Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 190: 106604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490458

RESUMO

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Assuntos
Alternaria , Bacillus subtilis , Fungicidas Industriais , Lipopeptídeos , Nitrilas , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Nitrilas/farmacologia , Lipopeptídeos/farmacologia , RNA Ribossômico 16S/genética , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Peptídeos Cíclicos/farmacologia
2.
New Phytol ; 239(5): 1651-1664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37322611

RESUMO

The continuous imbalance between nitrogen (N) and phosphorus (P) deposition is expected to shift many ecosystems from N- to P limitation. Extraradical hyphae of ectomycorrhizal (ECM) fungi play important roles in plant nutrient acquisition under nutrient deficiency. However, whether and how ECM hyphae enhance soil P availability to alleviate N-induced P deficiency remains unclear. We investigated the impacts of ECM hyphae on transformations among different soil P fractions and underlying mechanisms under N deposition in two ECM-dominated forests. Ectomycorrhizal hyphae enhanced soil P availability under N addition by stimulating mineralization of organic P (Po) and desorption and solubilization of secondary mineral P, as indicated by N-induced increase in positive hyphal effect on plant-available P pool and negative hyphal effects on Po and secondary mineral P pools. Moreover, ECM hyphae increased soil phosphatase activity and abundance of microbial genes associated with Po mineralization and inorganic P solubilization, while decreasing concentrations of Fe/Al oxides. Our results suggest that ECM hyphae can alleviate N-induced P deficiency in ECM-dominated forests by regulating interactions between microbial and abiotic factors involved in soil P transformations. This advances our understanding of plant acclimation strategies via mediating plant-mycorrhiza interactions to sustain forest production and functional stability under changing environments.


Assuntos
Micorrizas , Fósforo , Ecossistema , Hifas , Nitrogênio , Florestas , Micorrizas/fisiologia , Minerais , Plantas , Solo , Microbiologia do Solo
3.
Int J Med Mushrooms ; 24(10): 83-91, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374832

RESUMO

Biomineralization is the phenomenon by which organisms form crystals. Studies have shown that many fungi can biomineralize, producing calcium oxalate crystals on their hyphae and fruiting body. Schizophyllum commune is a medicinal and edible fungus found worldwide, however, studies on biomineralization in this fungus are limited. Here, samples of Sch. commune fruiting bodies were collected from three different provinces in China and hyphal cells were cultured. Using light microscopy, FE-SEM, and EDAX, we identified crystals on the fruiting body and mycelium of each strain and analyzed their morphological characteristics and ion content. These data demonstrate that biomineralization occurs in Sch. commune in nature as well as during subsequent in vitro culture.


Assuntos
Ascomicetos , Schizophyllum , Animais , Schizophyllum/química , Hifas , Oxalato de Cálcio , Brânquias
4.
Sci Total Environ ; 837: 155498, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523342

RESUMO

The effects of mycorrhiza and its external hyphae on the response of soil microbes to global warming remain unclear. This study investigates the role of mycorrhiza and its hyphae in regulating soil microbial community under warming by examining the microbial biomass and composition in the ingrowth cores of arbuscular mycorrhiza (AM) plant, Fargesia nitida, and ectomycorrhiza (ECM) plant, Picea asperata, with/without mycorrhiza/hyphae and experimental warming. The results showed that warming significantly increased the biomass of all soil microbes (by 19.89%-137.48%) and altered the microbial composition in both plant plots without mycorrhiza/hyphae. However, this effect was weakened in the presence of mycorrhiza or hyphae. In F. nitida plots, warming did not significantly affect biomass and composition of most soil microbial groups when mycorrhiza or hyphae were present. In P. asperata plots, warming significantly increased the total and ECM fungi (ECMF) biomass in the presence of hyphae (p < 0.05) and the total, Gn, and AM fungi (AMF) biomass in the presence of mycorrhiza (p < 0.05). Meanwhile, the response of enzyme activities to warming was also altered with mycorrhiza or hyphae. Additionally, soil microbial community composition was mainly influenced by soil available phosphorus (avaP), while enzyme activities depended on soil avaP, dissolved organic carbon (DOC), and nitrate concentrations. Our results indicate that mycorrhiza and its hyphae are essential in regulating the response of microbes to warming.


Assuntos
Microbiota , Micorrizas , Biomassa , Carbono , Hifas , Micorrizas/fisiologia , Fósforo , Plantas , Solo , Microbiologia do Solo , Tibet
5.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269898

RESUMO

Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.


Assuntos
Antifúngicos , Micoses , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Parede Celular/metabolismo , Farmacorresistência Fúngica , Humanos , Hifas , Micoses/microbiologia
6.
mSphere ; 7(1): e0077921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107339

RESUMO

Candida albicans filamentation, the ability to convert from oval yeast cells to elongated hyphal cells, is a key factor in its pathogenesis. Previous work has shown that the integral membrane protein Dfi1 is required for filamentation in cells grown in contact with a semisolid surface. Investigations into the downstream targets of the Dfi1 pathway revealed potential links to two transcription factors, Sef1 and Czf1. Sef1 regulates iron uptake and iron utilization genes under low-iron conditions, leading us to hypothesize that there exists a link between iron availability and contact-dependent invasive filamentation. In this study, we showed that Sef1 was not required for contact-dependent filamentation, but it was required for wild-type (WT) expression levels of a number of genes during growth under contact conditions. Czf1 is required for contact-dependent filamentation and for WT levels of expression of several genes. Constitutive expression and activation of either Sef1 or Czf1 individually in a dfi1 null strain resulted in a complete rescue of the dfi1 null filamentation defect. Because Sef1 is normally activated in low-iron environments, we embedded WT and dfi1 null cells in iron-free agar medium supplemented with various concentrations of ferrous ammonium sulfate (FAS). dfi1 null cells embedded in media with a low concentration of iron (20 µM FAS) showed increased filamentation in comparison to mutant cells embedded in higher concentrations of iron (50 to 500 µM). WT cells produced filamentous colonies in all concentrations. Together, the data indicate that Dfi1, Czf1, Sef1, and environmental iron regulate C. albicans contact-dependent filamentation. IMPORTANCE Candida albicans is an opportunistic pathogen responsible for a larger proportion of candidiasis and candidemia cases than any other Candida species. The ability of C. albicans cells to invade and cause disease is linked to their ability to filament. Despite this, there are gaps in our knowledge of the environmental cues and intracellular signaling that triggers the switch from commensal organism to filamentous pathogen. In this study, we identified a link between contact-dependent filamentation and iron availability. Over the course of tissue invasion, C. albicans cells encounter a number of different iron microenvironments, from the iron-rich gut to iron-poor tissues. Increased expression of Sef1-dependent iron uptake genes as a result of contact-dependent signaling will promote the adaptation of C. albicans cells to a low-iron-availability environment.


Assuntos
Candida albicans , Candidíase , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/genética , Ferro/metabolismo
7.
New Phytol ; 234(2): 688-703, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043984

RESUMO

Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore-space, and models of AMF-enhanced P-uptake are poorly validated. We used synchrotron X-ray computed tomography to visualize mycorrhizas in soil and synchrotron X-ray fluorescence/X-ray absorption near edge structure (XRF/XANES) elemental mapping for P, sulphur (S) and aluminium (Al) in combination with modelling. We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Our results showed that AMF co-locate with areas of high P and low Al, and preferentially associate with organic-type P species over Al-rich inorganic P. We discovered that AMF avoid Al-rich areas as a source of P. Sulphur-rich regions were found to be correlated with higher hyphal density and an increased organic-associated P-pool, whilst oxidized S-species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome-related. Our experimentally-validated model led to an estimate of P-uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated - a result with significant implications for the modelling of plant-soil-AMF interactions.


Assuntos
Micorrizas , Fungos , Hifas , Fósforo , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo
8.
Environ Microbiol Rep ; 14(1): 119-129, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34951128

RESUMO

Two-component systems (TCS) are ubiquitous among bacteria, playing key roles in signalling events. However, to what extent the TCS of Rahnella aquatilis (a Phosphate solubilizing bacteria) is influenced by the hyphosphere of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis is totally unknown. Here, the expression of 16 genes encoding the TCS of R. aquatilis (i.e. involved in carbon-sensing and nutrient-sensing) and of eight genes regulated by the PhoR TCS (i.e. involved in inorganic and organic phosphorus mobilization) were analysed at regular intervals in presence of hyphae of R. irregularis. The study was conducted under in vitro culture conditions with phytate as the unique source of phosphorus. In presence of the AM fungus, the expression of TCS genes involved in carbon-sensing and nutrient-sensing were stimulated. Only, BaeS at 30 and 120 min, and BaeR at 60 min were inhibited. In addition, the PhoR TCS stimulated the expression of genes encoding phosphatase but inhibited the expression of genes involved in gluconic acid production. As the mechanism of coupling environmental changes with cellular physiological changes, TCS plays a pivotal role in regulating specific gene expression in R. aquatilis, recognizing environmental signals. More importantly, TCS genes may regulate bacteria response to hyphal carbon to mobilize phosphorus efficiently in the hyphosphere.


Assuntos
Micorrizas , Rahnella , Fungos , Hifas/metabolismo , Micorrizas/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Rahnella/metabolismo
9.
Microbes Environ ; 36(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776461

RESUMO

The hyphae of Cladosporium sp. strain F1 (CFGR 2020-301-00084) were heavily encrusted with pre-synthesized uranium phosphate minerals under a wide range of pH conditions. SEM and TEM images showed that nanorods and nanoplates of uranium phosphate minerals at pH 4 and 5 and at pH 6, 7, and 8, respectively, were tightly adsorbed along the hyphae of Cladosporium sp. strain F1, while only a few uranium phosphate minerals were observed on the hyphae of Aspergillus niger VKMF 1119. Based on the physical mobility and chemical stability of uranium phosphate minerals under in situ oxidizing environmental conditions, the application of Cladosporium sp. strain F1 has potential as a novel strategy for the remediation of uranium contamination in sediments and aquifers under a wide range of pH conditions where larger amounts of phosphate are present in the environment.


Assuntos
Cladosporium/química , Minerais/análise , Nanotubos , Urânio , Hifas/química , Fosfatos , Urânio/análise
10.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830415

RESUMO

(1) Background: Candida is the most common cause of fungal infections worldwide, but due to the limited option of antifungal therapies, alternative strategies are required. (2) Methods: Adenophora triphylla var. japonica extract was used for the biofilm formation assay using RPMI1640. The combinatorial antifungal assay, the dimorphic transition assay, and the adherence assay were done to see the influence of inhibition of biofilm formation. qRT-PCR analysis were performed to check the gene expression. (3) Results: Adenophora triphylla var. japonica extract inhibited the Candida biofilm formation. Treatment of extract increased the antifungal susceptibility of miconazole from a 37% reduction in fungal growth to 99.05%, and also dose-dependently reduced the dimorphic transition of Candida and the attachment of Candida to HaCaT cells. The extract blocked the expression of hyphal-related genes, extracellular matrix genes, Ras1-cAMP-PKA pathway genes, Cph2-Tec1 pathway gene, and MAP kinase pathway gene. (4) Conclusions: In this study, the treatment of Adenophora triphylla var. japonica extract showed inhibition of fungal biofilm formation, activation of antifungal susceptibility, and reduction of infection. These results suggest that fungal biofilm formation is a good target for the development of antifungal adjuvants, and Adenophora triphylla var. japonica extract should be a good candidate for biofilm-associated fungal infections.


Assuntos
Campanulaceae/química , Candida albicans/efeitos dos fármacos , Micoses/tratamento farmacológico , Extratos Vegetais/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/patogenicidade , Agregação Celular/efeitos dos fármacos , Humanos , Hifas/efeitos dos fármacos , Micoses/microbiologia , Extratos Vegetais/química
11.
PLoS One ; 16(10): e0258108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34614005

RESUMO

Candida is an opportunistic pathogen and a common cause of fungal infections worldwide. Anti-fungal use against Candida infections has resulted in the appearance of resistant strains. The limited choice of anti-fungal therapy means alternative strategies are needed to control fungal infectious diseases. The aim of this study was to evaluate the inhibition of Candida biofilm formation by Hedera rhombea (Korean name: songak) extract. Biofilm formation was assessed using the crystal violet assay which showed a dose dependent reduction in the presence of extract with the biofilm formation inhibitory concentration of C. albicans (IC50 = 12.5µg/ml), C. tropicalis var. tropicalis (IC50 = 25µg/ml), C. parapsilosis var. parapsilosis (IC50 = 6.25µg/ml), C. glabrata (IC50 = 6.25µg/ml), C. tropicalis (IC50 = 12.5µg/ml), and C. parapsilosis (IC50 = 12.5µg/ml) without directly reducing Candida growth. Treatment with 6.25µg/mL of extract increased the antifungal susceptibility to miconazole from 32% decreasing of fungal growth to 98.8% of that based on the fungal growth assay. Treatment of extract dose-dependently reduced the dimorphic transition of Candida based on the dimorphic transition assay and treatment of 3.125µg/mL of extract completely blocked the adherence of Candida to the HaCaT cells. To know the molecular mechanisms of biofilm formation inhibition by extract, qRT-PCR analysis was done, and the extract was found to dose dependently reduce the expression of hyphal-associated genes (ALS3, ECE1, HWP1, PGA50, and PBR1), extracellular matrix genes (GSC1, ZAP1, ADH5, and CSH1), Ras1-cAMP-PKA pathway genes (CYR1, EFG1, and RAS1), Cph2-Tec1 pathway gene (TEC1) and MAP kinases pathway gene (HST7). In this study, Hedera rhombea extract showed inhibition of fungal biofilm formation, activation of antifungal susceptibility, and reduction of infection. These results suggest that fungal biofilm formation is good screen for developing the antifungal adjuvant and Hedera rhombea extract should be a good candidate against biofilm-related fungal infection.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Hedera/química , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Candida/genética , Candida/patogenicidade , Candidíase/genética , Candidíase/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Hifas/química , Testes de Sensibilidade Microbiana
12.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361746

RESUMO

New agricultural strategies aim to reduce the use of pesticides due to their damage to the environment and humans, and the caused resistance to pathogens. Therefore, alternative sources of antifungal compounds from plants are under investigation lately. Extracts from plants have a wide composition of chemical compounds which may complicate the development of pathogen resistance. Botrytis cinerea, causing grey mould, is an important horticultural and ornamental pathogen, responsible for the relevant yield and quality losses. B. cinerea isolated from a different plant host may differ in the sensitivity to antifungal substances from plants. Assessing the importance of research covering a wide range of pathogens for the rapid development of biopesticides, this study aims to determine the sensitivity of the B. cinerea isolate complex (10 strains) to plant extracts, describe morphological changes caused by the extract treatment, and detect differences between the sensitivity of different plant host isolates. The results showed the highest sensitivity of the B. cinerea isolates complex to cinnamon extract, and the lowest to laurel extract. In contrast, laurel extract caused the most changes of morphological attributes in the isolates. Five B. cinerea isolates from plant hosts of raspberry, cabbage, apple, bell pepper, and rose were grouped statistically according to their sensitivity to laurel extract. Meanwhile, the bell pepper isolate separated from the isolate complex based on its sensitivity to clove extract, and the strawberry and apple isolates based on their sensitivity to cinnamon extract.


Assuntos
Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Botrytis/efeitos dos fármacos , Cinnamomum zeylanicum/química , Hifas/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Antifúngicos/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Botrytis/crescimento & desenvolvimento , Botrytis/isolamento & purificação , Brassica/microbiologia , Capsicum/microbiologia , Cinnamomum camphora/química , Fragaria/microbiologia , Humanos , Hifas/crescimento & desenvolvimento , Hifas/isolamento & purificação , Malus/microbiologia , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Syzygium/química , Vitis/microbiologia
13.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066497

RESUMO

Autophagy is an intracellular process in all eukaryotes which is responsible for the degradation of cytoplasmic constituents, recycling of organelles, and recycling of proteins. It is an important cellular process responsible for the effective virulence of several pathogenic plant fungal strains, having critical impacts on important crop plants including potatoes. However, the detailed physiological mechanisms of autophagy involved in the infection biology of soil-borne pathogens in the potato crop needs to be investigated further. In this study, the autophagy-related gene, FoATG12, in potato dry rot fungus Fusarium oxysporum was investigated by means of target gene replacement and overexpression. The deletion mutant ∆FoATG12 showed reduction in conidial formation and exhibited impaired aerial hyphae. The FoATG12 affected the expression of genes involved in pathogenicity and vegetative growth, as well as on morphology features of the colony under stressors. It was found that the disease symptoms were delayed upon being inoculated by the deletion mutant of FoATG12 compared to the wild-type (WT) and overexpression (OE), while the deletion mutant showed the disease symptoms on tomato plants. The results confirmed the significant role of the autophagy-related ATG12 gene in the production of aerial hyphae and the effective virulence of F. oxysporum in the potato crop. The current findings provid an enhanced gene-level understanding of the autophagy-related virulence of F. oxysporum, which could be helpful in pathogen control research and could have vital impacts on the potato crop.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Autofagia/genética , Proteínas Fúngicas/genética , Fusarium/citologia , Fusarium/genética , Genes Fúngicos , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteína 12 Relacionada à Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Mutação/genética , Fenótipo , Doenças das Plantas/genética , Esporos Fúngicos/crescimento & desenvolvimento , Estresse Fisiológico/genética
14.
Mol Plant ; 14(8): 1391-1403, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33965632

RESUMO

Phytophthora pathogens are a persistent threat to the world's commercially important agricultural crops, including potato and soybean. Current strategies aim at reducing crop losses rely mostly on disease-resistance breeding and chemical pesticides, which can be frequently overcome by the rapid adaptive evolution of pathogens. Transgenic crops with intrinsic disease resistance offer a promising alternative and continue to be developed. Here, we explored Phytophthora-derived PI3P (phosphatidylinositol 3-phosphate) as a novel control target, using proteins that bind this lipid to direct secreted anti-microbial peptides and proteins (AMPs) to the surface of Phytophthora pathogens. In transgenic Nicotiana benthamiana, soybean, and potato plants, significantly enhanced resistance to different pathogen isolates was achieved by expression of two AMPs (GAFP1 or GAFP3 from the Chinese medicinal herb Gastrodia elata) fused with a PI3P-specific binding domain (FYVE). Using the soybean pathogen P. sojae as an example, we demonstrated that the FYVE domain could boost the activities of GAFPs in multiple independent assays, including those performed in vitro, in vivo, and in planta. Mutational analysis of P. sojae PI3K1 and PI3K2 genes of this pathogen confirmed that the enhanced activities of the targeted GAFPs were correlated with PI3P levels in the pathogen. Collectively, our study provides a new strategy that could be used to confer resistance not only to Phytophthora pathogens in many plants but also potentially to many other kinds of plant pathogens with unique targets.


Assuntos
Resistência à Doença , Glycine max/parasitologia , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/genética , Hifas/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Glycine max/genética , Glycine max/crescimento & desenvolvimento
15.
Zhongguo Zhong Yao Za Zhi ; 46(1): 155-161, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33645065

RESUMO

The aim of this paper was to investigate the effect of berberine hydrochloride on the cell wall integrity of Candida albicans hypha. The minimal inhibitory concentration(MIC) of berberine hydrochloride against clinical and standard C. albicans strains was detected by micro liquid-based dilution method; the effect of berberine hydrochloride on the colony formation of C. albicans SC5314 was investigated by spot assay; the effect of berberine hydrochloride on the metabolism of C. albicans SC5314 hypha was checked by XTT reduction assay, and the viability of C. albicans SC5314 hypha was tested by fluorescent staining assay. The effect of berberine hydrochloride on the morphology of C. albicans SC5314 hypha was examined by scanning electron microscope. The changes in the cell wall of C. albicans SC5314 hypha after berberine hydrochloride treatment were detected by transmission electron microscopy. The effect of berberine hydrochloride on ß-glucan from C. albicans SC5314 was detected by flow cytometry. The effect of berberine hydrochloride on hypha-specific gene ECE1 and ß-glucan synthase genes FKS1 and FKS2 in C. albicans was examined by qRT-PCR. The results showed that berberine hydrochloride showed a strong inhibitory effect on both clinical and standard strains of C. albicans, and the MIC was 64-128 µg·mL~(-1). Spot assay, XTT redunction assay and fluorescent staining assay showed that with the increase of berberine hydrochloride concentration, the viability of C. albicans SC5314 gradually decreased. The transmission electron microscopy scanning assay showed that this compound could cause cell wall damage of C. albicans. The flow cytometry analysis showed the exposure degree of C. albicans ß-glucan. The qRT-PCR further showed that berberine hydrochloride could significantly down-regulate hypha-specific gene ECE1 and ß-glucan synthase-related gene FKS1 and FKS2. In conclusion, this compound can down-regulate C. albicans and ß-glucan synthase-related gene expressions, so as to destroy the cell wall structure of C. albicans, expose ß-glucan and damage the integrity of the wall.


Assuntos
Berberina , Candida albicans , Antifúngicos/farmacologia , Berberina/farmacologia , Candida albicans/genética , Parede Celular , Hifas , Testes de Sensibilidade Microbiana
16.
Mol Plant Pathol ; 22(5): 508-521, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33694285

RESUMO

During plant infection, fungi secrete effector proteins in coordination with distinct infection stages. Thus, the success of plant infection is determined by precise control of effector gene expression. We analysed the PWL2 effector gene of the rice blast fungus Magnaporthe oryzae to understand how effector genes are activated specifically during the early biotrophic stages of rice infection. Here, we used confocal live-cell imaging of M. oryzae transformants with various PWL2 promoter fragments fused to sensitive green fluorescent protein reporter genes to determine the expression patterns of PWL2 at the cellular level, together with quantitative reverse transcription PCR analyses at the tissue level. We found PWL2 expression was coupled with sequential biotrophic invasion of rice cells. PWL2 expression was induced in the appressorium upon penetration into a living rice cell but greatly declined in the highly branched hyphae when the first-invaded rice cell was dead. PWL2 expression then increased again as the hyphae penetrate into living adjacent cells. The expression of PWL2 required fungal penetration into living plant cells of either host rice or nonhost onion. Deletion and mutagenesis experiments further revealed that the tandem repeats in the PWL2 promoter contain 12-base pair sequences required for expression. We conclude that PWL2 expression is (a) activated by an unknown signal commonly present in living plant cells, (b) specific to biotrophic stages of fungal infection, and (c) requires 12-base pair cis-regulatory sequences in the promoter.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/metabolismo , Cebolas/microbiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sequências de Repetição em Tandem/genética , Ascomicetos/fisiologia , Ascomicetos/ultraestrutura , Proteínas Fúngicas/genética , Expressão Gênica , Genes Reporter , Hifas , Mutagênese , Cebolas/ultraestrutura , Oryza/ultraestrutura , Sequências Reguladoras de Ácido Nucleico/genética , Deleção de Sequência
18.
Mycorrhiza ; 31(3): 403-412, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33459866

RESUMO

Arbuscular mycorrhizal (AM) fungal extraradical hyphae exude their metabolites into the soil. Root exudate metabolites are affected by plant species and P status. However, the effect of P status on AM hyphal exudate metabolites has been unknown. This study aimed to examine hyphal exudate metabolite composition of two AM fungal species and their response to P deficiency through metabolite profiling. Rhizophagus clarus and R. irregularis were grown in a two-compartment in vitro culture system of Linum usitatissimum roots on solid modified Strullu-Romand medium in combination with two P levels (3 µM (P3) and 30 µM (P30)). Hyphal exudates were collected from the hyphal compartment at 118 days after inoculation (DAI). The metabolite composition of the hyphal exudates was determined by capillary electrophoresis/time-of-flight mass spectrometry, resulting in the identification of a total of 141 metabolites at 118 DAI. In the hyphal exudates of R. clarus, the concentrations of 18 metabolites, including sugars, amino acids, and organic acids, were significantly higher (p < 0.05) under P3 than under P30 conditions. In contrast, the concentrations of 10 metabolites, including sugar and amino acids, in the hyphal exudates of R. irregularis were significantly lower (p < 0.05) under P3 than under P30 conditions. These findings suggest that the extraradical hyphae of AM fungi exude diverse metabolites of which concentrations are affected by P conditions and differ between AM fungal species.


Assuntos
Glomeromycota , Micorrizas , Exsudatos e Transudatos , Fungos , Hifas , Fósforo , Raízes de Plantas
19.
J Appl Microbiol ; 130(2): 592-603, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32026569

RESUMO

AIMS: Diseases caused by pathogenic fungi was a major constrain in increasing productivity and improving quality of Panax notoginseng. The aim of this research was to evaluate the inhibitory activity of essential oils (EOs) from Asteraceae family, Chrysanthemum indicum and Laggera pterodonta, against pathogenic fungi of P. notoginseng. METHODS AND RESULTS: The antifungal activity was investigated using multiple methods, disclosing that the EOs from C. indicum and L. pterodonta are active against hypha growth of different fungi but with different degrees of potency. Checkerboard testing indicated that the combination of EOs with hymexazol had synergistic effect against Pythium aphanidermatum, and exhibited additive effects against bulk of targeted pathogenic fungi. Besides, we found that the baseline sensitivity of Fusarium oxysporum to L. pterodonta EOs was higher than those of C. indicum by means of mycelium growth rate method. Finally, the practicability of those EOs as plant pesticide was confirmed by in vivo model showing that EOs can significantly inhibit the occurrence of root rot of P. notoginseng caused by F. oxysporum. CONCLUSION: Those studies suggest that the EOs from C. indicum and L. pterodonta had the potential to develop into new pollution-free pesticides for the protection of precious Chinese herbal medicines. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided a new way of biological control for overcoming the frequent diseases occurrence of P. notoginseng.


Assuntos
Asteraceae/química , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Óleos Voláteis/farmacologia , Panax notoginseng/microbiologia , Asteraceae/classificação , Sinergismo Farmacológico , Fungos/classificação , Fungos/crescimento & desenvolvimento , Hifas/classificação , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Oxazóis/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Óleos de Plantas/farmacologia
20.
Mycoses ; 64(1): 48-54, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32918325

RESUMO

BACKGROUND: In recent years, methylene blue mediated-photodynamic therapy (MB-PDT) has proved to be an effective inhibitor to a variety of microorganisms, including Trichophyton rubrum, the most common dermatophyte worldwide. However, previous studies mainly focused on the spore form of T rubrum, but rarely on its hyphal form, although the latter is the main pathogenic form of T rubrum in vivo. OBJECTIVE: To investigate the inhibitory effect of MB-PDT on T rubrum in different growth phases in vitro. METHODS: The suspensions of spores and hyphae obtained from T rubrum (ATCC28188) were prepared, respectively, incubated with MB solution (0.15-40 µg/mL) and irradiated with 635 nm red light. Varied light energy and MB concentration were used. The specimen in the absence of light exposure or/and MB served as controls. MIC determination, colony counts and MTT assay were employed to evaluate the antifungal effect of MB-PDT. RESULTS: The MICs of MB-PDT for hyphae and spores of T. rubrum were 6.300 ± 1.072 µg/mL and 1.984 ± 1.072 µg/mL, respectively, at a fixed light dose of 60 J/cm2 . CFU counts gave the minimum critical combinations of MB concentration and light dose to achieve 100% inhibitory rate. For hyphae, they were 5 µg/mL + 100 J/cm2 or 10 µg/mL + 60 J/cm2 . For spores, they were 1.25 µg/mL + 40 J/cm2 or 5 µg/mL + 20 J/cm2 . The outcomes of MTT assay were consistent with those of CFU counts, but less accurate. CONCLUSION: MB-PDT is a potent inhibitor to both spores and hyphae of T. rubrum in vitro, and the spores are more sensitive to it. Its antifungal efficacy is positively correlated with the concentration of MB and light dose.


Assuntos
Antifúngicos/farmacologia , Hifas/efeitos dos fármacos , Azul de Metileno/farmacologia , Fotoquimioterapia/métodos , Esporos Fúngicos/efeitos dos fármacos , Trichophyton/efeitos dos fármacos , Arthrodermataceae/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/farmacologia , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA