Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170544, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309367

RESUMO

Multiple lines of evidence at whole animal, cellular and molecular levels implicate polycyclic aromatic compounds (PACs) with three rings as drivers of crude oil toxicity to developing fish. Phenanthrene (P0) and its alkylated homologs (C1- through C4-phenanthrenes) comprise the most prominent subfraction of tricyclic PACs in crude oils. Among this family, P0 has been studied intensively, with more limited detail available for the C4-phenanthrene 1-methyl-7-isopropyl-phenanthrene (1-M,7-IP, or retene). While both compounds are cardiotoxic, P0 impacts embryonic cardiac function and development through direct blockade of K+ and Ca2+ currents that regulate cardiomyocyte contractions. In contrast, 1-M,7-IP dysregulates aryl hydrocarbon receptor (AHR) activation in developing ventricular cardiomyocytes. Although no other compounds have been assessed in detail across the larger family of alkylated phenanthrenes, increasing alkylation might be expected to shift phenanthrene family member activity from K+/Ca2+ ion current blockade to AHR activation. Using embryos of two distantly related fish species, zebrafish and Atlantic haddock, we tested 14 alkyl-phenanthrenes in both acute and latent developmental cardiotoxicity assays. All compounds were cardiotoxic, and effects were resolved into impacts on multiple, highly specific aspects of heart development or function. Craniofacial defects were clearly linked to developmental cardiotoxicity. Based on these findings, we suggest a novel framework to delineate the developmental toxicity of petrogenic PAC mixtures in fish, which incorporates multi-mechanistic pathways that produce interactive synergism at the organ level. In addition, relationships among measured embryo tissue concentrations, cytochrome P4501A mRNA induction, and cardiotoxic responses suggest a two-compartment toxicokinetic model that independently predicts high potency of PAC mixtures through classical metabolic synergism. These two modes of synergism, specific to the sub-fraction of phenanthrenes, are sufficient to explain the high embryotoxic potency of crude oils, independent of as-yet unmeasured compounds in these complex environmental mixtures.


Assuntos
Petróleo , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Peixe-Zebra , Cardiotoxicidade , Fenantrenos/toxicidade , Relação Estrutura-Atividade , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
2.
J Hazard Mater ; 468: 133833, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401215

RESUMO

Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.


Assuntos
Diatomáceas , Microalgas , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/toxicidade , Petróleo/análise , Água , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Carbono
3.
Toxicol Mech Methods ; 34(3): 245-255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375852

RESUMO

Crude oil spilled at sea is chemically altered through environmental processes such as dissolution, biodegradation, and photodegradation. Transformation of hydrocarbons to oxygenated species increases water-solubility. Metabolites and oxidation products largely remain uncharacterized by common analytical methods but may be more bioavailable to aquatic organisms. Studies have shown that unresolved (i.e. unidentified) polar compounds ('UPCs') may constitute > 90% of the water-accommodated fraction (WAF) of heavily weathered crude oils, but still there is a paucity of information characterizing their toxicological significance in relation to other oil-derived toxicants. In this study, low-energy WAFs (no droplets) were generated from two field-weathered oils (collected during the 2010 Deepwater Horizon incident) and their polar fractions were isolated through fractionation. To allow establishment of thresholds for acute toxicity (LC50) of the dissolved and polar fraction of field collected oils, we concentrated both WAFs and polar fractions to beyond field-documented concentrations, and the acute toxicity of both to the marine copepod Acartia tonsa was measured and compared to the toxicity of the native WAF (non-concentrated). The difference in toxic units (TUs) between the total of the mixture and of identified compounds of known toxicity (polycyclic aromatic hydrocarbons [PAHs] and alkyl phenols) in both WAF and polar fractions was used to estimate the contribution of the UPC to overall toxicity. This approach identified that UPC had a similar contribution to toxicity as identified compounds within the WAFs of the field-weathered oils. This signifies the relative importance of polar compounds when assessing environmental impacts of spilled and weathered oil.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Óleos , Petróleo/toxicidade , Petróleo/análise , Água , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
4.
Food Chem Toxicol ; 185: 114454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237855

RESUMO

Evidence suggests that meat processing and heat treatment may increase cancer risk through exposure to potentially carcinogenic compounds, polycyclic aromatic hydrocarbons (PAHs), and heterocyclic aromatic amines (HAAs). This study aims to investigate the effect of low concentrations of PAHs and HAAs (from 1 to 100 µmol/L/24h and 48h) in colorectal tumor cells (HT-29, HCT116, and LS174T) and to evaluate the effect of PAHs in the presence of inulin in mice. In vitro, the 4-PAHs have no effect on healthy colon cells but decreased the viability of the colorectal tumor cells and activated the mRNA and protein expressions of CYP1A1 and CYP1B1. In vivo, in mice with colitis induced by 3% DSS, the 4-PAHs (equimolar mix at 50,100, 150 mg/kg.bw, orally 3 times a week for 3 weeks) induced a loss of body weight and tumor formation. Inulin (10 g/L) had no effect on colon length and tumor formation. A significant decrease in the loss of b.w was observed in inulin group as compared to the fiber free group. These results underscore the importance of considering the biological association between low-dose exposure to 4-HAPs and diet-related colon tumors.


Assuntos
Neoplasias Colorretais , Compostos Heterocíclicos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Camundongos , Inulina/farmacologia , Aminas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Suplementos Nutricionais , Compostos Heterocíclicos/toxicidade
5.
Environ Res ; 245: 117901, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092235

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.


Assuntos
Poluentes Ambientais , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Ecossistema , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Petróleo/toxicidade , Petróleo/análise , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Medição de Risco , China , Sedimentos Geológicos/análise
6.
Environ Sci Technol ; 57(48): 19214-19222, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37963111

RESUMO

Pacific herring (Clupea pallasii), a cornerstone of marine food webs, generally spawn on marine macroalgae in shallow nearshore areas that are disproportionately at risk from oil spills. Herring embryos are also highly susceptible to toxicity from chemicals leaching from oil stranded in intertidal and subtidal zones. The water-soluble components of crude oil trigger an adverse outcome pathway that involves disruption of the physiological functions of cardiomyocytes in the embryonic herring heart. In previous studies, impaired ionoregulation (calcium and potassium cycling) in response to specific polycyclic aromatic hydrocarbons (PAHs) corresponds to lethal embryolarval heart failure or subtle chamber malformations at the high and low ends of the PAH exposure range, respectively. Sublethal cardiotoxicity, which involves an abnormal outgrowth (ballooning) of the cardiac ventricular chamber soon after hatching, subsequently compromises juvenile heart structure and function, leading to pathological hypertrophy of the ventricle and reduced individual fitness, measured as cardiorespiratory performance. Previous studies have not established a threshold for these sublethal and delayed-in-time effects, even with total (∑)PAH exposures as low as 29 ng/g of wet weight (tissue dose). Here, we extend these earlier findings showing that (1) cyp1a gene expression provides an oil exposure metric that is more sensitive than typical quantitation of PAHs via GC-MS and (2) heart morphometrics in herring embryos provide a similarly sensitive measure of toxic response. Early life stage injury to herring (impaired heart development) thus occurs below the quantitation limits for PAHs in both water and embryonic tissues as a conventional basis for assessing oil-induced losses to coastal marine ecosystems.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Água , Ecossistema , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Petróleo/toxicidade , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Peixes/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
7.
Environ Sci Pollut Res Int ; 30(44): 99561-99569, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37615916

RESUMO

Crude oils are highly complex mixtures containing many toxic compounds for organisms. While their level of toxicity in a marine environment depends on many parameters, one of the main factors is their composition. After oil spills, their compositions are significantly changed, so it changes the toxicity. In this study, different weathering processes such as evaporation, photooxidation, and biodegradation were applied to crude oil to understand how composition changed over time and how this affects its toxicity on phytoplankton. In laboratory settings, three distinct water-accommodated fraction samples of crude oil were prepared, unweathered, evaporated, and weathered and were exposed to phytoplankton communities at different dilution levels. After 3 days, evaporation reduced the crude oil concentration by 47%, and the concentration of the crude oil affected by photooxidation, biodegradation, and evaporation reduced by 81%. This study also showed that even though the weathering reduced the overall amount of crude oil substantially, its toxicity increased significantly. In the microcosm experiments, 7-day EC50 values of the unweathered oil, the evaporated oil and the weathered oil were 49.07, 21.09, and 7.16 µg/L, respectively. Different processes altered the crude oil composition, and weathered crude oil ended up with a higher fraction of high molecular weight (HMW) polycyclic aromatic hydrocarbons (PAHs). A promising relation between the increasing toxicity and HMW PAH fraction indicates that increasing the fraction of HMW PAHs might be one of the main reasons for the weathering process to cause higher crude oil toxicity. These results could be used as a diagnostic tool to estimate the extent of weathering and toxicity of crude oil after spills.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/toxicidade , Petróleo/análise , Tempo (Meteorologia) , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Environ Toxicol Chem ; 42(11): 2389-2399, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477490

RESUMO

Polycyclic aromatic compounds (PACs) present in the water column are considered to be one of the primary contaminant groups contributing to the toxicity of a crude oil spill. Because crude oil is a complex mixture composed of thousands of different compounds, oil spill models rely on quantitative structure-activity relationships like the target lipid model to predict the effects of crude oil exposure on aquatic life. These models rely on input provided by single species toxicity studies, which remain insufficient. Although the toxicity of select PACs has been well studied, there is little data available for many, including transformation products such as oxidized hydrocarbons. In addition, the effect of environmental influencing factors such as temperature on PAC toxicity is a wide data gap. In response to these needs, in the present study, Stage I lobster larvae were exposed to six different understudied PACs (naphthalene, fluorenone, methylnaphthalene, phenanthrene, dibenzothiophene, and fluoranthene) at three different relevant temperatures (10, 15, and 20 °C) all within the biological norms for the species during summer when larval releases occur. Lobster larvae were assessed for immobilization as a sublethal effect and mortality following 3, 6, 12, 24, and 48 h of exposure. Higher temperatures increased the rate at which immobilization and mortality were observed for each of the compounds tested and also altered the predicted critical target lipid body burden, incipient median lethal concentration, and elimination rate. Our results demonstrate that temperature has an important influence on PAC toxicity for this species and provides critical data for oil spill modeling. More studies are needed so oil spill models can be appropriately calibrated and to improve their predictive ability. Environ Toxicol Chem 2023;42:2389-2399. © 2023 SETAC.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Químicos da Água , Animais , Larva , Nephropidae , Temperatura , Compostos Policíclicos/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Compostos Orgânicos/farmacologia , Petróleo/toxicidade , Poluição por Petróleo/análise , Lipídeos
9.
Food Chem ; 428: 136763, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421662

RESUMO

Nine different black garlic samples aged at varying temperatures and durations were added to the patties at 0.5% and 1% ratios and compared with raw garlic in terms of polycyclic aromatic hydrocarbons (PAHs) formation. The results showed that black garlic caused a reduction in the patties' content of ∑PAH8 by 38.17% to 94.12% compared to raw garlic, with the highest reduction percent in the patties fortified with 1% black garlic aged at 70 °C for 45 days. Beef patties fortified with black garlic reduced human exposure to PAHs from beef patties (from 1.66E to 01 to 6.04E-02 ng-TEQBaP kg-1 bw per day). The negligible cancer risk associated with exposure to PAHs through the consumption of beef patties was confirmed by very low ILCR (incremental lifetime cancer risk) values of 5.44E-14 and 4.75E-12. Finally, patty fortification with black garlic could be suggested as an effective way to reduce PAHs formation and exposure from patties.


Assuntos
Alho , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Animais , Bovinos , Humanos , Idoso , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Temperatura , Medição de Risco , Monitoramento Ambiental
10.
Mutagenesis ; 38(4): 238-249, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37232551

RESUMO

Biofuel is an attractive substitute for petrodiesel because of its lower environmental footprint. For instance, the polycyclic aromatic hydrocarbons (PAH) emission per fuel energy content is lower for rapeseed methyl ester (RME) than for petrodiesel. This study assesses genotoxicity by extractable organic matter (EOM) of exhaust particles from the combustion of petrodiesel, RME, and hydrogenated vegetable oil (HVO) in lung epithelial (A549) cells. Genotoxicity was assessed as DNA strand breaks by the alkaline comet assay. EOM from the combustion of petrodiesel and RME generated the same level of DNA strand breaks based on the equal concentration of total PAH (i.e. net increases of 0.13 [95% confidence interval (CI): 0.002, 0.25, and 0.12 [95% CI: 0.01, 0.24] lesions per million base pairs, respectively). In comparison, the positive control (etoposide) generated a much higher level of DNA strand breaks (i.e. 0.84, 95% CI: 0.72, 0.97) lesions per million base pairs. Relatively low concentrations of EOM from RME and HVO combustion particles (<116 ng/ml total PAH) did not cause DNA strand breaks in A549 cells, whereas benzo[a]pyrene and PAH-rich EOM from petrodiesel combusted using low oxygen inlet concentration were genotoxic. The genotoxicity was attributed to high molecular weight PAH isomers with 5-6 rings. In summary, the results show that EOM from the combustion of petrodiesel and RME generate the same level of DNA strand breaks on an equal total PAH basis. However, the genotoxic hazard of engine exhaust from on-road vehicles is lower for RME than petrodiesel because of lower PAH emission per fuel energy content.


Assuntos
Poluentes Atmosféricos , Brassica napus , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Células A549 , Ésteres , Material Particulado/toxicidade , Testes de Mutagenicidade/métodos , Dano ao DNA , Óleos de Plantas/toxicidade , DNA , Pulmão , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
11.
Aquat Toxicol ; 259: 106518, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030101

RESUMO

Laboratory preparation of aqueous test media is a critical step in developing toxicity information needed for oil spill response decision-making. Multiple methods have been used to prepare physically and chemically dispersed oils which influence test outcome, interpretation, and utility for hazard assessment and modeling. This paper aims to review media preparation strategies, highlight advantages and limitations, provide recommendations for improvement, and promote the standardization of methods to better inform assessment and modeling. A benefit of media preparation methods for oil that rely on low to moderate mixing energy coupled with a variable dilution design is that the dissolved oil composition of the water accommodation fraction (WAF) stock is consistent across diluted treatments.  Further, analyses that support exposure confirmation maybe reduced and reflect dissolved oil exposures that are bioavailable and amenable to toxicity modeling.  Variable loading tests provide a range of dissolved oil compositions that require analytical verification at each oil loading. Regardless of test design, a preliminary study is recommended to optimize WAF mixing and settling times to achieve equilibrium between oil and test media. Variable dilution tests involving chemical dispersants (CEWAF) or high energy mixing (HEWAF) can increase dissolved oil exposures in treatment dilutions due to droplet dissolution when compared to WAFs. In contrast, HEWAF/CEWAFs generated using variable oil loadings are expected to provide dissolved oil exposures more comparable to WAFs. Preparation methods that provide droplet oil exposures should be environmentally relevant and informed by oil droplet concentrations, compositions, sizes, and exposure durations characteristic of field spill scenarios. Oil droplet generators and passive dosing techniques offer advantages for delivering controlled constant or dynamic dissolved exposures and larger volumes of test media for toxicity testing. Adoption of proposed guidance for improving media preparation methods will provide greater comparability and utility of toxicity testing in oil spill response and assessment.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/toxicidade , Petróleo/análise , Poluentes Químicos da Água/toxicidade , Óleos , Poluição por Petróleo/análise , Água/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
12.
Mar Pollut Bull ; 190: 114843, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965263

RESUMO

Atlantic haddock (Melanogrammus aeglefinus) embryos bind dispersed crude oil droplets to the eggshell and are consequently highly susceptible to toxicity from spilled oil. We established thresholds for developmental toxicity and identified any potential long-term or latent adverse effects that could impair the growth and survival of individuals. Embryos were exposed to oil for eight days (10, 80 and 300 µg oil/L, equivalent to 0.1, 0.8 and 3.0 µg TPAH/L). Acute and delayed mortality were observed at embryonic, larval, and juvenile stages with IC50 = 2.2, 0.39, and 0.27 µg TPAH/L, respectively. Exposure to 0.1 µg TPAH/L had no negative effect on growth or survival. However, yolk sac larvae showed significant reduction in the outgrowth (ballooning) of the cardiac ventricle in the absence of other extracardiac morphological defects. Due to this propensity for latent sublethal developmental toxicity, we recommend an effect threshold of 0.1 µg TPAH/L for risk assessment models.


Assuntos
Gadiformes , Hidrocarbonetos Aromáticos , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Animais , Petróleo/toxicidade , Petróleo/análise , Gadiformes/metabolismo , Larva/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/análise
13.
Mar Pollut Bull ; 189: 114786, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36893648

RESUMO

This investigation deals with how temperature influences oil toxicity, alone or combined with dispersant (D). Larval lengthening, abnormalities, developmental disruption, and genotoxicity were determined in sea urchin embryos for assessing toxicity of low-energy water accommodated fractions (LEWAF) of three oils (NNA crude oil, marine gas oil -MGO-, and IFO 180 fuel oil) produced at 5-25 °C. PAH levels were similar amongst LEWAFs but PAH profiles varied with oil and production temperature. The sum of PAHs was higher in oil-dispersant LEWAFs than in oil LEWAFs, most remarkably at low production temperatures in the cases of NNA and MGO. Genotoxicity, enhanced after dispersant application, varied depending on the LEWAF production temperature in a different way for each oil. Impaired lengthening, abnormalities and developmental disruption were recorded, the severity of the effects varying with oil, dispersant application and LEWAF production temperature. Toxicity, only partially attributed to individual PAHs, was higher at lower LEWAF production temperatures.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Temperatura , Óxido de Magnésio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Óleos , Petróleo/toxicidade , Alimentos Marinhos , Ouriços-do-Mar , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água
14.
Aquat Toxicol ; 257: 106444, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36848692

RESUMO

The toxicity of the polycyclic aromatic hydrocarbons (PAHs) in Deepwater Horizon (DWH) oil is well-established, but a knowledge gap exists regarding how this combination of PAHs affects the vertebrate stress axis. We hypothesized that (1) marine vertebrates exposed to DWH PAHs experience stress axis impairment, and co-exposure to an additional chronic stressor may exacerbate these effects, (2) serotonin (5-hydroxytryptamine; 5-HT) may act as a secondary cortisol secretagogue in DWH PAH-exposed fish to compensate for impairment, and (3) the mechanism of stress axis impairment may involve downregulation of cyclic adenosine monophosphate (cAMP; as proxy for melanocortin 2 receptor (MC2R) functionality), total cholesterol, and/or mRNA expression of CYP1A and steroidogenic proteins StAR, P450scc, and 11ß-h at the level of the kidney. We found that in vivo plasma cortisol and plasma adrenocorticotropic hormone (ACTH) concentrations in Gulf toadfish exposed to an environmentally relevant DWH PAH concentration (ΣPAH50= 4.6 ± 1.6 µg/L) for 7 days were not significantly different from controls, whether fish were chronically stressed or not. However, the rate of cortisol secretion by isolated kidneys after acute stimulation with ACTH was significantly lower in PAH-exposed toadfish compared to clean seawater (SW) controls. 5-HT does not appear to be acting as a secondary cortisol secretagogue, rather, PAH-exposed + stressed toadfish exhibited significantly lower plasma 5-HT concentrations than clean SW + stressed fish as well as a reduced sensitivity to 5-HT at the level of the kidney. There was a tendency for kidney cAMP concentrations to be lower in PAH-exposed fish (p = 0.069); however, mRNA expression of steroidogenic proteins between control and PAH-exposed toadfish were not significantly different and a significant elevation in total cholesterol concentration in PAH-exposed toadfish compared to controls was measured. Future work is needed to establish whether the slower cortisol secretion rate by isolated kidneys of PAH-exposed fish is detrimental, to determine the potential role of other secretagogues in compensating for the impaired kidney interrenal cell function, and to determine whether there is a reduction in MC2R mRNA expression or an impairment in the function of steroidogenic proteins.


Assuntos
Batracoidiformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Hidrocortisona , Petróleo/toxicidade , Serotonina , Secretagogos , Poluentes Químicos da Água/toxicidade , Hormônio Adrenocorticotrópico , Batracoidiformes/metabolismo , RNA Mensageiro/metabolismo , Colesterol , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
15.
Environ Sci Process Impacts ; 25(3): 594-608, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36727431

RESUMO

Tricyclic polycyclic aromatic hydrocarbons (PAHs) are believed to be the primary toxic components of crude oil. Such compounds including phenanthrene are known to have direct effects on cardiac tissue, which lead to malformations during organogenesis in early life stage fish. We tested a suite of 13 alkyl-phenanthrenes to compare uptake and developmental toxicity in early life stage haddock (Melanogrammus aeglefinus) embryos during gastrulation/organogenesis beginning at 2 days post fertilization via passive dosing. The alkyl-phenanthrenes were tested at their solubility limits, and three of them also at lower concentrations. Measured body burdens were linearly related to measured water concentrations. All compounds elicited one or more significant morphological defects or functional impairment, such as decreased length, smaller eye area, shorter jaw length, and increased incidence of body axis deformities and eye deformities. The profile of developmental toxicities appeared unrelated to the position of alkyl substitution, and gene expression of cytochrome 1 a (cyp1a) was low regardless of alkylation. Mortality and sublethal effects were observed below the expected range for baseline toxicity, thus indicating excess toxicity. Additionally, PAH concentrations that resulted in toxic effects here were far greater than when measured in whole crude oil exposures that cause toxicity. This work demonstrates that, while these phenanthrenes are toxic to early life stage fish, they cannot individually account for most of the developmental toxicity of crude oil, and that other compounds and/or mixture effects should be given more consideration.


Assuntos
Petróleo , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Peixes/metabolismo , Fenantrenos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Petróleo/análise , Embrião não Mamífero
16.
J Hazard Mater ; 441: 129792, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36084470

RESUMO

Cooking Oil Fumes (COFs) contain carcinogenic organic substances such as polycyclic aromatic hydrocarbons (PAHs) and heterocyclic amines (HCAs), of which 2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) is known as mainly meat-borne carcinogens. In this work, to identify the mechanisms to induce the inflammation response in human lung cells (A549) exposed to COFs, we investigated the physicochemical and biological characteristics of COFs generated with PhIP precursors (L-phenylalanine, creatinine, and glucose) at high cooking temperatures (300 °C and 600 °C). Interestingly, we found that PhIP was not formed both at 300 °C and 600 °C, while a large number of carbon nanoparticles were generated from soybean oil containing the PhIP precursors at 600 °C. From the biological analysis, COFs generated with the PhIP precursors at 600 °C induced the most significant pro-inflammatory cytokine (IL-6). This result indicates that the particulate matter in COFs generated with the PhIP precursors above the smoke temperature is the primary factor directly affecting the lung inflammatory response rather than PhIP. This study demonstrates for the first time a novel principle of the inflammatory response that the PhIP precursors can aggravate lung injury by affecting the physical properties of COFs depending on cooking temperature. Therefore, our finding is a significant result of overcoming the bias in previous studies focusing only on the chemical toxicity of PhIP in the inflammatory response of COFs.


Assuntos
Material Particulado , Hidrocarbonetos Policíclicos Aromáticos , Aminas/análise , Carbono/análise , Carcinógenos/análise , Culinária , Creatinina/análise , Glucose , Humanos , Inflamação/induzido quimicamente , Interleucina-6 , Pulmão , Carne/análise , Material Particulado/análise , Material Particulado/toxicidade , Fenilalanina , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fumaça/análise , Óleo de Soja/análise , Temperatura
17.
Mar Pollut Bull ; 184: 114143, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36182786

RESUMO

Coral reef ecosystems in the Persian Gulf are frequently exposed to crude oil spills. We investigated benthic bacterial and eukaryote community structures at such coral reef sites subjected to different degrees of polycyclic aromatic hydrocarbon (PAH) pollution using environmental DNA (eDNA) metabarcoding. Both bacterial and eukaryote communities responded with pronounced shifts to crude oil pollution and distinguished control sites, moderately and heavily impacted sites with significant confidentiality. The observed community patterns were predominantly driven by Alphaproteobacteria and metazoans. Among these, we identified individual genera that were previously linked to oil spill stress, but also taxa, for which a link to hydrocarbon still remains to be established. Considering the lack of an early-warning system for the environmental status of coral reef ecosystems exposed to frequent crude-oil spills, our results encourage further research towards the development of an eDNA-based biomonitoring tool that exploits benthic bacterial and eukaryote communities as bioindicators.


Assuntos
Antozoários , DNA Ambiental , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Animais , Recifes de Corais , Poluição por Petróleo/análise , Petróleo/toxicidade , Eucariotos , Ecossistema , Oceano Índico , Biomarcadores Ambientais , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Bactérias/genética , Hidrocarbonetos
18.
Environ Res ; 215(Pt 2): 114383, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150442

RESUMO

The Songshan Lake Science and Technology Industrial Park is a national economic transition demonstration area, which centers at a traditional industrial region, in Dongguan, China. We were interested in the involved atmospheric particulates-bound PAHs regarding their sources, cancer risk, and related cellular toxicity for those in other areas under comparable conditions. In this study, the daily concentrations of TSP, PM10, and PM2.5 were averaged 127.95, 95.91, and 67.62 µg/m3, and the bound PAHs were averaged 1.31, 1.22, and 0.77 ng/m3 in summer and 12.72, 20.51 and 40.27 ng/m3 in winter, respectively. The dominant PAHs were those with 5-6 rings, and 4-6 rings in summer and winter, respectively. The incremental lifetime cancer risk (ILCR) (90th percentile probability) of total PAHs was above 1.00E-06 in each age group, particularly high in adolescents. Sensitivity analysis indicated that slope factor and body weight had greater impact than exposure duration and inhalation rate on the ILCR. Moreover, treatment of human bronchial epithelial BEAS-2B cells with mixed five indicative PAHs increased the formation of ROS, DNA damage (elevation in γ-H2AX), and protein levels of CAR, PXR, CYP1A1, 1A2, 1B1, while reduced the AhR protein, with the winter mixture more potent than summer. For the sources of PAHs, the stable carbon isotope ratio analysis and diagnostic ratios consistently pointed to petroleum and fossil fuel combustion as major sources. In conclusion, our findings suggest that particulates-bound PAHs deserve serious concerns for a cancer risk in such environment, and the development of new power sources for reducing fossil fuel combustion is highly encouraged.


Assuntos
Poluentes Atmosféricos , Neoplasias , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Adolescente , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Isótopos de Carbono , China , Carvão Mineral/análise , Citocromo P-450 CYP1A1 , Poeira/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Espécies Reativas de Oxigênio/análise , Medição de Risco , Rios , Estações do Ano
19.
J Hazard Mater ; 440: 129635, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027742

RESUMO

The manuscript presents an innovative and holistic approach to quantifying PAHs and BTEX emissions from the grilling process and indicates a novel driven-toxicity-based solution to recognize health effects related to BBQ emissions. The exposure scenario includes the type of grilling device, food type, and individual attitudes, but also a keen understanding of the broad health implications related to the gaseous/particulate PAHs emission, or age-related effects. The calculated incremental lifetime cancer risk (ILCR) associated with the exposure to PAH congeners and BTEX indicates an unacceptable level in the case of charcoal and briquette grilling with the highest values for professional cooks. The sum of 15 PAH concentrations in grilled foods was highest for meat grilling over charcoal briquettes - 382,020.39 ng/m3 and lowest for meat grilling on a gas grill - 1442.16 ng/m3. The emissions of BTEX from lump charcoal grilling were 130 times higher compared to the gaseous grill. In all considered scenarios lump-charcoal and charcoal briquettes grilling derive the ILCR above the 10-4, indicating negative effects of traditional grills on human health. The paper completes knowledge of wide-ranging health implications associated with BBQs, a topic that is almost completely unaddressed among the scientific community and policymakers.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carvão Vegetal/análise , Culinária , Gases , Humanos , Exposição por Inalação/análise , Carne/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco
20.
Ecotoxicology ; 31(7): 1057-1067, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35982347

RESUMO

Perfluoroalkyl substances (PFAS) are highly persistent organic pollutants that have been detected in a wide array of environmental matrices and, in turn, diverse biota including humans and wildlife wherein they have been associated with a multitude of toxic, and otherwise adverse effects, including ecosystem impacts. In the present study, we developed a toxicity assay for embryonic stages of mahi-mahi (Coryphaena hippurus), as an environmentally relevant pelagic fish species, and applied this assay to the evaluation of the toxicity of "legacy" and "next-generation" PFAS including, respectively, perfluorooctanoic acid (PFOA) and several perfluoroethercarboxylic acids (PFECA). Acute embryotoxicity, in the form of lethality, was measured for all five PFAS toward mahi-mahi embryos with median lethal concentrations (LC50) in the micromolar range. Consistent with studies in other similar model systems, and specifically the zebrafish, embryotoxicity in mahi-mahi generally (1) correlated with fluoroalkyl/fluoroether chain length and hydrophobicity, i.e., log P, of PFAS, and thus, aligned with a role of uptake in the relative toxicity; and (2) increased with continuous exposure, suggesting a possible role of development stage specifically including a contribution of hatching (and loss of protective chorion) and/or differentiation of target systems (e.g., liver). Compared to prior studies in the zebrafish embryo model, mahi-mahi was significantly more sensitive to PFAS which may be related to differences in either exposure conditions (e.g., salinity) and uptake, or possibly differential susceptibility of relevant targets, for the two species. Moreover, when considered in the context of the previously reported concentration of PFAS within upper sea surface layers, and co-localization of buoyant eggs (i.e., embryos) and other early development stages (i.e., larvae, juveniles) of pelagic fish species to the sea surface, the observed toxicity potentially aligns with environmentally relevant concentrations in these marine systems. Thus, impacts on ecosystems including, in particular, population recruitment are a possibility. The present study is the first to demonstrate embryotoxicity of PFAS in a pelagic marine fish species, and suggests that mahi-mahi represents a potentially informative, and moreover, environmentally relevant, ecotoxicological model for PFAS in marine systems.


Assuntos
Fluorocarbonos , Perciformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Ecossistema , Fluorocarbonos/toxicidade , Humanos , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA