RESUMO
Sitotroga cerealella is a serious pest of a wide range of stored cereal grains. An essential element of an integrated pest control approach is the application of plant oils as a substitute for chemical insecticides. This study aimed to investigate the fumigant toxicity of Allium sativum and Mentha piperita essential oils against S. cerealella adult moths and the egg parasitoid Trichogramma evanescens. Gas chromatography-mass spectrometry analyses detected that Diallyl trisulfide (37.97%) and DL-Menthol (47.67%) as main compounds in A. sativum and M. piperita, respectively. The results showed that, A. sativum at 10.0, 5.0, and 2.5 µL/L air resulted in 100% insect mortality after 24 h exposure. The concentrations of 10.0 and 5.0 µL/L air of M. piperita oil resulted in 100 and 96% insect mortality, respectively. The parasitoid adult emergence in the F1 reduced when exposed to LC99 of A. sativum and M. piperita oils by 10.89 and 9.67%, respectively. Also, the parasitism of emerged parasitoid decreased by 9.25 and 5.84% (class I-harmless), respectively. Therefore A. sativum and M. piperita have the potential to be used as bio-fumigant for the management of S. cerealella and can be used alongside the T. evanescens in integrated pest management.
Assuntos
Himenópteros , Inseticidas , Mariposas , Óleos Voláteis , Praguicidas , Animais , Óleos Voláteis/toxicidade , Inseticidas/toxicidadeRESUMO
Viruses are one of many serious threats to honey bee (Apis mellifera L.) health. There are many transmission routes for honey bee viruses, and there is potential for wax comb to act as a reservoir for transmission of viruses. Some work has been done on treating viruses on wax, focusing on irradiation as a potential treatment. However, irradiation is not universally available or economically viable for beekeepers in many regions. With increased colony deaths over winter beekeepers potentially risk further loss from reusing contaminated equipment from dead colonies. Here we explored the use of storage time and temperature on the reduction of waxborne virus levels from winter loss colony wax over 30 days and at -20, 5, and 20 °C. Furthermore, because irradiation has previously worked against waxborne viruses, we performed a dosage experiment with electron-beam irradiation. Winter loss wax was again used, and exposed to 10, 25, 35, and 45 kGy irradiation, including a nonirradiated transport control. Storage time decreased abundance of black queen cell virus and deformed wing virus at times equal or greater than 30 days but temperatures had no significant effect on virus levels. All irradiation doses decreased virus abundance and prevalence, yet only 35 and 45 kGy did so at a greater rate than the effect of transport alone.
Assuntos
Himenópteros , Vírus de RNA , Vírus , Abelhas , Animais , Temperatura , ElétronsRESUMO
The western honey bee (Apis mellifera L.) is the most globally used managed pollinator species, but it can have limited pollinating activity on nectariferous crops displaying anthers isolated from stigmas, i.e., when anthers are spatially or temporally separated from stigma within or between flowers. We supplemented honey bee colonies with pollen in the combs or in paste form laid on top of the hive frames to test if these treatments could reduce their pollen foraging and increase their pollinating activity in a monoecious and nectariferous cultivar of cantaloupe melon (Cucumis melo L.), in comparison with control colonies not supplemented. We recorded the pollen forager density per flower, the number of pollen grains deposited per stigma and their resulting fruit set, seed set and fruit mass, before and after the colony pollen supplementations. The number of pollen grains deposited by honey bees on stigmas increased gradually after pollen supplementation in the combs. But pollen foraging decreased only moderately, and no effect could be observed on any yield component except the seed set. On the other hand, there was no effect of the pollen paste laid on top of the frames either on stigmatic pollen loads, on colony pollen foraging or on any yield component. Supplementing honey bee colonies with pollen in the combs can therefore be an effective means for increasing their pollinating activity in nectariferous crops displaying anthers isolated from stigmas, e.g., Amaryllidaceae, Apiaceae, Cucurbitaceae, avocado, all hybrid seed productions. The context for the potential use of pollen substitutes is discussed.
Assuntos
Cucurbitaceae , Himenópteros , Abelhas , Animais , Frutas , Sementes , Pólen , Produtos Agrícolas , PolinizaçãoRESUMO
The nest-scavenging beetle Aethina tumida remains a persistent problem for beekeepers in parts of the Southeast United States, where warm wet soils allow beetle populations to grow rapidly and overwhelm colonies, especially during the summer dearth. Furthermore, small hive beetle infestation prevents beekeepers from easily provisioning colonies with additional pollen or protein feed (patties), preventing holistic management of honey bee health via improved nutrition, and reducing the economic potential of package and nucleus colony rearing in the Southeast. Here, we demonstrate using both in vitro laboratory trials and a small in vivo field trial that the differential specificity of anthranilic diamide insecticides (specifically, chlorantraniliprole) between bees and beetles allows for the control and prevention of small hive beetle infestation in honey bee colonies even when feeding with large patties. Honey bees show orders of magnitude higher tolerance to chlorantraniliprole compared to small hive beetles, opening new avenues for improving bee health including during spring splits and throughout the summer.
Assuntos
Abelhas , Besouros , Inseticidas , ortoaminobenzoatos , Animais , Abelhas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Besouros/efeitos dos fármacos , Diamida , Himenópteros/efeitos dos fármacos , Inseticidas/farmacologia , ortoaminobenzoatos/farmacologiaRESUMO
Oxalic acid (OA) is a popular miticide used to control Varroa destructor (Mesostigmata: Varroidae) in western honey bee (Apis mellifera L.) (Hymenoptera: Apidae) colonies. Our aim was to investigate which method of OA application (dribbling, fogging, or vaporizing) was the most effective at reducing V. destructor infestations (Experiment 1) and to improve upon this method by determining the treatment interval that resulted in the greatest V. destructor control (Experiment 2). We used the product Api-Bioxal (97% OA) and maintained 40 honey bee colonies (10/treatment) in both experiments. In Experiment 1, the treatments included (i) dribbling 50 ml of 3% OA solution, (ii) vaporizing 4 g of solid OA, (iii) using an insect fogger supplied with 2.5% OA dissolved in ethyl alcohol, and (iv) an untreated control. After 3 weeks, only the vaporization method reduced V. destructor infestations (from 9.24 mites/100 bees pretreatment to 3.25 mites/100 bees posttreatment) and resulted in significantly increased brood amounts and numbers of adult bees over those of the controls. In Experiment 2, all colonies were treated with 4 applications of OA via vaporization at a constant concentration of 4 g OA/colony. In this experiment, the groups were separated by treatment intervals at either 3-, 5-, or 7-day intervals. We observed that 5- and 7-day treatment intervals significantly reduced V. destructor populations from pretreatment levels over that of the controls and 3-day intervals. Our data demonstrate the efficacy of OA in reducing V. destructor infestation, particularly vaporizing 4 g every 5-7 days as the most effective method of application.
Assuntos
Acaricidas , Himenópteros , Varroidae , Abelhas , Animais , Ácido Oxálico , Acaricidas/farmacologia , VolatilizaçãoRESUMO
Managed honey bee (Hymenoptera: Apidae: Apis mellifera Linnaeus) hives require frequent human inputs to maintain colony health and productivity. A variety of plant natural products (PNPs) are delivered via feeding to control diseases and reduce the use of synthetic chemical treatments. However, despite their prevalent use in beekeeping, there is limited information regarding the impact of ingested PNPs on bee health. Here, we tested the effects of different essential oils and propolis extracts on honey bee life span, nutrient assimilation, xenobiotic detoxification, and gut microbiota abundance. Brazilian propolis extract lengthened worker life span, while the other PNPs (Louisiana propolis extract, lemongrass oil, spearmint oil, and thyme oil) exerted variable and dose-dependent effects on life span. Vitellogenin (vg) gene expression was reduced by Brazilian propolis extract at high doses. Expression of CYP6AS1, a detoxification-related gene, was reduced by low doses of thyme oil. The abundances of 8 core gut microbiota taxa were largely unaffected by host consumption of PNPs. Our results suggest that in addition to propolis's structural and immunomodulatory roles in the colony, it may also exert beneficial health effects when ingested. Thyme oil, a commonly used hive treatment, was toxic at field-realistic dosages, and its use as a feed additive should be viewed with caution until its effects on bee health are more thoroughly investigated. We conclude that the tested propolis extracts, lemongrass oil, and spearmint oil are generally safe for bee consumption, with some apparent health-promoting effects.
Assuntos
Ascomicetos , Microbioma Gastrointestinal , Himenópteros , Óleos Voláteis , Própole , Humanos , Abelhas , Animais , Própole/farmacologia , Óleos Voláteis/farmacologia , Extratos VegetaisRESUMO
This study explored the flower visiting behaviors and pollination abilities of mason bees (Osmia excavata Alfken (Hymenoptera: Megachilidae)), bumble bees (Bombus terrestris (Linnaeus, 1758) (Hymenoptera: Apidae)), and Italian honey bees (Apis mellifera ligustica Spinola (Hymenoptera: Apidae)) in apple orchards in early spring in Jinan (located in the central region of Shandong) and Yantai (located in the Peninsula of Shandong). We compared the pollen collection patterns, flower visiting behavior, flying speed, and effects on apple pollination of the 3 types of bees. The frequencies of flower visits were significantly higher for mason bees (12.89/min in Jinan and 10.63/min in Yantai) than bumble bees and Italian honey bees in the 2 regions. The single flower residence times were significantly higher for Italian honey bees (8.22 s in Jinan and 9.43 s in Yantai), but Italian honey bees were most affected by the climate. The 3 bees differed significantly in terms of the amount of apple pollen collected and their effects on the fruit setting rate in apples (mason beesâ >â bumble beesâ >â Italian honey bees). The results showed that the mason bee was the most suitable pollinating species for spring apple orchards; Bumble bees were more suitable as alternative pollinators during cloudy and low temperatures; Italian honey bees were able to take advantage of their large number of worker bees in sunny and warm weather. Compared to individual bee species, a combination of 2 or 3 species of bees might be more advantageous in dealing with complex and variable weather conditions.
Assuntos
Himenópteros , Malus , Abelhas , Animais , Polinização , Frutas , Pólen , FloresRESUMO
Tetragonisca angustula (Latreille, 1811) is an indigenous neotropical stingless bee, popularly known as "Jataí", with a wide distribution in the Brazilian territory. T.â angustula produces other derivatives such as propolis, geopropolis, fermented (saburá pollen), cerumen and resins, which are important in folk medicine. In this review, the objective was to gather research on the main plant species visited by T.â angustula, as well as studies that verified the chemical composition and biological properties of T.â angustula bioproducts. The bibliographic review was performed by searching the Scopus, Web of Science, ScienceDirect, and PubMed databases for publications from 2003 to February 2023. We found 78 studies that analyzed the interactions between T.â angustula and floral species, with species from the botanical families Fabaceae, Asteraceae, Malvaceae, Bignoniaceae, Solanaceae, Myrtaceae and Lamiaceae being the most reported as the main food sources for this species. The presence of compounds belonging to the class of flavonoids, phenolic acids, terpenoids and alkaloids has been identified by studying the chemical composition of honey, propolis, geopropolis and fermented pollen (saburá) in 21 studies. The data collected in the literature emphasize that these T.â angustula products have remarkable biological properties, especially their antibacterial and antioxidant activities.
Assuntos
Mel , Himenópteros , Própole , Animais , Humanos , Antibacterianos/farmacologia , Abelhas , Compostos Fitoquímicos/farmacologia , Própole/farmacologia , Flavonoides/farmacologiaRESUMO
Bacteria are associated with many infections that affect humans and present antibiotic resistance mechanisms, causing problems in health organisations and increased mortality rates. Therefore, it is necessary to find new antibacterial agents that can be used in the treatment of these microorganisms. Geopropolis is a natural product from stingless bees, formed by a mixture of plant resins, salivary secretions, wax and soil particles, the chemical composition of this natural product is diverse. Thus, this study aimed to evaluate antibacterial activity, antibiotic modulation and the toxicity of geopropolis extracts from the stingless bees, Melipona subnitida (Ducke, 1910) and Scaptotrigona depilis (Moure, 1942) against standard and multi-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacteria. Geopropolis samples were collected in a meliponary located in Camaragibe, Pernambuco, Brazil. To determine the Minimum Inhibitory Concentration (MIC) and antibiotic modulation we performed broth microdilution tests. Mortality tests were used to verify extract toxicity in the model Drosophila melanogaster. The microbiological tests showing that the M. subnitida extracts had better inhibitory effects compared to S. depilis, presenting direct antibacterial activity against standard and multi-resistant strains. The extracts potentialized antibiotic effects, suggesting possible synergy and did not present toxicity in the model used. The information obtained in this study highlights extracts as promising antibacterial agents and is the first study to evaluate bacterial activity in these extracts, in addition to verifying their modulating effects and determining toxicity in the model used.
Assuntos
Himenópteros , Staphylococcus aureus Resistente à Meticilina , Própole , Abelhas , Humanos , Animais , Drosophila melanogaster , Própole/química , Antibacterianos/farmacologia , Pseudomonas , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologiaRESUMO
Bumble bees are globally important pollinators, contributing hundreds of millions of dollars annually in crop pollination services. Several species are in decline, making it paramount to understand how pathogens and nutrition shape bee health. Previous work has shown that consuming sunflower pollen (Helianthus annuus) dramatically reduces infection by the trypanosomatid gut pathogen, Crithidia bombi, in the common eastern bumble bee (Bombus impatiens). Sunflower pollen may therefore be useful as a dietary supplement for reducing this pathogen in managed bumble bee colonies. Here, we assessed the efficacy of freezer-stored sunflower pollen that was collected in different years and locations for reducing pathogen infection. We tested sunflower pollen that was 1, 3, 4, or 5 yr old and from sunflowers grown in the United States or China against a control of 1-yr-old buckwheat pollen from China, since buckwheat pollen results in high infection. We hypothesized that older pollen would have weaker medicinal effects due to degradation of pollen quality. We found that all sunflower pollen treatments significantly decreased Crithidia infection compared to controls. These results suggest that sunflower pollen can be freezer-stored for up to 5 yr and sourced from a wide range of geographic areas and still maintain its medicinal effects against Crithidia in the common eastern bumble bee. This is helpful information for stakeholders who might administer sunflower pollen as a dietary supplement to manage Crithidia in commercial bumble bee colonies.
Assuntos
Helianthus , Himenópteros , Abelhas , Animais , Polinização , Crithidia , PólenRESUMO
The increase in agricultural productivity associated with the emergence and the extensive use of pesticides is undeniable. However, strong evidence indicates that this continuous demand is causing serious environmental impacts and bringing toxic effects to associated biota as pollinating insects. The present work aims the determination of the insecticide abamectin (ABA) and the fungicide difenoconazole (DIF) in strawberry flowers (Fragaria x ananassa DUCH.) and pollen sampled from beehives of the stingless bee Tetragonisca angustula Latreille (Hymenoptera: Apidae) located nearby strawberry fields. For analysis, QuEChERS method was optimized, and the analytical performance of those two pesticides was verified. Then, the method was applied to strawberry flowers and the pollen was sampled during three field campaigns. While abamectin was not detected, the systemic fungicide difenoconazole was determined in almost all flowers and pollen samples, demonstrating the major persistence of this pesticide in investigated matrices. The results were then discussed about the difenoconazole application rate and transport to colonies to estimate a preliminary environmental risk assessment for stingless native bees. All calculations were proceeded considering exposure rates and toxicity data from the literature, adapted from Apis mellifera studies. In this sense, the determination, application, and discussion about risk assessment figure out as an important tool to the knowledge about the preliminary risks of native bees exposed to pesticides.
Assuntos
Fragaria , Fungicidas Industriais , Himenópteros , Praguicidas , Urticária , Abelhas , Animais , PólenRESUMO
Fumagilin-B is used to treat nosema infection in honey bee colonies; however, it is unclear whether treatment consistently reduces Vairimorpha ceranae (Fries et al.) abundance and improves colony strength and survival in the Canadian Prairies. This study assessed spring and fall fumagillin treatments on nosema abundance, colony strength, and mortality in 2 different beekeeping regions within Alberta, using both indoor and outdoor wintering management at each site. We compared 4 fumagillin treatments: Spring-only, Fall-only, Spring-and-Fall, and Control (no treatment). The spring treatment dose was ~68 mg/colony, whereas the fall treatment dose was 120 or 48 mg/colony, depending on the year. We found that the colonies were infected predominately with V. ceranae, with V. apis (Zander) present only in mixed infections in a subset of colonies. Although treatment in either the spring or fall did reduce nosema abundance in the short term, it did not eliminate the infection, making continued monitoring necessary. Colony strength was improved by spring treatment in some locations but not consistently, possibly due to the treatment timing or low dose. The combined spring and fall treatment increased colony survival over winter in one of 2 yr. Wintering method did not interact with treatment to affect nosema abundance in the spring. There does not appear to be a significant residual benefit of fall treatment as it did not reduce spring nosema abundance or increase colony population. Therefore, spring treatment should be applied to reduce spring V. ceranae abundance rather than relying on residual efficacy from previous fall treatments.
Assuntos
Himenópteros , Nosema , Abelhas , Animais , Canadá , PradariaRESUMO
Residues detected in pollen collected by honey bees are often used to estimate pesticide exposure in ecotoxicological studies. However, for a more accurate assessment of pesticides effect on foraging pollinators, residues found directly on flowers are a more realistic exposure approximation. We conducted a multi-residue analysis of pesticides on pollen and nectar of melon flowers collected from five fields. The cumulative chronic oral exposure Risk Index (RI) was calculated for Apis mellifera, Bombus terrestris and Osmia bicornis to multiple pesticides. However, this index could underestimate the risk since sublethal or synergistic effects are not considered. Therefore, a mixture containing three of the most frequently detected pesticides in our study was tested for synergistic impact on B. terrestris micro-colonies through a chronic oral toxicity test. According to the result, pollen and nectar samples contained numerous pesticide residues, including nine insecticides, nine fungicides, and one herbicide. Eleven of those were not applied by farmers during the crop season, revealing that melon agroecosystems may be pesticide contaminated environments. The primary contributor to the chronic RI was imidacloprid and O. bircornis is at greatest risk for lethality resulting from chronic oral exposure at these sites. In the bumblebee micro-colony bioassay, dietary exposure to acetamiprid, chlorpyrifos and oxamyl at residue level concentration, showed no effects on worker mortality, drone production or drone size and no synergies were detected when pesticide mixtures were evaluated. In conclusion, our findings have significant implications for improving pesticide risk assessment schemes to guarantee pollinator conservation. In particular, bee pesticide risk assessment should not be limited to acute exposure effects to isolated active ingredients in honey bees. Instead, risk assessments should consider the long-term pesticide exposure effects in both pollen and nectar on a range of bees that reflect the diversity of natural ecosystems and the synergistic potential among pesticide formulations.
Assuntos
Himenópteros , Inseticidas , Resíduos de Praguicidas , Praguicidas , Abelhas , Animais , Praguicidas/análise , Resíduos de Praguicidas/toxicidade , Resíduos de Praguicidas/análise , Néctar de Plantas , Ecossistema , Inseticidas/toxicidade , Inseticidas/análise , Produtos Agrícolas , Pólen/químicaRESUMO
Due to a lack of knowledge on the pollination requirements of kiwifruit cultivars grown within the United States, farmers simultaneously implement multiple pollination methods, like the rental of managed bee species or artificial pollination to achieve high fruit yields. However, implementing multiple pollination methods is costly and possibly an inefficient use of resources. We assessed the contribution of two managed bees (Apis mellifera and Bombus impatiens) to the pollination of kiwifruit by i) determining the relative abundance of kiwifruit pollen collected by foragers of each bee species, and ii) comparing fruit set and fruit quality among insect and artificially pollinated flowers through an insect exclusion experiment. A significant difference was observed between the mean relative abundance of kiwifruit pollen carried in the corbicula of A. mellifera and B. impatiens, with B. impatiens carrying on average 46% more kiwifruit pollen than A. mellifera. Artificially pollinated kiwifruit flowers set significantly greater numbers of fruit per flower at four weeks post-bloom and at harvest compared to insect pollination, wind pollination, and pollen exclusion treatment. Artificial pollination produced fruits of greater weight, size, and seed number compared to insect-pollinated flowers, and few fruits were produced in the pollen exclusion and wind pollination treatments. Kiwifruit producers experiencing similar conditions to ours should focus on artificially pollinating their crops rather than relying on managed or wild insects for kiwifruit pollination. Future research should evaluate other methods of artificial pollination to determine their effectiveness, efficiency, and economics in the pollination of kiwifruit grown within the United States.
Assuntos
Actinidia , Actinidiaceae , Ericales , Himenópteros , Abelhas , Animais , Frutas , Polinização , FloresRESUMO
Historic pollination networks are important to understand interactions between different plant and pollinator species, as well as to differentiate between causes and consequences of present insect population decline. Natural history collections in museums store biological proxy data, which is used to reconstruct historic pollination networks of bumble bees. Four bumble bee species (Bombus terrestris, B. ruderatus, B. hortorum and B. subterraneus) were introduced to Aotearoa New Zealand in 1885 specifically for pollination purposes. Pollen samples were collected from museum specimens of three of the four NZ species of bumble bee (excluding B. subterraneus) collected between 1954 and 1972 from 56 locations across the South Island, New Zealand. The most common plants identified on all three bumble bee species were Calluna vulgaris (heather), Ulex (gorse), Cytisus (broom), and Trifolium repens (white clover). However, all three bumble bee species also carried pollen from several native plants (e.g. Arthropodium, Weinmannia, Plagianthus, Quintinia, Veronica, Melicytus) and potentially had been involved in the pollination of these species. This study adds new plant species known to be foraged upon by bumble bees in Aotearoa New Zealand. Further studies on pollination networks in New Zealand will help us understand any changes in host plant preferences over time and after the time period covered by this study.
Assuntos
Himenópteros , Abelhas , Animais , Nova Zelândia , Polinização , Plantas , PólenRESUMO
Annona senegalensis Pers. is a shrub of tropical countries that, during the fruiting period, harbor many insects. All parts of the plant are used and exploited in traditional medicine, food, and firewood. Our study aimed at evaluating the diversity of insects associated with the different phenological stages of A. senegalensis fruits in two phytogeographic zones of Burkina Faso. Sampling was carried out on flowers, green fruits, ripe fruits, and decayed fruits of A. senegalensis. For the first time, a total of 48 insects species belonging to 6 orders and 23 families were identified. These orders were Orthoptera, Hemiptera, Hymenoptera, Coleoptera, Lepidoptera, and Diptera. Our data indicated that the diversity of insect species varies according to the stages of development of the fruit (P = 0.017) and according to the site (P = 2.2e-16). Among these insects, Curculionidae (Endaeus spp.) predominate on flowers, are known to be pollinators, and Formicidae (Messor galla Mayr, [Hymenoptera: Formicidae], Trichomyrmex abyssinicus Forel, [Hymenoptera: Formicidae], and Crematogaster sp.) and Tettigometridae (Hilda undata Walker, [Hemiptera: Tettigometridae]) are suspected to have mutualistic relationships on green fruits. Potential pests belonging to the Scarabaeidae (Pachnoda spp., Polybaphes spp., and Xeloma Maura Boheman, [Coleoptera: Scarabaeidae]), Drosophilidae (Zaprionus indianus Gupta, [Diptera: Drosophilidae]), and Nitidulidae (Carpophilus nepos Murray, [Coleoptera: Nitidulidae]) are associated with ripe and decayed fruits. The data in this study highlight the diversity in terms of pollinators that ensure the fruit production and Formicidae known to protect A. senegalensis against potential pests. These data provide valuable information in terms of valuation of this plant.
Assuntos
Annona , Annonaceae , Besouros , Drosophilidae , Hemípteros , Himenópteros , Magnoliopsida , Animais , Burkina Faso , Insetos , FrutasRESUMO
Large-scale soybean [Glycine max (L.) Merr.] cultivation has substantially transformed the Midwestern landscape in recent decades. Floral nectar produced by immense fields of soybeans has the potential to influence foraging ecology and resource accumulation of honey bee (Apis mellifera L.) colonies. In this study, we combined microscopic and molecular pollen analysis of honey samples with waggle dance inference of spatial foraging patterns to demonstrate that honey bees routinely forage on soybeans in Ohio. In analyzing honey samples from across the state, we found ubiquitous presence of soybean pollen in honey collected from agricultural lands during soybean bloom. The abundance of soybean pollen in honey increased with the amount of soybean fields surrounding the apiaries. Honey bee waggle dances recorded during soybean bloom revealed that honey bees preferred soybean fields for foraging over other habitat types. With these results, future research efforts aimed at enhancing mutual interactions between soybeans and honey bees may represent an unexplored pathway for increasing soybean production while supporting honey bees and other pollinators in the surrounding landscape.
Assuntos
Himenópteros , Néctar de Plantas , Abelhas , Animais , Glycine max , Pólen , Agricultura , PolinizaçãoRESUMO
It is increasingly recognised that intraspecific variation in traits, such as morphology, behaviour, or diet is both ubiquitous and ecologically important. While many species of predators and herbivores are known to display high levels of between-individual diet variation, there is a lack of studies on pollinators. It is important to fill in this gap because individual-level specialisation of flower-visiting insects is expected to affect their efficiency as pollinators with consequences for plant reproduction. Accordingly, the aim of our study was to quantify the level of individual-level specialisation and foraging preferences, as well as interspecific resource partitioning, in three co-occurring species of bees of the genus Ceratina (Hymenoptera: Apidae: Xylocopinae), C. chalybea, C. nigrolabiata, and C. cucurbitina. We conducted a field experiment where we provided artificial nesting opportunities for the bees and combined a short-term mark-recapture study with the dissection of the bees' nests to obtain repeated samples from individual foraging females and complete pollen provisions from their nests. We used DNA metabarcoding based on the ITS2 locus to identify the composition of the pollen samples. We found that the composition of pollen carried on the bodies of female bees and stored in the brood provisions in their nests significantly differed among the three co-occurring species. At the intraspecific level, individual females consistently differed in their level of specialisation and in the composition of pollen carried on their bodies and stored in their nests. We also demonstrate that higher generalisation at the species level stemmed from larger among-individual variation in diets, as observed in other types of consumers, such as predators. Our study thus reveals how specialisation and foraging preferences of bees change from the scale of individual foraging bouts to complete pollen provisions accumulated in their nests over many days. Such a multi-scale view of foraging behaviour is necessary to improve our understanding of the functioning of plant-flower visitor communities.
Assuntos
Himenópteros , Polinização , Feminino , Abelhas , Animais , Código de Barras de DNA Taxonômico , Flores , PólenRESUMO
Bumble bees are important pollinators for both native plants and managed agricultural systems. Accumulating evidence has shown that pesticides, including neonicotinoids, can have a range of adverse effects on bumble bee health. Most laboratory studies that assess the effects of chronic neonicotinoid exposure on bumble bees use syrup as the delivery vehicle, rather than pollen. However, in the field, it is likely that bumble bees are exposed to neonicotinoids in both nectar (syrup) and pollen. To examine the potential for different effects based on the vehicle, we compared two studies of chronic exposure to the neonicotinoid acetamiprid in Bombus impatiens microcolonies. We examined correlations between microcolony endpoints and identified associations between the timing of colony pollen and syrup consumption and drone production. Furthermore, in line with previous results, we found that average drone weight was affected at a range of doses only when microcolonies were exposed to acetamiprid via pollen. In general, our analyses point to the importance of the treatment vehicle and suggest that critical effects on developing brood could be missed when neonicotinoid exposure occurs only through syrup.