combined tumor starvation and photothermal therapy. Owing to using hexokinase (HK) epitopes as the template, the imprinted polymers could inhibit the catalytic activity of HK to interfere with glucose metabolism by specifically recognizing its active sites and then achieve starvation therapy by restricting ATP supply. Meanwhile, MIP-mediated starvation downregulated the ATP-dependent expression of HSPs and then sensitized tumors to hyperthermia, ultimately improving the therapeutic effect of PTT. As the inhibitory effect of PB@MIP on HK activity, more than 99% of the mice tumors were eliminated by starvation therapy and enhanced PTT.


Assuntos
Hipertermia Induzida , Impressão Molecular , Nanopartículas , Neoplasias , Animais , Camundongos , Polímeros Molecularmente Impressos , Terapia Fototérmica , Hexoquinase , Neoplasias/tratamento farmacológico , Nanopartículas/química , Trifosfato de Adenosina
5.
Phytother Res ; 37(2): 515-526, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36281060

RESUMO

The treatments currently used for prostate cancer (PC) do not meet clinical needs, and thus, new therapies with greater effectiveness are urgently required. Metabolic reprogramming of tumor cells is emerging as an exciting field for cancer therapy. Although the Warburg effect is a common feature of glucose metabolism in many cancers, PC cells have a unique metabolic phenotype. Non-neoplastic prostate cells show reduced oxidative phosphorylation (OXPHOS) because large, accumulated zinc inhibits citrate oxidation. During transformation, there are low levels of zinc in PC cells, and the tricarboxylic acid (TCA) cycle is reactivated. However, metastatic PC exhibits the Warburg effect. Due to metabolic differences in prostate tissue, targeting metabolic alterations in PC cells is an attractive therapeutic strategy. In this study, we investigated the effect of juglone on energy metabolism in PC cells. We found that juglone inhibited cell proliferation and induced apoptosis. Mechanistically, we demonstrated that juglone suppressed OXPHOS and glycolysis due to its inhibition of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) activity. Furthermore, downregulation of PFK and PK, but not HK contributed to the inhibition of these enzyme activities. The current study indicates that further development of juglone for PC treatment would be beneficial.


Assuntos
Fosforilação Oxidativa , Neoplasias da Próstata , Humanos , Masculino , Glicólise/fisiologia , Metabolismo Energético , Neoplasias da Próstata/tratamento farmacológico , Hexoquinase/metabolismo , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293550

RESUMO

Trained immune responses, based on metabolic and epigenetic changes in innate immune cells, are de facto innate immune memory and, therefore, are of great interest in vaccine development. In previous studies, the recombinant fusion protein rFlaA:Betv1, combining the adjuvant and toll-like receptor (TLR)5-ligand flagellin (FlaA) and the major birch pollen allergen Bet v 1 into a single molecule, significantly suppressed allergic sensitization in vivo while also changing the metabolism of myeloid dendritic cells (mDCs). Within this study, the immune-metabolic effects of rFlaA:Betv1 during mDC activation were elucidated. In line with results for other well-characterized TLR-ligands, rFlaA:Betv1 increased glycolysis while suppressing oxidative phosphorylation to different extents, making rFlaA:Betv1 a suitable model to study the immune-metabolic effects of TLR-adjuvanted vaccines. In vitro pretreatment of mDCs with cerulenin (inhibitor of fatty acid biosynthesis) led to a decrease in both rFlaA:Betv1-induced anti-inflammatory cytokine Interleukin (IL) 10 and T helper cell type (TH) 1-related cytokine IL-12p70, while the pro-inflammatory cytokine IL 1ß was unaffected. Interestingly, pretreatment with the glutaminase inhibitor BPTES resulted in an increase in IL-1ß, but decreased IL-12p70 secretion while leaving IL-10 unchanged. Inhibition of the glycolytic enzyme hexokinase-2 by 2-deoxyglucose led to a decrease in all investigated cytokines (IL-10, IL-12p70, and IL-1ß). Inhibitors of mitochondrial respiration had no effect on rFlaA:Betv1-induced IL-10 level, but either enhanced the secretion of IL-1ß (oligomycin) or decreased IL-12p70 (antimycin A). In extracellular flux measurements, mDCs showed a strongly enhanced glycolysis after rFlaA:Betv1 stimulation, which was slightly increased after respiratory shutdown using antimycin A. rFlaA:Betv1-stimulated mDCs secreted directly antimicrobial substances in a mTOR- and fatty acid metabolism-dependent manner. In co-cultures of rFlaA:Betv1-stimulated mDCs with CD4+ T cells, the suppression of Bet v 1-specific TH2 responses was shown to depend on fatty acid synthesis. The effector function of rFlaA:Betv1-activated mDCs mainly relies on glycolysis, with fatty acid synthesis also significantly contributing to rFlaA:Betv1-mediated cytokine secretion, the production of antimicrobial molecules, and the modulation of T cell responses.


Assuntos
Receptor 5 Toll-Like , Vacinas , Receptor 5 Toll-Like/metabolismo , Alérgenos , Interleucina-10/metabolismo , Flagelina/metabolismo , Hexoquinase/metabolismo , Glutaminase/metabolismo , Ligantes , Antimicina A/metabolismo , Antimicina A/farmacologia , Cerulenina/metabolismo , Cerulenina/farmacologia , Células Dendríticas , Proteínas Recombinantes/metabolismo , Citocinas/metabolismo , Adjuvantes Imunológicos/farmacologia , Vacinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Glicólise , Serina-Treonina Quinases TOR/metabolismo , Desoxiglucose/farmacologia , Oligomicinas/farmacologia , Ácidos Graxos/metabolismo
7.
Eur J Pharmacol ; 931: 175226, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007607

RESUMO

Metastasis is the leading cause of death in melanoma patients. Aerobic glycolysis is a common metabolic feature in tumor and is closely related to cell growth and metastasis. Kaempferol (KAM) is one of the active ingredients in the total flavonoids of Chinese traditional medicine Sparganii Rhizoma. Studies have shown that it interferes with the cell cycle, apoptosis, angiogenesis and metastasis of tumor cells, but whether it can affect the aerobic glycolysis of melanoma is still unclear. Here, we explored the effects and mechanisms of KAM on melanoma metastasis and aerobic glycolysis. KAM inhibited the migration and invasion of A375 and B16F10 cells, and reduced the lung metastasis of melanoma cells. Extracellular acidification rates (ECAR) and glucose consumption were obviously suppressed by KAM, as well as the production of ATP, pyruvate and lactate. Mechanistically, the activity of hexokinase (HK), the first key kinase of aerobic glycolysis, was significantly inhibited by KAM. Although the total protein expression of HK2 was not significantly changed, the binding of HK2 and voltage-dependent anion channel 1 (VDAC1) on mitochondria was inhibited by KAM through AKT/GSK-3ß signal pathway. In conclusion, KAM inhibits melanoma metastasis via blocking aerobic glycolysis of melanoma cells, in which the binding of HK2 and VDAC1 on mitochondria was broken.


Assuntos
Melanoma , Canal de Ânion 1 Dependente de Voltagem , Linhagem Celular Tumoral , Proliferação de Células , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicólise , Hexoquinase/metabolismo , Humanos , Quempferóis/farmacologia , Melanoma/patologia , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
8.
J Food Biochem ; 46(10): e14360, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929608

RESUMO

Natural supplements are important in diabetes and oxidative stress management. A complexation-mediated antihyperglycemic and antioxidant synergism between zinc(II) and p-coumaric acid was investigated. p-Coumaric acid was complexed with ZnSO4 and characterized by FT-IR, 1 H NMR, and mass spectroscopy. The antioxidant and antihyperglycemic potential of the complex and precursors were evaluated with different experimental models. Molecular docking with target proteins linked to diabetes was performed. A Zn(II)-bicoumarate.2H2 O complex was formed. The in vitro radical scavenging, α-glucosidase inhibitory, antiglycation, and anti-lipid peroxidative activities of the complex were several folds stronger than p-coumaric acid. In Chang liver cells and rat liver tissues, the complex inhibited lipid peroxidation (IC50  = 56.2 and 398 µM) and GSH depletion (IC50  = 33.9 and 38.7 µM), which was significantly stronger (2.3-5.4-folds) than p-coumaric acid and comparable to ascorbic acid. Zn(II) and p-coumaric synergistically modulated (1.7- and 2.8-folds than p-coumaric acid) glucose uptake in L-6 myotubes (EC50  = 10.7 µM) and rat muscle tissue (EC50  = 428 µM), which may be linked to the observed complexation-mediated increase in tissue zinc uptake. Glucose uptake activity was accompanied by increased hexokinase activity, suggesting increased glucose utilization. Docking scores α-glucosidase, GLUT-4, and PKB/Akt showed stronger interaction with the complex (-6.31 to -6.41 kcal/mol) compared to p-coumaric acid (-7.18 to -7.74 kcal/mol), which was influenced by the Zn(II) and bicoumarate moieties of the complex. In vitro, the complex was not hepatotoxic or myotoxic. Zn(II) complexation may be a therapeutic approach for improving the antioxidative and glycemic control potentials of p-coumaric acid. PRACTICAL APPLICATIONS: In functional medicine, natural supplements, plant-derived phenolics, and nutraceuticals are becoming popular in the management of diseases, including diabetes and oxidative stress. This has been largely attributed to their perceived holistic medicinal profile and the absence of notable toxicity concerns. In the past two decades, considerable attention has been drawn toward zinc mineral as a possible therapeutic supplement for diabetes due to its role in insulin secretion and reported insulin mimetic potentials. p-Coumaric acid is a known natural antioxidant with reported diabetes-related pharmacological effects. In this study, we took advantage of these properties and complexed both natural supplements, which resulted in a more potent nutraceutical with improved glycemic control and antioxidant potential. The complexation-mediated synergistic interaction between zinc and p-coumaric acid could be an important therapeutic approach in improving the use of these natural supplements or nutraceuticals in managing diabetes and associated oxidative complications.


Assuntos
Antioxidantes , Zinco , Animais , Antioxidantes/farmacologia , Ácido Ascórbico , Ácidos Cumáricos , Glucose/metabolismo , Controle Glicêmico , Hexoquinase , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Insulina , Minerais , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Glucosidases
9.
Oxid Med Cell Longev ; 2022: 4476448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873800

RESUMO

Background: Hypothermia (H), cardioplegia (CP), and both combined (HCP) are known to be protective against myocardial ischemia reperfusion (IR) injury. Mitochondria have molecular signaling mechanisms that are associated with both cell survival and cell death. In this study, we investigated the dynamic changes in proapoptotic and prosurvival signaling pathways mediating H, CP, or HCP-induced protection of mitochondrial function after acute myocardial IR injury. Methods: Rats were divided into five groups. Each group consists of 3 subgroups based on a specific reperfusion time (5, 20, or 60 min) after a 25-min global ischemia. The time control (TC) groups were not subjected to IR but were perfused with 37 °C Krebs-Ringer's (KR) buffer, containing 4.5 mM K+, in a specific perfusion protocol that corresponded with the duration of each IR protocol. The IR group (control) was perfused for 20 min with KR, followed by 25-min global ischemia, and then KR reperfusion for 5, 20, or 60 min. The treatment groups were exposed to 17 °C H, 37 °C CP (16 mM K+), or HCP (17 °C + CP) for 5 min before ischemia and for 2 min on reperfusion before switching to 37 °C KR perfusion for the remainder of each of the reperfusion times. Cardiac function and mitochondrial redox state (NADH/FAD) were monitored online in the ex vivo hearts before, during, and after ischemia. Mitochondria were isolated at the end of each specified reperfusion time, and changes in O2 consumption, membrane potential (ΔΨ m), and Ca2+ retention capacity (CRC) were assessed using complex I and complex II substrates. In another set of hearts, mitochondrial and cytosolic fractions were isolated after a specified reperfusion time to conduct western blot assays to determine hexokinase II (HKII) and Bax binding/translocation to mitochondria, cytosolic pAkt levels, and cytochrome c (Cyto-c) release into the cytosol. Results: H and HCP were more protective of mitochondrial integrity and, concomitantly, cardiac function than CP alone; H and HCP improved post-ischemic cardiac function by (1) maintaining mitochondrial bioenergetics, (2) maintaining HKII binding to mitochondria with an increase in pAkt levels, (3) increasing CRC, and (4) decreasing Cyto-c release during reperfusion. Bax translocation/binding to mitochondria was unaffected by any treatment, regardless of cardiac functional recovery. Conclusions: Hypothermia preserved mitochondrial function and cardiac function, in part, by maintaining mitochondrial bioenergetics, by retaining HKII binding to mitochondria via upstream pAkt, and by reducing Cyto-c release independently of Bax binding to mitochondria.


Assuntos
Hipotermia , Traumatismo por Reperfusão Miocárdica , Animais , Metabolismo Energético , Hexoquinase/metabolismo , Hipotermia/metabolismo , Isquemia/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Reperfusão , Proteína X Associada a bcl-2/metabolismo
10.
Cancer Res ; 82(8): 1503-1517, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35255118

RESUMO

Trastuzumab is the only approved targeted drug for first-line treatment of HER2-positive advanced gastric cancer, but the high rate of primary resistance and rapid emergence of secondary resistance limit its clinical benefits. We found that trastuzumab-resistant (TR) gastric cancer cells exhibited high glycolytic activity, which was controlled by hexokinase 2 (HK2)-dependent glycolysis with a circadian pattern [higher at zeitgeber time (ZT) 6, lower at ZT18]. Mechanistically, HK2 circadian oscillation was regulated by a transcriptional complex composed of PPARγ and the core clock gene PER1. In vivo and in vitro experiments demonstrated that silencing PER1 disrupted the circadian rhythm of PER1-HK2 and reversed trastuzumab resistance. Moreover, metformin, which inhibits glycolysis and PER1, combined with trastuzumab at ZT6, significantly improved trastuzumab efficacy in gastric cancer. Collectively, these data introduce the circadian clock into trastuzumab therapy and propose a potentially effective chronotherapy strategy to reverse trastuzumab resistance in gastric cancer. SIGNIFICANCE: In trastuzumab-resistant HER2-positive gastric cancer, glycolysis fluctuates with a circadian oscillation regulated by the BMAL1-CLOCK-PER1-HK2 axis, which can be disrupted with a metformin-based chronotherapy to overcome trastuzumab resistance.


Assuntos
Hexoquinase , Metformina , Proteínas Circadianas Period , Neoplasias Gástricas , Ritmo Circadiano/genética , Hexoquinase/genética , Humanos , Proteínas Circadianas Period/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
11.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948127

RESUMO

Histone deacetylase (HDAC) inhibitors such as butyrate have been reported to reduce diabetes risk and protect insulin-secreting pancreatic ß cells in animal models. However, studies on insulin-secreting cells in vitro have found that butyrate treatment resulted in impaired or inappropriate insulin secretion. Our study explores the effects of butyrate on insulin secretion by BRIN BD-11 rat pancreatic ß cells and examined effects on the expression of genes implicated in ß cell function. Robust HDAC inhibition with 5 mM butyrate or trichostatin A for 24 h in ß cells decreased basal insulin secretion and content, as well as insulin secretion in response to acute stimulation. Treatment with butyrate also increased expression of the disallowed gene hexokinase I, possibly explaining the impairment to insulin secretion, and of TXNIP, which may increase oxidative stress and ß cell apoptosis. In contrast to robust HDAC inhibition (>70% after 24 h), low-dose and acute high-dose treatment with butyrate enhanced nutrient-stimulated insulin secretion. In conclusion, although protective effects of HDAC inhibition have been observed in vivo, potent HDAC inhibition impairs ß cell function in vitro. The chronic low dose and acute high dose butyrate treatments may be more reflective of in vivo effects.


Assuntos
Ácido Butírico/efeitos adversos , Hexoquinase/metabolismo , Inibidores de Histona Desacetilases/efeitos adversos , Células Secretoras de Insulina/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Ácido Butírico/farmacologia , Proteínas de Ciclo Celular/metabolismo , Células Hep G2 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células Secretoras de Insulina/patologia , Ratos
12.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638959

RESUMO

Though Morusin isolated from the root of Morus alba was known to have antioxidant, anti-inflammatory, antiangiogenic, antimigratory, and apoptotic effects, the underlying antitumor effect of Morusin is not fully understood on the glycolysis of liver cancers. Hence, in the current study, the antitumor mechanism of Morusin was explored in Hep3B and Huh7 hepatocellular carcninomas (HCC) in association with glycolysis and G1 arrest. Herein, Morusin significantly reduced the viability and the number of colonies in Hep3B and Huh7 cells. Moreover, Morusin significantly increased G1 arrest, attenuated the expression of cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) and upregulated p21 and p27 in Hep3B and Huh7 cells. Interestingly, Morusin significantly activated phosphorylation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) but attenuated the expression of the p-mammalian target of protein kinase B (AKT), rapamycin (mTOR), c-Myc, hexokinase 2(HK2), pyruvate kinases type M2 (PKM2), and lactate dehydrogenase (LDH) in Hep3B and Huh7 cells. Consistently, Morusin suppressed lactate, glucose, and adenosine triphosphate (ATP) in Hep3B and Huh7 cells. Conversely, the AMPK inhibitor compound C reduced the ability of Morusin to activate AMPK and attenuate the expression of p-mTOR, HK2, PKM2, and LDH-A and suppressed G1 arrest induced by Morusin in Hep3B cells. Overall, these findings suggest that Morusin exerts an antitumor effect in HCCs via AMPK mediated G1 arrest and antiglycolysis as a potent dietary anticancer candidate.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Flavonoides/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Hexoquinase/metabolismo , Humanos , Lactato Desidrogenase 5/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Morus/química , Raízes de Plantas/química , Serina-Treonina Quinases TOR/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
13.
Mitochondrion ; 61: 138-146, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606995

RESUMO

Hexokinase II (HK2), a glycolytic enzyme is commonly overexpressed in most cancer types. The overexpression of HK2 is reported to promote the survival of cancer cells by facilitating the constant ATP generation and protecting the cancer cell against apoptotic cell death. Hence, HK2 is considered as potential target of many mitochondria targeting anticancerous agents (referred to as mitocans). Most of the existing mitocans are synthetic and hence such compounds are observed to exhibit adverse effects, witnessed through many experimental outcomes. These limitations necessitates hunting for an alternative source of mitocans with minimum/no side effects. The need for an alternative therapy points towards the ethnomedicinal herbs, known for their minimal side effects and effectiveness. Henceforth recent studies have put forth the effort to utilize anticancer herbs in formulating naturally derived mitocans as an add-on to improve cancer therapeutics. So, our study aims to explore the HK2 targeting potential of phytocompounds from the selected anticancerous herbs Andrographis paniculata (AP) and Centella asiatica (CA). 60 phytocompounds collectively from CA and AP were docked against HK2 and drug-likeness prediction of the selected phytocompounds was performed to screen the best possible ligand for HK2. Furthermore, the docked complexes were subjected to molecular dynamics simulations (MDS) to analyse the molecular mechanism of protein-ligand interactions. The results of the study suggest that the natural compounds asiatic acid and bayogenin (from CA) and andrographolide (from AP) can bepotential natural mitocans by targeting HK2. Further experimental studies (in-vitro and in-vivo) are required to validate the results.


Assuntos
Andrographis paniculata/química , Antineoplásicos/farmacologia , Centella/química , Hexoquinase/antagonistas & inibidores , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Antineoplásicos/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hexoquinase/química , Hexoquinase/genética , Hexoquinase/metabolismo , Mitocôndrias/efeitos dos fármacos , Modelos Moleculares , Compostos Fitoquímicos/química , Fitoterapia , Conformação Proteica
14.
J Ethnopharmacol ; 272: 113949, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33610707

RESUMO

ETHNO-PHARMACOLOGICAL RELEVANCE: The genus Aloe has a long history of usage in medicine. Aloe barbadensis Miller, commonly known as Aloe vera, is said to possess anti-diabetic, anti-inflammatory, anti-cancer, anti-microbial, immunomodulation, wound healing properties. AIM OF THE STUDY: In diabetes mellitus, loss in intestinal permeability is observed with high levels of zonulin and low levels of glucagon-like peptide-1 (GLP-1) leading to hyperglycemia. The aim of the study was to understand the role of peptide/polypeptide fraction (PPF) of Aloe vera in the alleviation of diabetes through maintaining the intestinal permeability by regulating the zonulin and GLP-1 levels. MATERIALS AND METHODS: The PPF of Aloe vera was obtained through trichloroacetic acid precipitation. The anti-diabetic potential of the PPF was tested through DPP-IV inhibition, glucose diffusion assay, and by using Rin-m5F cells. The anti-diabetic potential of the PPF was tested at a dose of 0.450 mg/kg bw in vivo using streptozotocin-induced diabetic Wistar rats. The effect of PPF on fasting plasma glucose, insulin, glucagon, Zonulin, GLP-1, DPP-IV, levels were studied in diabetic rats. The histopathological studies of the pancreas, small intestine, and liver were carried out for organ-specific effects. RESULTS: PPF has the ability to reduce fasting plasma glucose levels with concomitant increase in insulin levels in streptozotocin-induced diabetic rats. It was also observed that increase in GLP-1 levels with a decrease in DPP-IV and zonulin levels thereby mitigating the loss of intestinal permeability. These findings correlate with the small intestine's histopathological observation where the excessive proliferation of epithelium in the small intestine of diabetic rats was reduced after PPF treatment. CONCLUSION: These results suggest that the PPF of Aloe vera alleviates diabetes through islet cell rejuvenation via GLP-1/DPP-IV pathway and thereby suggesting the usage of PPF as an alternate medicine for diabetes mellitus with the possibility to reduce the intestinal permeability and zonulin levels.


Assuntos
Aloe/química , Diabetes Mellitus Experimental/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Haptoglobinas/metabolismo , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Precursores de Proteínas/metabolismo , Animais , Glicemia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Glucagon/sangue , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Hexoquinase/metabolismo , Hipoglicemiantes/uso terapêutico , Inflamação/metabolismo , Insulina/sangue , Intestino Delgado/patologia , Fígado/patologia , Óxido Nítrico/metabolismo , Pâncreas/patologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Estreptozocina
15.
J Ethnopharmacol ; 271: 113897, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33567306

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Caralluma tuberculata (C. tuberculata) has traditionally been used in Pakistan and other parts of the world as a folk treatment for diabetes mellitus. A few studies indicated its antihyperglycemic effect, however, the mystery remained unfolded as how did it modify the pathophysiological condition. AIM OF STUDY: Hence, this study aimed to explore underlying mechanism(s) for its hypoglycemic activity at biochemical and molecular levels. MATERIALS AND METHODS: Methanol extract (ME) of C. tuberculata as well as its hexane (HF) and aqueous (AF) fractions were explored for their effect on total glycogen in liver and skeletal muscle of alloxan-induced rats by spectroscopy. Moreover, the expression of genes related to hepatic carbohydrate metabolizing enzymes was quantified. At molecular level, mRNA expression of glucose transporter 2 (GLUT-2), glycogen synthase (GS), glucokinase (GK), hexokinase 1 (HK-1), pyruvate kinase (PK), glucose 6 phosphate dehydrogenase (G-6-PDH), pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G-6-Pase) was determined by using quantitative real time polymerase chain reaction (qRT-PCR) after administration of ME (350 mg), HF(3 mg), AF (10 mg) and metformin (500 mg). The doses were administered twice daily according to per kg of body weight. RESULTS: A significant reduction in hepatic and skeletal muscle glycogen content was exhibited. The data of qRT-PCR revealed that gene's expression of GLUT-2 was significantly decreased after treatment with ME and HF, whilst it was unaltered by AF, however, a significant decrease was observed in genes corresponding to GS, GK and HK-1 after treatment with ME. Similarly, there was a significant decrease in expression of genes corresponding to GS, GK and HK-1 following treatment with HF. Surprisingly, post-treatment with AF didn't modify the gene's expression of GS and GK, whilst it caused a profound decrease in expression of HK-1 gene. Contrarily, the expression of gene related to PK was significantly up-regulated post-administration with ME, HF and AF. The expression levels of G-6-PDH, however, remained unaltered after treatment with the experimental extract and fractions of the plant. In addition, HF and AF did not cause any modification in PEPCK, whereas ME caused a significant down-regulation of the gene. Treatment with all the extract and fractions of the plant caused a substantial decrease in the gene's expression of PC, while there was a significant increase in the expression of gene related to G-6-Pase. CONCLUSION: The three experimental extract and fractions caused a substantial decrease in glycogen content in liver and skeletal muscle tissues. The analysis by qRT-PCR showed that glucose transport via GLUT-2 was profoundly declined by ME and HF. The expression of genes related to various metabolic pathways involved in metabolism of carbohydrate in hepatocytes revealed explicitly that the ME, HF and AF decreased the phenomena of glycogenesis and gluconeogenesis. Contrarily, all the extract and fractions of the plant activated glycogenolysis and glycolysis but did not modify the pentose phosphate shunt pathway.


Assuntos
Apocynaceae/química , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Aloxano/toxicidade , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Glucoquinase/genética , Transportador de Glucose Tipo 2/genética , Glucose-6-Fosfatase/genética , Glucosefosfato Desidrogenase/genética , Glicogênio/metabolismo , Glicogênio Sintase/genética , Hexanos/química , Hexoquinase/genética , Hipoglicemiantes/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Metanol/química , Músculo Esquelético/efeitos dos fármacos , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Extratos Vegetais/uso terapêutico , Piruvato Carboxilase/genética , Piruvato Quinase/genética , Ratos Wistar , Água/química
16.
J Cell Physiol ; 235(12): 9524-9537, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32495363

RESUMO

FoxA2 is an essential transcription factor for liver organogenesis and homeostasis. Although reduced expression of FoxA2 has been associated with chronic liver diseases, hepatic progenitor cells (HPCs) that are activated in these circumstances express FoxA2. However, the functional effects and underlying mechanism of FoxA2 in HPCs are still unknown. As revealed by immunostaining, HPCs expressed FoxA2 in human cirrhotic livers and in the livers of choline-deficient diet supplemented with ethionine (CDE) rats. Knocking down FoxA2 in HPCs isolated from CDE rats significantly increased cell proliferation and aerobic glycolysis. Moreover, gene transcription, protein expression, and the enzyme activities of hexokinase 2 (HK2) were upregulated, and blocking HK2 activities via 2-deoxyglucose markedly reduced cell proliferation and aerobic glycolysis. Kyoto Encyclopedia of Genes and Genomes analysis revealed that FoxA2 knockdown enhanced the transcription of genes involved in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway and triggered downstream Akt phosphorylation. Blocking the PI3K/Akt pathway by Ly294002 inhibited HK2 activities, aerobic glycolysis, and cell proliferation in FoxA2-knockdown cells. Therefore, FoxA2 plays an important role in the proliferation and inhibition of HPCs by suppressing PI3K/Akt/HK2-regulated aerobic glycolysis.


Assuntos
Glicólise/genética , Fator 3-beta Nuclear de Hepatócito/genética , Hexoquinase/genética , Fígado/metabolismo , Organogênese/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Colina/farmacologia , Deficiência de Colina/genética , Deficiência de Colina/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinase/genética , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Células-Tronco/metabolismo
17.
BMC Mol Cell Biol ; 21(1): 44, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560625

RESUMO

BACKGROUND: Trace elements function as essential cofactors that are involved in various biochemical processes in mammals. Autophagy is vital for nutrient supplement, which is an important Zeitegber for the circadian homeostasis in heart. Here, we considered the possibility that autophagy, as well as the cardiomyocyte clock and glycolysis are interlinked. Detrimental effects were observed when cardiac system is exposed to bromine containing drugs. This study investigated the effects and mechanisms of bromide on the circadian clock and glycolytic metabolism of H9C2 cardiomyocytes. RESULTS: In the present study, bromide does not affect cell viability and apoptosis of H9C2 cardiomyocytes. Bromide dampens the clock and glycolytic (Hk2 and Pkm2) gene expression rhythmicity in a dose-dependent manner. Additionally, bromide inhibits autophagic process in H9C2 cardiomyocytes. In contrast, rapamycin (an autophagy inducer) dramatically restores the inhibitory effect of NaBr on the mRNA expression levels of clock genes (Bmal1, Cry1 and Rorα) and glycolytic genes (Hk2 and Pkm2). CONCLUSIONS: Our results reveal that bromide represses the clock and glycolytic gene expression patterns, partially through inhibition of autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Brometos/farmacologia , Relógios Circadianos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Miócitos Cardíacos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Brometos/metabolismo , Linhagem Celular , Relógios Circadianos/genética , Criptocromos/genética , Criptocromos/metabolismo , Expressão Gênica , Glicólise/genética , Hexoquinase/genética , Hexoquinase/metabolismo , Homeostase , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Ratos
18.
Theranostics ; 10(10): 4323-4333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292497

RESUMO

Rationale: Dietary exposure to aristolochic acids and similar compounds (collectively, AA) is a significant risk factor for nephropathy and subsequent upper tract urothelial carcinoma (UTUC). East Asian populations, who have a high prevalence of UTUC, have an unusual genome-wide AA-induced mutational pattern (COSMIC signature 22). Integrating mutational signature analysis with clinicopathological information may demonstrate great potential for risk ranking this UTUC subtype. Methods: We performed whole-genome sequencing (WGS) on 90 UTUC Chinese patients to extract mutational signatures. Genome sequencing data for urinary cell-free DNA from 26 UTUC patients were utilized to noninvasively identify the mutational signatures. Genome sequencing for primary tumors on 8 out of 26 patients was also performed. Metastasis-free survival (MFS) and cancer-specific survival (CSS) were measured using Kaplan-Meier methods. Results: Data analysis showed that a substantial proportion of patients harbored the AA mutational signature and were associated with AA-containing herbal drug intake, female gender, poor renal function, and multifocality. Field cancerization was found to partially contribute to multifocality. Nevertheless, AA Sig subtype UTUC patients exhibited favorable outcomes of CSS and MFS compared to the No-AA Sig subtype. Additionally, AA Sig subtype patients showed a higher tumor mutation burden, higher numbers of predicted neoantigens, and infiltrating lymphocytes, suggesting the potential for immunotherapy. We also confirmed the AA signature in AA-treated human renal tubular HK-2 cells. Notably, the AA subtype could be ascertained using a clinically applicable sequencing strategy (low coverage) in both primary tumors and urinary cell-free DNA as a basis for therapy selection. Conclusion: The AA mutational signature as a screening tool defines low-risk UTUC with therapeutic relevance. The AA mutational signature, as a molecular prognostic marker using either ureteroscopy and/or urinary cell-free DNA, is especially useful for diagnostic uncertainty when kidney-sparing treatment and/or immune checkpoint inhibitor therapy were considered.


Assuntos
Ácidos Aristolóquicos/genética , Carcinoma/induzido quimicamente , Carcinoma/genética , Neoplasias Urológicas/genética , Urotélio/patologia , Idoso , Ácidos Aristolóquicos/efeitos adversos , Ácidos Aristolóquicos/farmacologia , Povo Asiático/genética , Carcinoma/diagnóstico , Ácidos Nucleicos Livres/efeitos dos fármacos , Ácidos Nucleicos Livres/genética , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Hexoquinase/efeitos dos fármacos , Hexoquinase/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Prognóstico , Intervalo Livre de Progressão , Fatores de Risco , Ureteroscopia/métodos , Neoplasias Urológicas/induzido quimicamente , Neoplasias Urológicas/etnologia , Neoplasias Urológicas/patologia , Sequenciamento Completo do Genoma/métodos
19.
Bosn J Basic Med Sci ; 20(2): 226-235, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32020848

RESUMO

Number 3 Prescription (WD-3) is an herbal remedy used in traditional Chinese medicine that has been shown to improve the outcomes of patients with advanced colon and gastric cancers. This study aimed to investigate the effect of WD-3 on proliferation, glycolysis, and hexokinase 2 expression in breast cancer cells. Four breast cancer cell lines (MDA-MB-231, BT-549, MCF-7, and MCF-7/ADR-RES) were treated with different concentrations of WD-3 compared with blank control (phosphate-buffered saline). Each of the breast cancer cell lines was also divided into WD-3, paclitaxel, and blank control group. Cell proliferation and morphology were assessed by MTT assay, nuclear Hoechst 33258 staining, or immunofluorescence. Apoptosis was analyzed by flow cytometry. High performance liquid chromatography was used for measurement of ATP, ADP, and AMP. Hexokinase 2 expression was analyzed by Western blot and quantitative reverse transcription PCR. WD-3 inhibited proliferation and increased apoptosis in all four breast cancer cell lines, in a dose-dependent manner. ATP and EC (energy charge) were significantly decreased in WD-3-treated BT-549 and MDA-MB-231 cells. WD-3 significantly downregulated the protein and mRNA expression of hexokinase II in BT-549 cells, however, not in the other three breast cancer cell lines. Our findings indicate that WD-3 targets the glycolytic pathway in breast cancer cells to exert its antitumor activity.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Glicólise/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Hexoquinase/metabolismo , Humanos
20.
Theranostics ; 10(4): 1555-1571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042322

RESUMO

As a hallmark of metabolic reprogramming, aerobic glycolysis contributes to tumorigenesis and aggressiveness. However, the mechanisms and therapeutic strategies regulating aerobic glycolysis in neuroblastoma (NB), one of leading causes of cancer-related death in childhood, still remain elusive. Methods: Transcriptional regulators and their downstream glycolytic genes were identified by a comprehensive screening of publicly available datasets. Dual-luciferase, chromatin immunoprecipitation, real-time quantitative RT-PCR, western blot, gene over-expression or silencing, co-immunoprecipitation, mass spectrometry, peptide pull-down assay, sucrose gradient sedimentation, seahorse extracellular flux, MTT colorimetric, soft agar, matrigel invasion, and nude mice assays were undertaken to explore the biological effects and underlying mechanisms of transcriptional regulators in NB cells. Survival analysis was performed by using log-rank test and Cox regression assay. Results: Transcription factor myeloid zinc finger 1 (MZF1) was identified as an independent prognostic factor (hazard ratio=2.330, 95% confidence interval=1.021 to 3.317), and facilitated glycolysis process through increasing expression of hexokinase 2 (HK2) and phosphoglycerate kinase 1 (PGK1). Meanwhile, a 21-amino acid peptide encoded by upstream open reading frame of MZF1, termed as MZF1-uPEP, bound to zinc finger domain of Yin Yang 1 (YY1), resulting in repressed transactivation of YY1 and decreased transcription of MZF1 and downstream genes HK2 and PGK1. Administration of a cell-penetrating MZF1-uPEP or lentivirus over-expressing MZF1-uPEP inhibited the aerobic glycolysis, tumorigenesis and aggressiveness of NB cells. In clinical NB cases, low expression of MZF1-uPEP or high expression of MZF1, YY1, HK2, or PGK1 was associated with poor survival of patients. Conclusions: These results indicate that therapeutic targeting of YY1/MZF1 axis by MZF1-uPEP inhibits aerobic glycolysis and NB progression.


Assuntos
Terapia de Alvo Molecular/métodos , Neuroblastoma/tratamento farmacológico , Efeito Warburg em Oncologia/efeitos dos fármacos , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/genética , Criança , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Hexoquinase/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Análise de Sobrevida , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/efeitos dos fármacos , Fator de Transcrição YY1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA