Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 224(4): 782-91, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16622707

RESUMO

Pectin methylesterases (PME, EC. 3.1.1.11) are enzymes that demethylesterify plant cell wall pectins in muro. In Arabidopsis thaliana, putative PME proteins are thought to be encoded by a 66-member gene family. This study used real-time RT-PCR to gain an overview of the expression of the entire family at eight silique developmental stages, in flower buds and in vegetative tissue in the Arabidopsis. Only 15% of the PMEs were not expressed at any of the developmental stages studied. Among expressed PMEs, expression data could be clustered into five distinct groups: 19 PMEs highly or uniquely expressed in floral buds, 4 PMEs uniquely expressed at mid-silique developmental stages, 16 PMEs highly or uniquely expressed in silique at late developmental stages, 16 PMEs mostly ubiquitously expressed, and 1 PME with a specific expression pattern, i.e. not expressed during early silique development. Comparison of expression and phylogenetic profiles showed that, within phylogenetic group 2, all but one PME belong to the floral bud expression group. Similar results were shown for a subset of one of the phylogenetic group, which differed from others by containing most of the PMEs that do not possess any PRO part next to their catalytic part. Expression data were confirmed by two promoter:GUS transgenic plant analysis revealing a PME expressed in pollen and one in young seeds. Our results highlight the high diversity of PME expression profiles. They are discussed with regard to the role of PMEs in fruit development and cell growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/fisiologia , Hidrolases de Éster Carboxílico/biossíntese , Hidrolases de Éster Carboxílico/fisiologia , Parede Celular/metabolismo , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Pectinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/metabolismo
2.
Dev Biol ; 294(1): 83-91, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16564517

RESUMO

Pollen tube elongation in the pistil is a crucial step in the sexual reproduction of plants. Because the wall of the pollen tube tip is composed of a single layer of pectin and, unlike most other plant cell walls, does not contain cellulose or callose, pectin methylesterases (PMEs) likely play a central role in the pollen tube growth and determination of pollen tube morphology. Thus, the functional studies of pollen-specific PMEs, which are still in their infancy, are important for understanding the pollen development. We identified a new Arabidopsis pollen-specific PME, AtPPME1, characterized its native expression pattern, and used reverse genetics to demonstrate its involvement in determination of the shape of the pollen tube and the rate of its elongation.


Assuntos
Hidrolases de Éster Carboxílico/fisiologia , Flores/crescimento & desenvolvimento , Pólen/química , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis , Flores/citologia , Morfogênese , Filogenia , Fenômenos Fisiológicos Vegetais
3.
J Plant Physiol ; 163(5): 488-96, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16473653

RESUMO

Polygalacturonase (PG) and pectin methylesterase (PME) activities were analyzed in ripening fruits of two tabasco pepper (Capsicum frutescens) lines that differ in the extent of pectin degradation (depolymerization and dissolution). Ripe 'Easy Pick' fruit is characterized by pectin ultra-degradation and easy fruit detachment from the calyx (deciduous trait), while pectin depolymerization and dissolution in ripe 'Hard Pick' fruit is limited. PG activity in protein extracts increased similarly in both lines during fruit ripening. PME activity in vivo assessed by methanol production, however, was detected only in fruit of the 'Easy Pick' line and was associated with decreased pectin methyl-esterification. In contrast, methanol production in vivo was not detected in fruits of the 'Hard Pick' line and the degree of pectin esterification remained the same throughout ripening. Consequently, a ripening specific PME that is active in vivo appears to enhance PG-mediated pectin ultra-degradation resulting in cell wall dissolution and the deciduous fruit trait. PME activity in vitro, however, was detected in protein extracts from both lines at all ripening stages. This indicates that some PME isozymes are apparently inactive in vivo, particularly in green fruit and throughout ripening in the 'Hard Pick' line, limiting PG-mediated pectin depolymerization which results in moderately difficult fruit separation from the calyx.


Assuntos
Capsicum/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Pectinas/metabolismo , Poligalacturonase/metabolismo , Hidrolases de Éster Carboxílico/fisiologia , Esterificação , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/metabolismo , Metanol/metabolismo , Poligalacturonase/fisiologia
4.
Plant Cell ; 18(3): 665-75, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16473965

RESUMO

Triacylglycerol hydrolysis (lipolysis) plays a pivotal role in the life cycle of many plants by providing the carbon skeletons and energy that drive postgerminative growth. Despite the physiological importance of this process, the molecular mechanism is unknown. Here, a genetic screen has been used to identify Arabidopsis thaliana mutants that exhibit a postgerminative growth arrest phenotype, which can be rescued by providing sugar. Seventeen sugar-dependent (sdp) mutants were isolated, and six represent new loci. Triacylglycerol hydrolase assays showed that sdp1, sdp2, and sdp3 seedlings are deficient specifically in the lipase activity that is associated with purified oil bodies. Map-based cloning of SDP1 revealed that it encodes a protein with a patatin-like acyl-hydrolase domain. SDP1 shares this domain with yeast triacylglycerol lipase 3 and human adipose triglyceride lipase. In vitro assays confirmed that recombinant SDP1 hydrolyzes triacylglycerols and diacylglycerols but not monoacylglycerols, phospholipids, galactolipids, or cholesterol esters. SDP1 is expressed predominantly in developing seeds, and a SDP1-green fluorescent protein fusion was shown to associate with the oil body surface in vivo. These data shed light on the mechanism of lipolysis in plants and establish that a central component is evolutionarily conserved among eukaryotes.


Assuntos
Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/fisiologia , Germinação/fisiologia , Lipase/fisiologia , Óleos de Plantas/metabolismo , Sementes/enzimologia , Sequência de Aminoácidos , Arabidopsis/embriologia , Arabidopsis/genética , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Mapeamento Cromossômico , Clonagem Molecular , Hidrólise , Membranas Intracelulares/metabolismo , Lipase/química , Lipase/genética , Lipólise , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/análise , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura , Sementes/genética , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Especificidade por Substrato , Triglicerídeos/metabolismo
5.
Trends Plant Sci ; 6(9): 414-9, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11544130

RESUMO

Pectin methylesterases catalyse the demethylesterification of cell wall polygalacturonans. In dicot plants, these ubiquitous cell wall enzymes are involved in important developmental processes including cellular adhesion and stem elongation. Here, I highlight recent studies that challenge the accepted views of the mechanism and function of pectin methylesterases, including the co-secretion of pectins and pectin methylesterases into the apoplasm, new action patterns of mature pectin methylesterases and a possible function of the pro regions of pectin methylesterases as intramolecular chaperones.


Assuntos
Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/fisiologia , Pectinas/metabolismo , Fenômenos Fisiológicos Vegetais , Arabidopsis/química , Cálcio/farmacologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Parede Celular/química , Parede Celular/enzimologia , Complexo de Golgi/química , Complexo de Golgi/enzimologia , Modelos Moleculares , Chaperonas Moleculares/fisiologia , Família Multigênica , Pectinas/química , Conformação Proteica
6.
Insect Mol Biol ; 3(3): 143-8, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7894746

RESUMO

Biochemical and molecular studies have established that in the peach-potato aphid, Myzus persicae, insecticide resistance is conferred by amplification of genes encoding the insecticide-detoxifying esterases E4 or FE4. Here we report that two insecticide-resistant clones of the closely related tobacco aphid Myzus nicotianae have elevated esterases indistinguishable from E4 and FE4 and amplified esterase DNA sequences, and flanking regions, with identical restriction maps to the M. persicae genes. Furthermore, the DNA sequences of c. 630 bp fragments of the E4 and FE4 genes of M. persicae are different from each other but identical to the fragment from corresponding M. nicotianae clones. The existence of apparently identical insecticide resistance genes in the two species can be best explained by the selection of the amplified genes in M. persicae, transfer to hybrids of M. persicae and M. nicotianae by sexual reproduction and subsequent spread through M. nicotianae populations.


Assuntos
Afídeos/efeitos dos fármacos , Afídeos/enzimologia , Hidrolases de Éster Carboxílico/fisiologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Compostos Organofosforados , Animais , Afídeos/classificação , Afídeos/genética , Sequência de Bases , Hidrolases de Éster Carboxílico/genética , Clonagem Molecular , Cruzamentos Genéticos , Frutas/parasitologia , Amplificação de Genes , Genes de Insetos , Hibridização Genética , Inativação Metabólica , Inseticidas/farmacocinética , Dados de Sequência Molecular , Pigmentação , Plantas Tóxicas , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solanum tuberosum/parasitologia , Especificidade da Espécie , Nicotiana/parasitologia
7.
Plant Cell ; 4(6): 621-9, 1992 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1392588

RESUMO

Cutinase, a fungal extracellular esterase, has been proposed to be crucial in the early events of plant infection by many pathogenic fungi. To test the long-standing hypothesis that cutinase of Nectria haematococca (Fusarium solani f sp pisi) is essential to pathogenicity, we constructed cutinase-deficient mutants by transformation-mediated gene disruption of the single cutinase gene of a highly virulent N. haematococca strain. Four independent mutants were obtained lacking a functional cutinase gene, as confirmed by gel blot analyses and enzyme assays. Bioassays of the cutinase-deficient strains showed no difference in pathogenicity and virulence on pea compared to the wild type and a control transformant. We conclude that the cutinase of N. haematococca is not essential for the infection of pea.


Assuntos
Hidrolases de Éster Carboxílico/fisiologia , Fabaceae/microbiologia , Fusarium/enzimologia , Plantas Medicinais , Sequência de Bases , DNA Fúngico , Fusarium/patogenicidade , Dados de Sequência Molecular , Mapeamento por Restrição , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA