Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nutrients ; 16(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398831

RESUMO

The healthy properties of pomegranate fruit, a highly consumed food, have been known for a long time. However, the pomegranate supply chain is still rather inefficient, with the non-edible fraction, whose weight is roughly half the total and is endowed with plenty of valuable bioactive compounds, either disposed of or underutilized. A novel extract obtained from non-edible byproducts (called PPE), using hydrodynamic cavitation, a green, efficient, and scalable technique, was investigated for its cardiovascular effects in vivo. PPE showed efficacy in an acute phenylephrine (PE)-induced hypertensive rat model, similar to the extract of whole fruit (PFE) obtained using the same extractive technique, along with good intestinal bioaccessibility after oral administration. Finally, when chronically administered for 6 weeks to spontaneously hypertensive rats, PPE was shown to significantly contain the increase in systolic blood pressure, comparable to the reference drug Captopril, and at a dose remarkably lower than the reported effective dose of ellagic acid. The extract from the non-edible fraction of the pomegranate fruit also showed good anti-inflammation and anti-fibrotic effects. The findings of this study, along with the extraction technique, could contribute to enhancing the value of the pomegranate supply chain, relieve the related environmental burden, and potentially improve public health.


Assuntos
Lythraceae , Punica granatum , Ratos , Animais , Extratos Vegetais/farmacologia , Hidrodinâmica , Frutas , Ratos Endogâmicos SHR
2.
Biotechnol J ; 19(2): e2300384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403465

RESUMO

A new biomanufacturing platform combining intracellular metabolic engineering of the oleaginous yeast Yarrowia lipolytica and extracellular bioreaction engineering provides efficient bioconversion of plant oils/animal fats into high-value products. However, predicting the hydrodynamics and mass transfer parameters is difficult due to the high agitation and sparging required to create dispersed oil droplets in an aqueous medium for efficient yeast fermentation. In the current study, commercial computational fluid dynamic (CFD) solver Ansys CFX coupled with the MUSIG model first predicts two-phase system (oil/water and air/water) mixing dynamics and their particle size distributions. Then, a three-phase model (oil, air, and water) utilizing dispersed air bubbles and a polydispersed oil phase was implemented to explore fermenter mixing, gas dispersion efficiency, and volumetric mass transfer coefficient estimations (kL a). The study analyzed the effect of the impeller type, agitation speed, and power input on the tank's flow field and revealed that upward-pumping pitched blade impellers (PBI) in the top two positions (compared to Rushton-type) provided advantageous oil phase homogeneity and similar estimated kL a values with reduced power. These results show good agreement with the experimental mixing and kL a data.


Assuntos
Reatores Biológicos , Hidrodinâmica , Animais , Fermentação
3.
Sci Total Environ ; 917: 170489, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301785

RESUMO

Estuaries receive substantial amounts of terrestrial dissolved organic nitrogen (tDON), which will be transported from the freshwater to the oceanic terminus through vigorous exchange processes. However, the intricate migration and transformation dynamics of tDON during this transportation, particularly at a molecular level, remain constrained. To address this knowledge gap, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used for the analysis of DON molecular composition in the Pearl River Estuary (PRE), a river-dominated estuarine system influenced by intensified anthropogenic activities in southern China. The results showed a pronounced spatial-temporal variation in DON concentration in the study area. At the molecular level, tDON exhibited reduced unsaturation and aromaticity, coupled with an elevated abundance of DON compounds containing one­nitrogen atom (1 N-DON, 53.17 %) and compounds containing carbon, hydrogen, oxygen, nitrogen, and sulfur (CHONS) (27.46 %). It was evident that lignin was depleted while more oxygenated tannin compounds were generated in the freshwater-seawater mixing zone. This transformation is attributed to heightened biological activities, likely influenced by the priming effect of terrestrial nutrient inputs. In summer, the prevailing plume combined with biological activities in the strong mixing area and outer estuary increased the abundance of 3 N-DON molecules and a concurrent rise in the abundance of DON compounds containing only carbon, hydrogen, oxygen, and nitrogen (CHON), DON compounds containing carbon, hydrogen, oxygen, nitrogen, sulfur, and phosphorus (CHONSP), and CHONS. This trend also underscores the expanding role of marine plankton and microbes in the utilization of DON compounds containing carbon, hydrogen, oxygen, nitrogen, and phosphorus (CHONP). These findings provide details of tDON transformation processes at the molecular level in a river-dominated estuary and underline the estuarine hydrodynamics involved in transporting and altering DON within the estuary.


Assuntos
Matéria Orgânica Dissolvida , Hidrodinâmica , Nitrogênio/análise , Rios , Estuários , Carbono/análise , Oxigênio/análise , Enxofre/análise , Hidrogênio/análise , Fósforo/análise
4.
Bioinspir Biomim ; 19(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211351

RESUMO

Scyphomedusae are widespread in the oceans and their swimming has provided valuable insights into the hydrodynamics of animal propulsion. Most of this research has focused on symmetrical, linear swimming. However, in nature, medusae typically swim circuitous, nonlinear paths involving frequent turns. Here we describe swimming turns by the scyphomedusaAurelia auritaduring which asymmetric bell margin motions produce rotation around a linearly translating body center. These jellyfish 'skid' through turns and the degree of asynchrony between opposite bell margins is an approximate predictor of turn magnitude during a pulsation cycle. The underlying neuromechanical organization of bell contraction contributes substantially to asynchronous bell motions and inserts a stochastic rotational component into the directionality of scyphomedusan swimming. These mechanics are important for natural populations because asynchronous bell contraction patterns are commonin situand result in frequent turns by naturally swimming medusae.


Assuntos
Cifozoários , Natação , Animais , Fenômenos Biomecânicos , Movimento (Física) , Hidrodinâmica
5.
Artigo em Chinês | MEDLINE | ID: mdl-37549945

RESUMO

Objective:The nasal swell body(NSB) consists of the nasal septal cartilage, nasal bone, and swollen soft tissue, all of which are visible during endoscopic and imaging examinations. Although the function of the NSB remains uncertain, there is evidence to suggest that it plays a vital role in regulating nasal airflow and filtering inhaled air. Based on anatomical and histological evidence, it is hypothesized that the NSB is indispensable in these processes. This study aims to investigate the impact of NSB on nasal aerodynamics and the deposition of allergen particles under physiological conditions. Methods:The three-dimensional (3D) nasal models were reconstructed from computed tomography (CT) scans of the paranasal sinus and nasal cavity in 30 healthy adult volunteers from Northwest China, providing basis for the construction of models without NSB following virtual NSB-removal surgery. To analyze the distribution of airflow in the nasal cavity, nasal resistance, heating and humidification efficiency, and pollen particle deposition rate at various anatomical sites, we employed the computed fluid dynamics(CFD) method for numerical simulation and quantitative analysis. In addition, we created fully transparent segmented nasal cavity models through 3D printing, which were used to conduct bionic experiments to measure nasal resistance and allergen particle deposition. Results:①The average width and length of the NSB in healthy adults in Northwest China were (12.85±1.74) mm and (28.30±1.92) mm, respectively. ②After NSB removal, there was no significant change in total nasal resistance, and cross-sectional airflow velocity remained essentially unaltered except for a decrease in topical airflow velocity in the NSB plane. ③There was no discernible difference in the nasal heating and humidification function following the removal of the NSB; ④After NSB removal, the deposition fraction(DF) of Artemisia pollen in the nasal septum decreased, and the DFs post-and pre-NSB removal were(22.79±6.61)% vs (30.70±12.27)%, respectively; the DF in the lower airway increased, and the DFs post-and pre-NSB removal were(24.12±6.59)% vs (17.00±5.57)%, respectively. Conclusion:This study is the first to explore the effects of NSB on nasal airflow, heating and humidification, and allergen particle deposition in a healthy population. After NSB removal from the healthy nasal cavities: ①nasal airflow distribution was mildly altered while nasal resistance showed no significantly changed; ②nasal heating and humidification were not significantly changed; ③the nasal septum's ability to filter out Artemisia pollen was diminished, which could lead to increased deposition of Artemisia pollen in the lower airway.


Assuntos
Artemisia , Cavidade Nasal , Adulto , Humanos , Estudos Transversais , Cavidade Nasal/cirurgia , Alérgenos , Pólen , Hidrodinâmica
6.
Clin Ter ; 174(3): 224-230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37199354

RESUMO

Clinical case: A 49-year-old man (MM72) affected by Secondary Progressive Multiple Sclerosis (SP-MS) since 1998. On last 3 years, neurologists valued 9.0 the patient MM72's EDSS. Methods: MM72 was treated by acoustic waves, modulated in frequency and power by the MAM device, according to an ambulatory intensive protocol. Patient's treatments schedule was organized in thirty cycles of DrenoMAM and AcuMAM, and manual cervical spinal adjustments. Before and after treatments, MSIS-29, Barthel, FIM, EDSS, ESS, and FSS questionnaires were administered to the patient. Results: MM72 patient had improvements in all index score (MSIS-29, Barthel, FIM, EDSS, ESS and FSS) after 30 treatments by MAM plus cervical spine chiropractic adjustments. He showed a significative improvement of his disability and the restore of many functions. After MAM treatments, MM72's cognitive sphere improved of 370%. Fur-thermore, after 5 years of paraplegy, he regained his lower limbs and feet fingers movements with an increase of 230%. Conclusion: We suggest ambulatory intensive treatments by fluid dynamic MAM protocol in SP-MS patients. Statistical analyses are in progress on a larger sample of SP-MS patients.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Masculino , Humanos , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/terapia , Esclerose Múltipla/terapia , Esclerose Múltipla/tratamento farmacológico , Qualidade de Vida , Hidrodinâmica , Inquéritos e Questionários
7.
Bioresour Technol ; 377: 128932, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940872

RESUMO

The effect of hydrodynamic cavitation (HC) and the manner it affects the biodegradability of herbal waste suspended on municipal wastewater subjected to mechanical pre-treatment was examined in this paper. The HC was performed at an optimal inlet pressure equal to 3.5 bar and with the cavitation number of 0.11; the number of recirculation passes through the cavitation zone amounted to 30.5. The BOD5/COD ratio was enhanced by more than 70% between the 5th and 10th minute of the process, indicating the enhanced biodegradability of herbal waste shortly. Fiber component analysis, FT-IR/ATR, TGA and SEM analysis were conducted to check the findings and to demonstrate changes in the chemical and morphological structure of herbal waste. It confirmed that hydrodynamic cavitation visibly influenced the herbal composition and their structural morphology, decreased hemicellulose, cellulose and lignin content, but did not form the by-products affecting the subsequent biological treatment of herbal waste.


Assuntos
Celulose , Sonicação , Espectroscopia de Infravermelho com Transformada de Fourier , Lignina , Águas Residuárias , Hidrodinâmica
8.
PLoS One ; 18(1): e0279102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649249

RESUMO

Hydrodynamic focusing capable of readily producing and controlling laminar flow facilitates drug treatment of cells in existing microfluidic culture devices. However, to expand applications of such devices to multiparameter drug testing, critical limitations in current hydrodynamic focusing microfluidics must be addressed. Here we describe hydrodynamic focusing and shifting as an advanced microfluidics tool for spatially selective drug delivery and integrative cell-based drug testing. We designed and fabricated a co-flow focusing, three-channel microfluidic device with a wide cell culture chamber. By controlling inlet flow rates of sample and two side solutions, we could generate hydrodynamic focusing and shifting that mediated precise regulation of the path and width of reagent and drug stream in the microfluidic device. We successfully validated a hydrodynamic focusing and shifting approach for spatially selective delivery of DiI, a lipophilic fluorophore, and doxorubicin, a chemotherapeutic agent, to tumor cells in our device. Moreover, subsequent flowing of a trypsin EDTA solution over the cells that were exposed to doxorubicin flow allowed us to selectively collect the treated cells. Our approach enabled downstream high-resolution microscopy of the cell suspension to confirm the nuclear delivery of doxorubicin into the tumor cells. In the device, we could also evaluate in situ the cytotoxic effect of doxorubicin to the tumor cells that were selectively treated by hydrodynamic flow focusing and shifting. These results show that hydrodynamic focusing and shifting enable a fast and robust approach to spatially treat and then collect cells in an optimized microfluidic device, offering an integrative assay tool for efficient drug screening and discovery.


Assuntos
Hidrodinâmica , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Corantes Fluorescentes , Sistemas de Liberação de Medicamentos , Detecção do Abuso de Substâncias
9.
Mar Pollut Bull ; 186: 114377, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36493519

RESUMO

Deepwater hydrocarbon releases experience complex chemical and physical processes. To assess simplifications of these processes on model predictions, we present a sensitivity analysis using simulations for the Deepwater Horizon oil spill. We compare the buoyant multiphase plume metrics (trap height, rise time etc), the hydrocarbon mass flowrates at the near-field plume termination and their mass fractions dissolved in the water column and reaching the water surface. The baseline simulation utilizes a 19-component hydrocarbon model, live-fluid state equations, hydrate dynamics, and heat and mass transfer. Other simulations turn-off each of these processes, with the simplest one using inert oil and methane gas. Plume metrics are the least sensitive to the modeled processes and can be matched by adjusting the release buoyancy flux. The mass flowrate metrics are more sensitive. Both liquid- and gas-phase mass transfer should be modeled for accurate tracking of soluble components (e.g. C1 - C7 hydrocarbons) in the environment.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Hidrodinâmica , Poluentes Químicos da Água/análise , Poluição por Petróleo/análise , Termodinâmica , Água/análise , Fenômenos Químicos , Hidrocarbonetos/análise , Golfo do México , Petróleo/análise
10.
Int J Numer Method Biomed Eng ; 39(3): e3678, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36579792

RESUMO

We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our model accounts for the major feedback effects among the different processes that characterize the heart function, including electro-mechanical and mechano-electrical feedback as well as force-strain and force-velocity relationships. Moreover, it provides a three-dimensional representation of both the cardiac muscle and the hemodynamics, coupled in a fluid-structure interaction (FSI) model. By leveraging the multiphysics nature of the problem, we discretize it in time with a segregated electrophysiology-force generation-FSI approach, allowing for efficiency and flexibility in the numerical solution. We employ a monolithic approach for the numerical discretization of the FSI problem. We use finite elements for the spatial discretization of partial differential equations. We carry out a numerical simulation on a realistic human left heart model, obtaining results that are qualitatively and quantitatively in agreement with physiological ranges and medical images.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Hidrodinâmica , Humanos , Modelos Cardiovasculares , Coração/fisiologia , Valvas Cardíacas/fisiologia , Simulação por Computador , Miocárdio
11.
Artigo em Chinês | WPRIM | ID: wpr-982782

RESUMO

Objective:The nasal swell body(NSB) consists of the nasal septal cartilage, nasal bone, and swollen soft tissue, all of which are visible during endoscopic and imaging examinations. Although the function of the NSB remains uncertain, there is evidence to suggest that it plays a vital role in regulating nasal airflow and filtering inhaled air. Based on anatomical and histological evidence, it is hypothesized that the NSB is indispensable in these processes. This study aims to investigate the impact of NSB on nasal aerodynamics and the deposition of allergen particles under physiological conditions. Methods:The three-dimensional (3D) nasal models were reconstructed from computed tomography (CT) scans of the paranasal sinus and nasal cavity in 30 healthy adult volunteers from Northwest China, providing basis for the construction of models without NSB following virtual NSB-removal surgery. To analyze the distribution of airflow in the nasal cavity, nasal resistance, heating and humidification efficiency, and pollen particle deposition rate at various anatomical sites, we employed the computed fluid dynamics(CFD) method for numerical simulation and quantitative analysis. In addition, we created fully transparent segmented nasal cavity models through 3D printing, which were used to conduct bionic experiments to measure nasal resistance and allergen particle deposition. Results:①The average width and length of the NSB in healthy adults in Northwest China were (12.85±1.74) mm and (28.30±1.92) mm, respectively. ②After NSB removal, there was no significant change in total nasal resistance, and cross-sectional airflow velocity remained essentially unaltered except for a decrease in topical airflow velocity in the NSB plane. ③There was no discernible difference in the nasal heating and humidification function following the removal of the NSB; ④After NSB removal, the deposition fraction(DF) of Artemisia pollen in the nasal septum decreased, and the DFs post-and pre-NSB removal were(22.79±6.61)% vs (30.70±12.27)%, respectively; the DF in the lower airway increased, and the DFs post-and pre-NSB removal were(24.12±6.59)% vs (17.00±5.57)%, respectively. Conclusion:This study is the first to explore the effects of NSB on nasal airflow, heating and humidification, and allergen particle deposition in a healthy population. After NSB removal from the healthy nasal cavities: ①nasal airflow distribution was mildly altered while nasal resistance showed no significantly changed; ②nasal heating and humidification were not significantly changed; ③the nasal septum's ability to filter out Artemisia pollen was diminished, which could lead to increased deposition of Artemisia pollen in the lower airway.


Assuntos
Adulto , Humanos , Estudos Transversais , Cavidade Nasal/cirurgia , Alérgenos , Pólen , Artemisia , Hidrodinâmica
12.
Comput Methods Programs Biomed ; 227: 107223, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36370595

RESUMO

BACKGROUND AND OBJECTIVE: Nasal saline irrigation is a common therapy for inflammatory nasal and paranasal disease or for managing post nasal and sinus surgery recovery. Two common irrigation devices include the netipot and squeeze bottles, where anecdotally, these devices alleviate congestion, facial pain, and pressure. However, a quantitative evaluation of these devices' performance and the fluid dynamics responsible for the irrigation distribution through the nose is lacking. This study tracked the liquid surface coverage and wall shear stresses during nasal saline irrigation produced from a Neti Pot and squeeze bottle. METHODS: This study used transient computational fluid dynamics (CFD) simulations to investigate the saline irrigation flow field in a subject-specific sinonasal model. The computational nasal cavity model was constructed from a high-resolution computed tomography scan (CT). The irrigation procedure applied a head position tilted at 90° forward using an 80 ml squeeze bottle and 120 ml Neti Pot. RESULTS: The results from a single sinonasal model demonstrated that the Neti Pot irrigation was more effective in delivering saline solution to the nasal cavity on the contralateral side of irrigation due to typically larger volumes but at the expense of reduced flow and shearing rates, as the flow entered under gravitational forces. The squeeze bottle irrigation provided greater surface coverage on the side of irrigation. CONCLUSIONS: The results from the single patient model, demonstrated the Neti Pot increased surface coverage in the paranasal sinuses. Reducing the jet diameter may aid the direct targeting of a specific region at the side of irrigation by preventing the impingement of the jet to the nasal passage surface and redirection of the flow. Evaluating this performance across a wider cohort of patients can strengthen the findings.


Assuntos
Seios Paranasais , Solução Salina , Humanos , Irrigação Terapêutica/métodos , Seios Paranasais/cirurgia , Cavidade Nasal/diagnóstico por imagem , Hidrodinâmica
13.
Pharm Res ; 39(10): 2569-2584, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36056272

RESUMO

PURPOSE: Nasal saline irrigation is highly recommended in patients following functional endoscopic sinus surgery (FESS) to aid the postoperative recovery. Post-FESS patients have significantly altered anatomy leading to markedly different flow dynamics from those found in pre-op or non-diseased airways, resulting in unknown flow dynamics. METHODS: This work investigated how the liquid stream disperses through altered nasal cavities following surgery using Computational Fluid Dynamics (CFD). A realistic squeeze profile was determined from physical experiments with a 27-year-old male using a squeeze bottle with load sensors. The administration technique involved a head tilt of 45-degrees forward to represent a head position over a sink. After the irrigation event that lasted 4.5 s, the simulation continued for an additional 1.5 s, with the head orientation returning to an upright position. RESULTS: The results demonstrated that a large maxillary sinus ostium on the right side allows saline penetration into this sinus. The increased volume of saline entering the maxillary sinus limits the saline volume available to the rest of the sinonasal cavity and reduces the surface coverage of the other paranasal sinuses. The average wall shear stress was higher on the right side than on the other side for two patients. The results also revealed that head position alters the sinuses' saline residual, especially the frontal sinuses. CONCLUSION: While greater access to sinuses is achieved through FESS surgery, patients without a nasal septum limits posterior sinus penetration due to the liquid crossing over to the contralateral cavity and exiting the nasal cavity early.


Assuntos
Hidrodinâmica , Seios Paranasais , Adulto , Endoscopia/métodos , Humanos , Masculino , Cavidade Nasal , Lavagem Nasal/métodos , Seios Paranasais/cirurgia , Solução Salina
14.
Sci Total Environ ; 853: 158593, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36089027

RESUMO

Shallow lakes are greatly influenced by submerged aquatic vegetation (SAV), which affects hydraulic and water quality during their entire life cycle. An integrated model was developed based on the Environmental Fluid Dynamics Code (EFDC), which considers the dynamic bottom roughness and sediment release flux related to SAV growth and decomposition. Model results of hydrodynamics, water quality, and sediment-P release in Baiyangdian Lake (BL) were analyzed with and without the SAV module. The results showed that SAV played a critical and alterable role in regulating the internal loading in lakes. During the period of exponential growth, SAV reduced the velocity and sediment-P release in Zaozhadian by 20 % and 12 %, respectively. During the period of senescence, SAV reduced the velocity by 19 % and increased sediment-P release by 49 %, which was mainly attributed to dissolved oxygen (DO) consumption during residue decomposition. To mitigate the adverse effects of SAV on internal loading, measures should be taken to control the growth of SAV and ensure timely salvage before decomposition.


Assuntos
Ecossistema , Lagos , Lagos/química , Qualidade da Água , Hidrodinâmica , Oxigênio , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Fósforo/análise
15.
Appl Radiat Isot ; 189: 110404, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029641

RESUMO

Mixer-setters units are widely used in uranium purification processes. For efficient operations of mixer-settler units, it is essential to measure the hydrodynamics parameters of the different phases involved. The residence time distribution (RTD) measurement is commonly used method to estimate the hydrodynamics parameters of process reactors. In the present study, RTD of the aqueous phase was measured in different stages mixer-settler unit (mixers, settlers and mixer-settler units) used for stripping operation using Iodine-131 as a radiotracer. For the RTD measurements, radiotracer was injected as an impulse in aqueous phase feed line and its movement was monitored at different locations in the stripping unit using NaI(Tl) detectors. The mean residence times (MRTs) of the aqueous phase were estimated from measured RTD curves. For quantification of the degree of mixing, suitable flow models were proposed based on design and nature of the measured RTD curves and subsequently used for simulation. Based on the results of the RTD study, the mixing of aqueous phase was characterized and design of the stripping unit and its sub-units were validated. The optimum conditions were identified for efficient for the operation of the stripping unit.


Assuntos
Urânio , Simulação por Computador , Hidrodinâmica , Traçadores Radioativos , Água
16.
Water Sci Technol ; 86(3): 410-431, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960827

RESUMO

Hydraulic selection is a key feature of aerobic granular sludge (AGS) systems but existing aerobic granular sludge (AGS) models neglect those mechanisms: gradients over reactor height (Hreactor), selective removal of slow settling sludge, etc. This study aimed at evaluating to what extent integration of those additional processes into AGS models is needed, i.e., at demonstrating that model predictions (biomass inventory, microbial activities and effluent quality) are affected by such additional model complexity. We therefore developed a new AGS model that includes key features of full-scale AGS systems: fill-draw operation, selective sludge removal, distinct settling models for flocs/granules. We then compared predictions of our model to those of a fully mixed AGS model. Our results demonstrate that hydraulic selection can be predicted with an assembly of four continuous stirred tank reactors in series together with a correction code for plug-flow. Concentration gradients over the reactor height during settling/plug-flow feeding strongly impact the predictions of aerobic granular sludge models in terms of microbial selection, microbial activities and ultimately effluent quality. Hydraulic selection is a key to predict selection of storing microorganisms (phosphorus-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO)) and in turn effluent quality in terms of total phosphorus, and for predicting effluent solid concentration and dynamic during plug-flow feeding.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Hidrodinâmica , Fósforo
17.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3224-3232, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851115

RESUMO

The present study explored the correlation between the hydrodynamic size(i.e., hydrated particle size) and the surface component distribution of spray-dried powder based on the binary system model of berberine hydrochloride and dextran. A variety of mixture solutions containing substances of different proportions were prepared, and the hydrated particle sizes of the solutions were measured by laser light scattering technique. Then the effects of molecular weight and mixing proportion on the particle size were analyzed. After the solutions were spray-dried, the surface components of spray-dried powder were determined by X-ray photoelectron spectroscopy. The changes of hydrated particle size of the two substances in different solutions were measured with the altered solution environments, and the distribution of surface components after spray-drying was observed. The results of particle size measurement showed that different solution environments would change the hydrodynamic size of substances. Specifically, the particle size of berberine hydrochloride increased with the increase in ionic strength and solution pH, while the particle size of dextran decreased with the increase in ionic strength and increased with the increase in solution pH. The results of surface components of the spray-dried powder indicated that berberine hydrochloride was prone to accumulate on the surface of particles during spray-drying because of its large hydrodynamic size. Therefore, hydrodynamic size is considered an important factor affecting the surface component distribution of spray-dried powder. As revealed by scanning electron microscopy of the particle morphology of spray-dried powder, the particles of berberine hydrochloride spray-dried powder were irregularly elliptic, and the particles of dextran and mixture spray-dried powders were irregularly spherical with the shrunken surface. Finally, the FT4 powder rheometer and DVS instrument were used to determine the stability, adhesion, and hygroscopicity of the powder. The results showed that when berberine hydrochloride was enriched on the surface, the adhesion of the mixture increased and the fluidity became worse, but the hygroscopicity was improved to a certain extent. In addition, as found by hygroscopic kinetic curve fitting of spray-dried powder, the hygroscopic behaviors of all spray-dried powder conformed to the double exponential function.


Assuntos
Berberina , Administração por Inalação , Aerossóis/química , Dextranos , Inaladores de Pó Seco/métodos , Hidrodinâmica , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pós/química
18.
Environ Sci Pollut Res Int ; 29(32): 49465-49477, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35661300

RESUMO

In the present research work, the effect of operating parameters such as molar ratio (3:1-7:1), catalyst concentration (0.5-1.5%), reaction time (5-25 min), and operating pressure (0-4 bar) on the rate of biodiesel conversion percentage for the transesterification reaction using hydrodynamic cavitation (HC) has been studied. Response surface methodology (RSM) and genetic algorithms (GA) were used to find the best condition. The best conditions for biodiesel generation were a molar ratio of 6.5:1, a catalyst concentration of 1.301 wt.%, a reaction period of 11.5 min, and operating pressure of 3.6 bar. The maximum yield of biodiesel obtained under optimal conditions was 97.3%. The reaction time for biodiesel produced by HC under similar conditions as the conventional technique was reduced by 85%. The HC approach is preferable to the conventional method due to its shorter processing time.


Assuntos
Biocombustíveis , Microalgas , Algoritmos , Catálise , Esterificação , Hidrodinâmica , Óleos de Plantas
19.
PLoS One ; 17(5): e0267624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35584109

RESUMO

Propolis is produced by honeybees and used to seal their hives for defensive purposes and has been used in ethnopharmacology since ancient times. It is a lipophilic material containing a large collection of naturally produced plant organic molecules, including flavonoids. The flavonoid galangin is consistently found in propolis, independent of the hive geographical location and its X-ray crystal and molecular structure is reported. The antioxidant scavenging of superoxide by galangin and propolis is here presented. Using a cyclic voltammetry technique developed in our lab, we show that galangin is an excellent scavenger of the superoxide radical, perhaps even better than quercetin. Our results show that galangin displays a Superoxide Dismutase (SOD) function. This is described experimentally and theoretically (DFT). Two modes of scavenging superoxide are seen for galangin: (1) superoxide radical extraction of H atom from the hydroxyl moieties located in position 3 and 5 of galangin, which are also associated with proton incorporation defining the SOD action; (2) π-π interaction among several superoxide radicals and the galangin polyphenol ring that evolve towards release of O2 and H2O2. We describe these two actions separately as their relative sequence, and/or combination, cannot be defined; all these processes are thermodynamically spontaneous, or subjected to mild barriers.


Assuntos
Própole , Animais , Antioxidantes/farmacologia , Flavonoides/farmacologia , Hidrodinâmica , Peróxido de Hidrogênio , Própole/química , Superóxido Dismutase , Superóxidos , Raios X
20.
Sci Total Environ ; 835: 155415, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35469876

RESUMO

Trichosporon fermentans can be used to treat refined soybean oil wastewater (RSOW) and produce microbial lipids. Bioflocculation is an effective method to recover Trichosporon fermentans which accumulates intracellular oils from wastewater. During the flocculation, the hydrodynamic distribution and parameters in the reactor are important limiting factors of yeast flocculation performance. In a 0.25 L flocculation device, it was found that the appropriate range of turbulence kinetic energy was within 0.00065-0.00073 m2/s2, the dissipation rate was within 0.119-0.317 m2/s3, and the shear force was less than 0.433 Pa by computational fluid dynamics. In this case, the flocculation rate (Fr) of Trichosporon fermentans could reach more than 90%. The empirical formula associated Fr of Trichosporon fermentans with hydrodynamic parameters was obtained by Matlab, and improved in the enlargement of flocculation device, displaying an error of less than 3.03%. A conical draft tube airlift circulating reactor for flocculation was designed based on the empirical formula, and the Fr reached 91.3%. The study shows that it is feasible to predict Fr of Trichosporon fermentans according to hydrodynamic parameters by numerical simulation, and design the industrial reactor for flocculation harvesting yeasts. It is also helpful for large-scale treatment of RSOW in a safe environment.


Assuntos
Trichosporon , Águas Residuárias , Floculação , Geotrichum , Hidrodinâmica , Óleo de Soja
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA