Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Altern Ther Health Med ; 29(8): 668-673, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678873

RESUMO

Objective: To systematically evaluate the effect of levosimendan on cardiac function and outcomes in patients with sepsis. Method: We searched multiple databases including CNKI, VIP, WanFang Data, WOS, PubMed, EMbase, and The Cochrane Library up to February 2023. We targeted RCTs comparing levosimendan with dobutamine as a control for treating sepsis. After a rigorous screening and quality evaluation, 18 studies were selected for meta-analysis using Review Manager 5.4. Results: Out of 18 studies involving 980 sepsis patients, the meta-analysis revealed the following for the levosimendan group compared to dobutamine: (1) A significant reduction in mortality rate (OR = 0.63, 95% CI (0.42,0.95), P = .03). (2) Shortened ICU stay (MD = -2.55, 95% CI (-3.12, -1.98), P < .00001). (3) Increased left ventricular ejection fraction (LVEF) (MD = 6.05, 95%CI (5.28, 6.81), P < .00001) and cardiac index (CI) (MD = 0.47, 95%CI (0.35, 0.59), P < .00001). (4) Decreased blood lactate (Lac) (MD = -1.31, 95%CI (-1.73, -0.90), P < .00001) and troponin I (TnI) levels (MD = -0.43, 95%CI (-0.66, -0.21), P = .0002). (5) Reduced incidence of adverse events (OR = 0.43, 95% CI (0.23,0.81), P = .008). Conclusions: Compared to dobutamine, levosimendan substantially enhances cardiac function in sepsis patients, leading to improved outcomes and fewer adverse events.


Assuntos
Piridazinas , Sepse , Choque Séptico , Humanos , Simendana/uso terapêutico , Dobutamina/farmacologia , Dobutamina/uso terapêutico , Volume Sistólico , Hidrazonas/farmacologia , Piridazinas/farmacologia , Função Ventricular Esquerda , Sepse/tratamento farmacológico
2.
Food Chem ; 414: 135745, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36821926

RESUMO

Tyrosinase is a key enzyme in the biosynthesis of melanin, which is responsible for the browning of foods as well as many skin disorders. In order to develop new anti-browning agents with dual antioxidant and anti-tyrosinase capacities, a series of 30 thiazolyl hydrazone derivatives were synthesized. Among the molecules prepared, 6 and 30 were found to be the most potent tyrosinase inhibitors with IC50 values ​​comparable to that of kojic acid. Interestingly, 6 also has the highest radical scavenging activity among the prepared molecules. The inhibition kinetics study indicated that 6 is a non-competitive inhibitor while 30 inhibits tyrosinase competitively. The anti-browning assay of fresh-cut potato slices revealed that 6 and 30 are potent anti-browning agents with a capacity as high as kojic acid. The mechanisms of free radical scavenging and tyrosinase inhibition have been fully investigated in silico using computational kinetics, molecular docking, and molecular dynamics simulations.


Assuntos
Agaricales , Solanum tuberosum , Antioxidantes/farmacologia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Solanum tuberosum/metabolismo , Hidrazonas/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase , Agaricales/metabolismo
3.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684309

RESUMO

The anticancer agent doxorubicin(dox) has been widely used in the treatment of a variety of hematological malignancies and solid tumors. Despite doxorubicin's efficiency in killing tumor cells, severe damage to healthy tissues, along with cardiotoxicity, limits its clinical use. To overcome these adverse side effects, improve patient safety, and enhance therapeutic efficacy, we have designed a thermally responsive biopolymer doxorubicin carrier that can be specifically targeted to tumor tissue by locally applying mild hyperthermia (41 °C). The developed drug vehicle is composed of the following: a cell penetrating peptide (SynB1) to promote tumor and cellular uptake; thermally responsive Elastin-like polypeptide (ELP); and the (6-maleimidocaproyl) hydrazone derivative of doxorubicin (DOXO-EMCH) containing a pH-sensitive hydrazone linker that releases doxorubicin in the acidic tumor environment. We used the in vivo imaging system, IVIS, to determine biodistribution of doxorubicin-delivered ELP in MDA-MB-231 xenografts in nude mice. Tumor bearing mice were treated with a single IV injection of 10 mg/kg doxorubicin equivalent dose with free doxorubicin, thermally responsive SynB1 ELP 1-DOXO, and a thermally nonresponsive control biopolymer, SynB1 ELP 2-DOXO. Following a 2 h treatment with hyperthermia, tumors showed a 2-fold higher uptake when treated with SynB1 ELP 1-DOXO compared to free doxorubicin. Accumulation of the thermally non-responsive control SynB1 ELP2 -DOXO was comparable to free doxorubicin, indicating that an increase in dox accumulation with ELP is due to aggregation in response to thermal targeting. Higher levels of SynB1 ELP1-DOXO and SynB1 ELP2 -DOXO with respect to free doxorubicin were observed in kidneys. Fluorescence intensity from hearts of animals treated with SynB1 ELP1-DOXO show a 5-fold decrease in accumulation of doxorubicin than the same dose of free doxorubicin. SynB1-ELP1-DOXO biopolymers demonstrated a 6-fold increase in tumor/heart ratio in comparison to free doxorubicin, indicating preferential accumulation of the drug in tumors. These results demonstrate that thermally targeted polymers are a promising therapy to enhance tumor targeting and uptake of anticancer drugs and to minimize free drug toxicity in healthy tissues, representing a great potential for clinical application.


Assuntos
Antineoplásicos , Neoplasias da Mama , Peptídeos Penetradores de Células , Hipertermia Induzida , Animais , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Peptídeos Penetradores de Células/farmacologia , Doxorrubicina , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Hidrazonas , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Nus , Distribuição Tecidual
4.
BMC Cardiovasc Disord ; 22(1): 130, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35350988

RESUMO

BACKGROUND: Levosimendan can improve clinical symptoms and the cardiorenal rescue success rate, and stabilize hemodynamic parameters in individuals suffering from acute decompensated heart failure. In addition, Shenfu injection (SFI) has been shown to protect the ischemic heart and enhance myocardial contractility. METHODS: For this randomized control single-blind study, 101 patients with acute decompensated heart failure (ADHF) were enrolled and randomly assigned to control levosimendan (n = 51) and levosimendan + SFI injection (n = 50) groups. Attending physicians were not blinded for which arm the patients were allocated. Blood pressure, heart rate, the electrocardiogram, respiratory rate, fluid intake and urine output were all recorded 2 h and 24 h after drug infusions had commenced, and the cardiac index (CI) was monitored by ultrasonic cardiac output monitors. RESULTS: Median blood pressure was markedly increased in the levosimendan + SFI group after 2 h and 24 h from the initiation of infusions compared to levosimendan administration alone. Brain natriuretic peptide (BNP) concentrations were reduced after administrations of levosimendan + SFI or solely levosimendan (both P < 0.001). Alterations in BNP concentrations were not different in the combination and control groups. No differences were found between the 2 groups in heart rate or severe hypotension, but blood pressure (systolic blood pressure, diastolic blood pressure) and hemodynamic parameters including CI, cardiac output and stroke volume index responded better in the levosimendan + SFI group compared to the monotherapy levosimendan group. CONCLUSIONS: Levosimendan + SFI was superior to treat ADHF patients compared to levosimendan monotherapy and produced significant improvements in hemodynamic parameters especially for ADHF patients with hypotension. Trail registration The study was prospectively registered at Chinese Clinical Trial Registry with registration number [ChiCTR2000039385] (10/25/2020).


Assuntos
Insuficiência Cardíaca , Hipotensão , Piridazinas , Cardiotônicos/uso terapêutico , Medicamentos de Ervas Chinesas , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hidrazonas , Estudos Prospectivos , Simendana/efeitos adversos , Método Simples-Cego
5.
Eur J Med Chem ; 229: 114097, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34998057

RESUMO

The inhibitory effects of 2-thiazolyl hydrazones on monoamine oxidase enzymes are known for a long time. In this study, a new series of 2-thiazolyl hydrazone derivatives were synthesized starting from 6-methoxy-2-naphthaldehyde. All of the synthesized compounds were investigated in terms of their monoamine oxidase (MAO) inhibitory effects and significant results were found. The results showed that compound 2j potently inhibited MAO-A and MAO-B, while compound 2t strongly and selectively inhibited MAO-B compared to standard drugs. Compounds 2k and 2q exhibited selective and satisfying inhibition on MAO-B. In the aromatase inhibition studies of the compounds, it was determined that compounds 2q and 2u had high inhibitory properties. Molecular docking studies on MAO-A, MAO-B, and aromatase enzymes were carried out for the aforementioned compounds. Additionally, molecular dynamics simulation was studied for compound 2q on MAO-B and aromatase complexes. Finally, the Field-based QSAR study was developed and the structure-activity relationship (SAR) was explained. For the first time, dual inhibitors on MAO and aromatase enzyme were investigated together. The aim of this approach is for finding the potential agents that do not cause the cognitive disorders and may even treat neurodegenerative symptoms, thus, the aim was reached successfully.


Assuntos
Inibidores da Aromatase/síntese química , Aromatase/metabolismo , Hidrazonas/síntese química , Inibidores da Monoaminoxidase/síntese química , Monoaminoxidase/metabolismo , Inibidores da Aromatase/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
6.
Molecules ; 26(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885946

RESUMO

In this work, we evaluated the conformational effect promoted by the isosteric exchange of sulfur by selenium in the heteroaromatic ring of new N-acylhydrazone (NAH) derivatives (3-8, 13, 14), analogues of the cardioactive compounds LASSBio-294 (1) and LASSBio-785 (2). NMR spectra analysis demonstrated a chemical shift variation of the iminic Csp2 of NAH S/Se-isosters, suggesting a stronger intramolecular chalcogen interaction for Se-derivatives. To investigate the pharmacological profile of these compounds at the adenosine A2A receptor (A2AR), we performed a previously validated functional binding assay. As expected for bioisosteres, the isosteric-S/Se replacement affected neither the affinity nor the intrinsic efficacy of our NAH derivatives (1-8). However, the N-methylated compounds (2, 6-8) presented a weak partial agonist profile at A2AR, contrary to the non-methylated counterparts (1, 3-5), which appeared as weak inverse agonists. Additionally, retroisosterism between aromatic rings of NAH on S/Se-isosters mimicked the effect of the N-methylation on intrinsic efficacy at A2AR, while meta-substitution in the phenyl ring of the acyl moiety did not. This study showed that the conformational effect of NAH-N-methylation and aromatic rings retroisosterism changed the intrinsic efficacy on A2AR, indicating the S/Se-chalcogen effect to drive the conformational behavior of this series of NAH.


Assuntos
Hidrazonas/química , Receptor A2A de Adenosina/metabolismo , Selênio/química , Enxofre/química , Tiofenos/química , Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Humanos , Hidrazonas/farmacologia , Masculino , Modelos Moleculares , Ratos Wistar , Selênio/farmacologia , Enxofre/farmacologia , Tiofenos/farmacologia
7.
Front Immunol ; 12: 680611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956168

RESUMO

Natural killer (NK) cells are a potent weapon against tumor and viral infection. Finding active compounds with the capacity of enhancing NK cell effector functions will be effective to develop new anti-cancer drugs. In this study, we initially screened 287 commercially available active compounds by co-culturing with peripheral blood mononuclear cells (PBMCs). We found that five compounds, namely, Daphnetin, MK-8617, LW6, JIB-04, and IOX1, increased the IFN-γ+ NK cell ratio in the presence of IL-12. Further studies using purified human primary NK cells revealed that Daphnetin directly promoted NK cell IFN-γ production in the presence of IL-12 but not IL-15, while the other four compounds acted on NK cells indirectly. Daphnetin also improved the direct cytotoxicity of NK cells against tumor cells in the presence of IL-12. Through RNA-sequencing, we found that PI3K-Akt-mTOR signaling acted as a central pathway in Daphnetin-mediated NK cell activation in the presence of IL-12. This was further confirmed by the finding that both inhibitors of PI3K-Akt and its main downstream signaling mTOR, LY294002, and rapamycin, respectively, can reverse the increase of IFN-γ production and cytotoxicity in NK cells promoted by Daphnetin. Collectively, we identify a natural product, Daphnetin, with the capacity of promoting human NK cell activation via PI3K-Akt-mTOR signaling in the presence of IL-12. Our current study opens up a new potential application for Daphnetin as a complementary immunomodulator for cancer treatments.


Assuntos
Citotoxicidade Imunológica/efeitos dos fármacos , Interferon gama/biossíntese , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Umbeliferonas/farmacologia , Acetanilidas/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Adolescente , Adulto , Aminopiridinas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Hidrazonas/farmacologia , Hidroxiquinolinas/farmacologia , Interferon gama/genética , Interleucina-12/fisiologia , Células K562 , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Piridazinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Adulto Jovem
8.
Pak J Pharm Sci ; 34(5(Supplementary)): 1951-1955, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34836865

RESUMO

Diabetes mellitus (DM) is a metabolic disorder characterized by frequent urination, hunger and high blood sugar level. α-glucosidase inhibitors are considered as a frontline treatment for the DM. This research article deals with the identification of benzothiazine derivatives as α-glucosidase inhibitors through in-silico techniques and then the confirmation through in-vitro analysis. Molecular docking studies were carried out to find out the binding interactions of targeted molecules with receptor molecule i.e., α-glucosidase enzyme. The synthetic compounds 1 (a-n), 2 (a-d) and 3 (a-b) were evaluated for in-vitro alpha glucosidase inhibitory activities that resulted in the discovery of various potent molecules. Majority of the compounds (1c, 1f, 1g, 1k-n, 2a-d and 3a-b) exhibited good inhibitory activity against α-glucosidase. Compounds 1c, 1g, 1k and 1m appeared as the potent active compounds with the IC50 values 17.44, 27.64, 24.43, 42.59 and 16.90 µM respectively. Compounds 1c & 2c were found almost 3-folds more active than the standard acarbose. The study may lead to discover potent drug candidates with less complication for the treatment of the type II diabetes mellitus.


Assuntos
Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hidrazonas/síntese química , Hidrazonas/farmacologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Tiazinas/síntese química , Tiazinas/farmacologia , Simulação por Computador , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
9.
Chem Biol Drug Des ; 98(4): 539-560, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34173346

RESUMO

The alpha (α)-amylase is a calcium metalloenzyme that aids digestion by breaking down polysaccharide molecules into smaller ones such as glucose and maltose. In addition, the enzyme causes postprandial hyperglycaemia and blood glucose levels to rise. α-Amylase is a well-known therapeutic target for the treatment and maintenance of postprandial blood glucose elevations. Various enzymatic inhibitors, such as acarbose, miglitol and voglibose, have been found to be effective in targeting this enzyme, prompting researchers to express an interest in developing potent alpha-amylase inhibitor molecules. The review mainly focused on designing different derivatives of drug molecules such as benzofuran hydrazone, indole hydrazone, spiroindolone, benzotriazoles, 1,3-diaryl-3-(arylamino) propan-1-one, oxadiazole and flavonoids along with their target-receptor interactions, IC50 values and other biological activities.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/química , alfa-Amilases/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/química , Acarbose/química , Benzofuranos/química , Glicemia/efeitos dos fármacos , Descoberta de Drogas , Flavonoides/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Hidrazonas/química , Hipoglicemiantes/farmacologia , Indóis/química , Inositol/análogos & derivados , Inositol/química , Oxidiazóis/química , Relação Estrutura-Atividade
10.
Theranostics ; 11(13): 6491-6506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995670

RESUMO

Rationale: TGFß signaling pathway controls tissue fibrotic remodeling, a hallmark in many diseases leading to organ injury and failure. In this study, we address the role of Apilimod, a pharmacological inhibitor of the lipid kinase PIKfyve, in the regulation of cardiac pathological fibrotic remodeling and TGFß signaling pathway. Methods: The effects of Apilimod treatment on myocardial fibrosis, hypertrophy and cardiac function were assessed in vivo in a mouse model of pressure overload-induced heart failure. Primary cardiac fibroblasts and HeLa cells treated with Apilimod as well as genetic mutation of PIKfyve in mouse embryonic fibroblasts were used as cell models. Results: When administered in vivo, Apilimod reduced myocardial interstitial fibrosis development and prevented left ventricular dysfunction. In vitro, Apilimod controlled TGFß-dependent activation of primary murine cardiac fibroblasts. Mechanistically, both Apilimod and genetic mutation of PIKfyve induced TGFß receptor blockade in intracellular vesicles, negatively modulating its downstream signaling pathway and ultimately dampening TGFß response. Conclusions: Altogether, our findings propose a novel function for PIKfyve in the control of myocardial fibrotic remodeling and the TGFß signaling pathway, therefore opening the way to new therapeutic perspectives to prevent adverse fibrotic remodeling using Apilimod treatment.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Hidrazonas/uso terapêutico , Morfolinas/uso terapêutico , Fosfatidilinositol 3-Quinases/fisiologia , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/fisiologia , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/efeitos dos fármacos , Fibrose , Células HEK293 , Células HeLa , Insuficiência Cardíaca/patologia , Humanos , Hidrazonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Miocárdio/patologia , Pirimidinas/farmacologia , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo II/efeitos dos fármacos , Método Simples-Cego , Disfunção Ventricular Esquerda/prevenção & controle , Remodelação Ventricular/efeitos dos fármacos
11.
Bioorg Med Chem Lett ; 40: 127962, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33741463

RESUMO

Osthole, a coumarin-type natural product, is isolated from Chinese traditional herbal medicine Cnidium monnieri. In order to improve the pesticidal activity of osthole, and high value-added application of the plant Cnidium monnieri, a series of new derivatives containing hydrazone/acylhydrazone/sulfonylhydrazone skeletons at the C-8 position of osthole were regioselectively semi-prepared. The steric structure of 3c was determined by the X-ray crystal structure. Against Mythimna separata Walker, benzoylhydrazone 3b (R1 = 4-CH3Ph) showed 1.6 folds potent insecticidal activity of the precursor osthole. Introduction of the acylhydrazones on the 3'-methyl-2'-butylenyl fragment at the C-8 position of osthole can improve the insecticidal activity. These will provide a foundation for future structural modifications of osthole as pesticidal agents.


Assuntos
Cumarínicos/farmacologia , Hidrazonas/farmacologia , Inseticidas/farmacologia , Animais , Cumarínicos/síntese química , Hidrazonas/síntese química , Inseticidas/síntese química , Estrutura Molecular , Mariposas/efeitos dos fármacos , Testes de Toxicidade
12.
J Mol Neurosci ; 71(7): 1456-1466, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33403592

RESUMO

T-006, a small-molecule compound derived from tetramethylpyrazine (TMP), has potential for the treatment of neurological diseases. In order to investigate the effect of T-006 prophylactic treatment on an Alzheimer's disease (AD) model and identify the target of T-006, we intragastrically administered T-006 (3 mg/kg) to Alzheimer's disease (AD) transgenic mice (APP/PS1-2xTg and APP/PS1/Tau-3xTg) for 6 and 8 months, respectively. T-006 improved cognitive ability after long-term administration in two AD mouse models and targeted mitochondrial-related protein alpha-F1-ATP synthase (ATP5A). T-006 significantly reduced the expression of phosphorylated-tau, total tau, and APP while increasing the expression of synapse-associated proteins in 3xTg mice. In addition, T-006 modulated the JNK and mTOR-ULK1 pathways to reduce both p-tau and total tau levels. Our data suggested that T-006 mitigated cognitive decline primarily by reducing the p-tau and total tau levels in 3xTg mice, supporting further investigation into its development as a candidate drug for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Hidrazonas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Pirazinas/uso terapêutico , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Aprendizagem da Esquiva , Modelos Animais de Doenças , Donepezila/farmacologia , Donepezila/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Hidrazonas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Memantina/farmacologia , Memantina/uso terapêutico , Camundongos , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirazinas/farmacologia , Distribuição Aleatória , Reconhecimento Psicológico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
13.
Asian Cardiovasc Thorac Ann ; 29(4): 260-267, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33143432

RESUMO

BACKGROUND: Levosimendan is an effective calcium sensitizer with complementary mechanisms of action: calcium sensitization and opening of adenosine triphosphate-dependent potassium channels, both on the sarcolemma of the smooth muscle cells in the vasculature and on the mitochondria of cardiomyocytes. Levosimendan has a long-acting metabolite with a half-life of approximately 80 h. There have been a few small studies on this drug regarding right ventricular function. In view of this, we investigated the effect of levosimendan on right ventricular function in patients with coronary artery disease. METHODS: This was a prospective, randomized, double-blind study on 50 patients with coronary artery disease and severe left ventricular dysfunction (left ventricular ejection fraction ≤35%) undergoing elective off-pump coronary artery bypass. RESULTS: Levosimendan had an inotropic effect on right ventricular myocardium and a vasodilatory effect on blood vessels. It caused a decline in pulmonary vascular resistance (p < 0.018), right ventricular systolic pressure (p < 0.001), and pulmonary artery systolic pressure (p < 0.001), and improved right ventricular diastolic function as shown by the decrease in right ventricular Tei index (p < 0.001), right ventricular end-diastolic pressure, and the ratio of early diastolic tricuspid inflow to tricuspid lateral annular velocity (p < 0.006). However, we found no beneficial effects on intensive care unit or hospital stay (p = 0.164, p = 0.349, respectively) nor a mortality benefit. CONCLUSIONS: Levosimendan has salutary effects on right ventricular function in patients with severe left ventricular dysfunction undergoing coronary artery bypass, in terms of improved hemodynamic parameters.


Assuntos
Piridazinas , Disfunção Ventricular Esquerda , Cardiotônicos/uso terapêutico , Ventrículos do Coração , Humanos , Hidrazonas/uso terapêutico , Estudos Prospectivos , Simendana/farmacologia , Volume Sistólico , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda
14.
Curr Top Med Chem ; 20(26): 2344-2361, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32819246

RESUMO

Embryonic stem cells (ESCs) are stem cells (SCs) that can self-renew and differentiate into a myriad of cell types. The process of developing stemness is determined by signaling molecules that drive stem cells to a specific lineage. For example, ESCs can differentiate into mature cells (e.g., cardiomyocytes) and mature cardiomyocytes can be characterized for cell beating, action potential, and ion channel function. A goal of this Perspective is to show how small molecules can be used to differentiate ESCs into cardiomyocytes and how this can reveal novel aspects of SC biology. This approach can also lead to the discovery of new molecules of use in cardiovascular disease. Human induced pluripotent stem cells (hiPSCs) afford the ability to produce unlimited numbers of normal human cells. The creation of patient-specific hiPSCs provides an opportunity to study cell models of human disease. The second goal is to show that small molecules can stimulate hiPSC commitment to cardiomyocytes. How iPSCs can be used in an approach to discover new molecules of use in cardiovascular disease will also be shown in this study. Adult SCs, including mesenchymal stem cells (MSCs), can likewise participate in self-renewal and multilineage differentiation. MSCs are capable of differentiating into osteoblasts, adipocytes or chondrocytes. A third goal of this Perspective is to describe differentiation of MSCs into chondrogenic and osteogenic lineages. Small molecules can stimulate MSCs to specific cell fate both in vitro and in vivo. In this Perspective, some recent examples of applying small molecules for osteogenic and chondrogenic cell fate determination are summarized. Underlying molecular mechanisms and signaling pathways involved are described. Small molecule-based modulation of stem cells shows insight into cell regulation and potential approaches to therapeutic strategies for MSC-related diseases.


Assuntos
Osso e Ossos/metabolismo , Condrócitos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Adipócitos/metabolismo , Animais , Ácido Ascórbico/metabolismo , Osso e Ossos/citologia , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Dimetil Sulfóxido/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidrazonas/metabolismo , Oxigenoterapia Hiperbárica , Células-Tronco Pluripotentes Induzidas/citologia , Canais Iônicos/metabolismo , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Osteoblastos/metabolismo , Serina/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
15.
Artigo em Inglês | MEDLINE | ID: mdl-32734890

RESUMO

Toxicity and poor adherence to treatment that favors the generation of resistance in the Leishmania parasites highlight the need to develop better alternatives. Here, we evaluated the in vitro effectiveness of hydrazone derived from chromanes 2-(2,3-dihydro-4H-1-benzothiopyran-4-ylidene) hydrazide (TC1) and 2-(2,3-dihydro-4H-1-benzopyran-4-ylidene) hydrazide (TC2) and the mixture of triterpene saponin hederagenin-3-O-(3,4-O-diacetyl-ß-D-xylopyranosyl-(1à3)-a-L- rhamnopyranosyl-(1à2)-a-L-arabinofuranoside, hederagenin-3-O-(3,4-O-diacetyl-a-L- arabinopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside and, hederagenin-3-O-(4-O-acetyl-ß-D-xylopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside from Sapindus saponaria (SS) on L. braziliensis and L. pifanoi. Mixtures of TC1 or TC2 with saponin were formulated for topical application and the therapeutic effectiveness was evaluated in the model for cutaneous leishmaniasis (CL) in golden hamster. The mode of action of these compounds was tested on various parasite processes and ultrastructural parasite modifications. TC1, TC2 and SS showed moderate cytotoxicity when tested independently but toxicity was improved when tested in combination. The compounds were more active against intracellular Leishmania amastigotes. In vivo studies showed that combinations of TC1 or TC2 with SS in 1:1 ratio (w/w) cured 100% of hamsters with no signs associated with toxicity. The compounds did cause changes in the mitochondrial activity of the parasite with a decrease in ATP levels and depolarization of membrane potential and overproduction of reactive oxygen species; nevertheless, these effects were not related to alterations in membrane permeability. The phagolysosome ultrastructure was also affected impacting the survival of Leishmania but the function of the lysosome nor the pH inside the phagolysosome did not change. Lastly, there was a protease inhibition which was directly related to the decrease in the ability of Leishmania to infect and multiply inside the macrophage. The results suggest that the combination of TC1 and TC2 with SS in a 1:1 ratio is capable of curing CL in hamsters. This effect may be due to the ability of these compounds to affect parasite survival and the ability to infect new cells.


Assuntos
Hidrazonas/farmacologia , Leishmania/efeitos dos fármacos , Sapindus/química , Saponinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Hidrazonas/química , Hidrazonas/toxicidade , Leishmania/metabolismo , Leishmania/ultraestrutura , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/metabolismo , Leishmania braziliensis/ultraestrutura , Estágios do Ciclo de Vida/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Reinfecção , Saponinas/química , Saponinas/toxicidade
16.
Nature ; 586(7827): 113-119, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32707573

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Assuntos
Antivirais/análise , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Betacoronavirus/crescimento & desenvolvimento , COVID-19 , Linhagem Celular , Inibidores de Cisteína Proteinase/análise , Inibidores de Cisteína Proteinase/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazonas , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Morfolinas/análise , Morfolinas/farmacologia , Pandemias , Pirimidinas , Reprodutibilidade dos Testes , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Triazinas/análise , Triazinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
17.
Mater Sci Eng C Mater Biol Appl ; 110: 110680, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204108

RESUMO

A single-use optical sensor was designed for Zn(II) determination based on the immobilisation of the colorimetric reagent 2-acetylpyridine benzoylhydrazone (2-APBH) in a polymer inclusion membrane (PIM) adhered on the surface of an inert rectangular strip of polyester (Mylar). Different components for the membrane preparation were tested and those resulting in membrane with good appearance, proper physical and optical properties and ease of preparation were selected. Factorial design 23 with three replicates of the central point was applied for the optimisation of the membrane composition. The optimal composition consisted of 2.5 g of poly(vinyl chloride) (PVC), 4 mL of tributyl phosphate (TBP) and 0.04 g of 2-APBH. The optode showed a linear dynamic range from 0.03 (detection limit) to 1 mg L-1 of Zn(II) ions with a response time of 30 min in aqueous solution at pH 6 and a relative standard deviation of 3.90% for 0.4 mg L-1 of Zn(II). The sensor exhibited good selectivity to Zn(II) over other commonly ions. It was successfully applied to the determination of Zn(II) in a water certified reference material, spiked tap water, vitamin-mineral drink, food supplement and foot health care products, as contribution to the concern about this heavy metal due to its significant role in many biological and physiological processes although toxicant at high doses.


Assuntos
Bebidas/análise , Cosméticos/análise , Suplementos Nutricionais/análise , Pé/fisiologia , Membranas Artificiais , Óptica e Fotônica/instrumentação , Polímeros/química , Zinco/análise , Ânions , Soluções Tampão , Desenho de Equipamento , Hidrazonas/química , Concentração de Íons de Hidrogênio , Organofosfatos/química , Cloreto de Polivinila/química , Piridinas/química
18.
Anal Chim Acta ; 1104: 110-116, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32106941

RESUMO

Hydrazone chemistry has been firstly explored as capturing mode for interface supported toehold strand displacement cascade (TSDC). The method has been further established for analysis of 5-hydroxymethylfurfural (HMF) based on hydrazone chemistry-mediated TSDC. HMF containing aldehyde group can be covalently captured by hydrazine group around magnetic bead through the formation of hydrazone bond, so as to inhibit the immobilization of hybrid duplex and the occurrence of TSDC. Thereby, HMF will cause the change of the fluorescence of modified magnetic bead. With simplicity, specificity, and sensitivity, the method has been successfully applied to analyze HMF in food samples. This paper gives a new insight to explore capturing mode for interface supported TSDC and the established method can be extended for analysis of saccharic derivatives.


Assuntos
Técnicas Biossensoriais/métodos , Furaldeído/análogos & derivados , Hidrazonas/química , Animais , Técnicas Biossensoriais/instrumentação , Citrus paradisi/química , Água Potável/química , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Furaldeído/análise , Leite/química , Sensibilidade e Especificidade , Espectrometria de Fluorescência , Chá/química
19.
Pharmacol Res ; 155: 104680, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32032665

RESUMO

Friedreich's ataxia (FA) is due to deficiency of the mitochondrial protein, frataxin, which results in multiple pathologies including a deadly, hypertrophic cardiomyopathy. Frataxin loss leads to deleterious accumulations of redox-active, mitochondrial iron, and suppressed mitochondrial bioenergetics. Hence, there is an urgent need to develop innovative pharmaceuticals. Herein, the activity of the novel compound, 6-methoxy-2-salicylaldehyde nicotinoyl hydrazone (SNH6), was assessed in vivo using the well-characterized muscle creatine kinase (MCK) conditional frataxin knockout (KO) mouse model of FA. The design of SNH6 incorporated a dual-mechanism mediating: (1) NAD+-supplementation to restore cardiac bioenergetics; and (2) iron chelation to remove toxic mitochondrial iron. In these studies, MCK wild-type (WT) and KO mice were treated for 4-weeks from the asymptomatic age of 4.5-weeks to 8.5-weeks of age, where the mouse displays an overt cardiomyopathy. SNH6-treatment significantly elevated NAD+ and markedly increased NAD+ consumption in WT and KO hearts. In SNH6-treated KO mice, nuclear Sirt1 activity was also significantly increased together with the NAD+-metabolic product, nicotinamide (NAM). Therefore, NAD+-supplementation by SNH6 aided mitochondrial function and cardiac bioenergetics. SNH6 also chelated iron in cultured cardiac cells and also removed iron-loading in vivo from the MCK KO heart. Despite its dual beneficial properties of supplementing NAD+ and chelating iron, SNH6 did not mitigate cardiomyopathy development in the MCK KO mouse. Collectively, SNH6 is an innovative therapeutic with marked pharmacological efficacy, which successfully enhanced cardiac NAD+ and nuclear Sirt1 activity and reduced cardiac iron-loading in MCK KO mice. No other pharmaceutical yet designed exhibits both these effective pharmacological properties.


Assuntos
Aldeídos/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Ataxia de Friedreich/tratamento farmacológico , Hidrazonas/uso terapêutico , Quelantes de Ferro/uso terapêutico , NAD/metabolismo , Trifosfato de Adenosina/metabolismo , Aldeídos/farmacologia , Animais , Cardiomiopatias/metabolismo , Linhagem Celular , Creatina Quinase Forma MM/genética , Modelos Animais de Doenças , Ataxia de Friedreich/metabolismo , Hidrazonas/farmacologia , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Proteínas de Ligação ao Ferro/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Ratos , Frataxina
20.
Adv Mater ; 32(9): e1904958, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31961987

RESUMO

Although biomimetic virus-like strategies have been widely used in antitumor applications, construction of uniquely shaped virus-like agents and optimization of their specific morphological features to achieve diverse antitumor functions are worthwhile pursuits. Here, a novel strategy to construct an artificial tobacco mosaic virus (ATMV) that closely mimics the structure of the rod-like tobacco mosaic virus (TMV) is developed. The supramolecular array is self-assembled from small, repeated subunits of tailor-made capsid-mimicking dendrons onto RGD-modified single-walled carbon nanotube to construct the ATMVs with high structural stability. The ATMVs are tactfully designed with shielding, targeting, and arming approaches, including shielding the viruses against premature elimination, selectively targeting tumor tissue, and arming the viruses with oncolytic abilities. The elongated particles are concealed in blood until they arrived at a tumor site, then they induce robust composite oncolytic processes including cytomembrane penetration, endoplasmic reticulum disruption to cause Ca2+ release, chemotherapeutic delivery, and photothermal therapy. Excitingly, the ATMVs not only lyse primary infected cells, but permeate adjacent cells for secondary infection, spreading cell-to-cell and continuing to induce lysis even deep in solid tumors. This work inspires a uniquely shaped virus-like agent with tactically optimized oncolytic functions that completely defeated large drug-resistant colon tumor (LoVo/Adr, ≈500 mm3 ).


Assuntos
Antineoplásicos/química , Materiais Biomiméticos/química , Neoplasias do Colo/tratamento farmacológico , Doxorrubicina/química , Portadores de Fármacos/química , Nanotubos de Carbono/química , Vírus do Mosaico do Tabaco/química , Animais , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Preparações de Ação Retardada/química , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estabilidade de Medicamentos , Corantes Fluorescentes/química , Humanos , Hidrazonas/química , Camundongos Nus , Oligopeptídeos/química , Imagem Óptica , Fototerapia , Propriedades de Superfície , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA