Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zoolog Sci ; 38(3): 238-246, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34057348

RESUMO

Growth-retarded (grt) mice display primary congenital hypothyroidism due to the hyporesponsiveness of their thyroid glands to thyroid-stimulating hormone (TSH). We examined somatic growth, anterior pituitary development, and hormonal profiles in female grt mice and normal ones. Although growth in grt females was suppressed 2 weeks after birth, the measured growth parameters and organ weights gradually increased and finally reached close to the normal levels. Grt mice exhibited delayed eye and vaginal openings and remained in a state of persistent diestrus thereafter, plasma estrogen levels being lower than those in normal mice. Grt mice that received normal-donor thyroids showed accelerated growth and their body weights increased up to the sham-normal levels, indicating the importance of early thyroid hormone supplementation. In the anterior pituitary, there were fewer growth hormone (GH) and prolactin (PRL) cells in grt mice than in normal mice as examined at 12 weeks after birth, but the numbers of these cells did not differ from those in normal mice after 24 weeks. Grt mice had more TSH cells than normal mice until 48 weeks. Plasma GH levels in grt mice were lower than those in normal mice at 2 weeks, but did not differ substantially after 5 weeks. Compared with normal mice, grt mice had significantly lower plasma PRL and thyroxine levels, but notably higher TSH levels until 48 weeks. These findings indicate that thyroid hormone deficiency in grt mice causes delayed development and growth, and inappropriate development of GH, PRL and TSH cells, followed by the abnormal secretion of hormones by these pituitary cells.


Assuntos
Hipotireoidismo Congênito/patologia , Hipófise/crescimento & desenvolvimento , Glândula Tireoide/transplante , Animais , Hipotireoidismo Congênito/terapia , Feminino , Hormônio do Crescimento , Camundongos , Tamanho do Órgão , Prolactina , Hormônios Tireóideos , Tireotropina/sangue
2.
PLoS One ; 16(4): e0249482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33882080

RESUMO

The effects of hormonal contraceptives on structural features of the hypothalamus and pituitary are incompletely understood. One prior study reported microstructural changes in the hypothalamus with oral contraceptive pill (OCP) use. However, effects on hypothalamic volume have not been reported. One prior study reported volumetric changes in the pituitary. However, this study was limited by including participants evaluated for neurological symptoms. We sought to determine if OCP use is associated with alteration of hypothalamic or pituitary volume. High-resolution 3T MRI was performed for a prospective cohort of 50 healthy women from 2016 to 2018, which comprised 21 OCP users (age, 19-29) and 29 naturally cycling women (age, 18-36). Participants were excluded if they were pregnant or had significant medical conditions including neurological, psychiatric, and endocrine disorders. After confirming reliability of the image analysis techniques, 5 raters independently performed manual segmentation of the hypothalamus and semi-automated intensity threshold-based segmentation of the pituitary using ITK-SNAP. Total intracranial volume was estimated using FreeSurfer. A general linear model tested the association of OCP use with hypothalamic and pituitary volumes. Hypothalamic (B = -81.2 ± 24.9, p = 0.002) and pituitary (B = -81.2 ± 38.7, p = 0.04) volumes in OCP users were smaller than in naturally cycling women. These findings may be related to interference with known trophic effects of sex hormones and suggest a structural correlate of central OCP effects.


Assuntos
Anticoncepcionais Orais Combinados/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Hipófise/efeitos dos fármacos , Hipófise/crescimento & desenvolvimento , Adolescente , Adulto , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tamanho do Órgão/efeitos dos fármacos , Hipófise/diagnóstico por imagem , Gravidez , Adulto Jovem
3.
Int J Dev Biol ; 65(4-5-6): 195-205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930382

RESUMO

Rax (Rx) genes encode paired-type homeodomain-containing transcription factors present in virtually all metazoan groups. In vertebrates, studies in fish, amphibian, chick and mouse models have revealed that these genes play important roles in the development of structures located at the anterior portion of the central nervous system, in particular the eyes, the hypothalamus and the pituitary gland. In addition, human patients with eye and brain defects carry mutations in the two human Rax paralogues, RAX and RAX2. Here, we review work done in the last years on Rax genes, focusing especially on the function that mouse Rax and its zebrafish homologue, rx3, play in hypothalamic and pituitary development. Work on both of these model organisms indicate that Rax genes are necessary for the patterning, growth and differentiation of the hypothalamus, in particular the ventro-tuberal and dorso-anterior hypothalamus, where they effect their action by controlling expression of the secreted signalling protein, Sonic hedgehog (Shh). In addition, Rax/rx3 mutations disturb the development of the pituitary gland, mimicking phenotypes observed in human subjects carrying mutations in the RAX gene. Thus, along with their crucial role in eye morphogenesis, Rax genes play a conserved role in the development of the hypothalamus and adjacent structures in the vertebrate clade.


Assuntos
Proteínas do Olho , Proteínas de Homeodomínio , Hipotálamo/crescimento & desenvolvimento , Hipófise/crescimento & desenvolvimento , Fatores de Transcrição , Peixe-Zebra , Animais , Proteínas do Olho/fisiologia , Proteínas Hedgehog/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Camundongos , Fatores de Transcrição/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
4.
JCI Insight ; 5(23)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108146

RESUMO

Pituitary developmental defects lead to partial or complete hormone deficiency and significant health problems. The majority of cases are sporadic and of unknown cause. We screened 28 patients with pituitary stalk interruption syndrome (PSIS) for mutations in the FAT/DCHS family of protocadherins that have high functional redundancy. We identified seven variants, four of which putatively damaging, in FAT2 and DCHS2 in six patients with pituitary developmental defects recruited through a cohort of patients with mostly ectopic posterior pituitary gland and/or pituitary stalk interruption. All patients had growth hormone deficiency and two presented with multiple hormone deficiencies and small glands. FAT2 and DCHS2 were strongly expressed in the mesenchyme surrounding the normal developing human pituitary. We analyzed Dchs2-/- mouse mutants and identified anterior pituitary hypoplasia and partially penetrant infundibular defects. Overlapping infundibular abnormalities and distinct anterior pituitary morphogenesis defects were observed in Fat4-/- and Dchs1-/- mouse mutants but all animal models displayed normal commitment to the anterior pituitary cell type. Together our data implicate FAT/DCHS protocadherins in normal hypothalamic-pituitary development and identify FAT2 and DCHS2 as candidates underlying pituitary gland developmental defects such as ectopic pituitary gland and/or pituitary stalk interruption.


Assuntos
Proteínas Relacionadas a Caderinas/genética , Caderinas/genética , Doenças da Hipófise/genética , Adolescente , Animais , Proteínas Relacionadas a Caderinas/metabolismo , Caderinas/metabolismo , Feminino , Humanos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Adulto Jovem
5.
Gen Comp Endocrinol ; 284: 113212, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31238076

RESUMO

In this review article, information about the development of the hypothalamo-hypophyseal axis, endocrine control of metamorphosis, and hormonal and pheromonal involvements in reproductive behavior in some amphibian species is assembled from the works conducted mainly by our research group. The hypothalamic and pituitary development was studied using Bufo embryos and larvae. The primordium of the epithelial hypophysis originates at the anterior neural ridge and migrates underneath the brain to form a Rathke's pouch-like structure. The hypothalamo-hypophyseal axis develops under the influence of thyroid hormone (TH). For the morphological and functional development of the median eminence, which is a key structure in the transport of regulatory hormones to the pituitary, contact of the adenohypophysis with the undeveloped median eminence is necessary. For the development of proopiomelanocortin-producing cells, contact of the pituitary primordium with the infundibulum is required. The significance of avascularization in terms of the function of the intermediate lobe of the pituitary was evidenced with transgenic Xenopus frogs expressing a vascular endothelial growth factor in melanotropes. Metamorphosis progresses via the interaction of TH, adrenal corticosteroids, and prolactin (PRL). We emphasize that PRL has a dual role: modulation of the speed of metamorphic changes and functional development of organs for adult life. A brief description about a novel type of PRL (1B) that was detected was made. A possible reason why the main hypothalamic factor that stimulates the release of thyrotropin is not thyrotropin-releasing hormone, but corticotropin-releasing factor is considered in light of the fact that amphibians are poikilotherms. As regards the reproductive behavior in amphibians, studies were focused on the courtship behavior of the newt, Cynops pyrrhogaster. Male newts exhibit a unique courtship behavior toward sexually developed conspecific females. Hormonal interactions eliciting this behavior and hormonal control of the courtship pheromone secretion are discussed on the basis of our experimental results.


Assuntos
Anfíbios/fisiologia , Hipotálamo/crescimento & desenvolvimento , Hipófise/crescimento & desenvolvimento , Comportamento Sexual Animal/fisiologia , Animais , Sistema Endócrino/fisiologia , Feminino , Masculino , Feromônios/metabolismo
6.
BMC Genomics ; 20(1): 328, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039751

RESUMO

BACKGROUND: Growth rate is one of the most important features for aquaculture species and deciphering its regulation mechanism has great significance both in genetics and in economics. Hypothalamus-pituitary growth axis (HP growth axis) or neuro-endocrine axis plays a vital role in growth regulation in different aquaculture animals. RESULTS: In this study, the HP and liver transcriptomes of two female groups (H and L) with phenotypically extreme growth rate were sequenced using RNA-Seq. A total of 30,524 and 22,341 genes were found expressed in the two tissues, respectively. The average expression levels for the two tissues were almost the same, but the median differed significantly. A differential expression analysis between H and L groups identified 173 and 204 differentially expressed genes (DEGs) in HP and liver tissue, respectively. Pathway analysis revealed that DEGs in HP tissue were enriched in regulation of cell proliferation and angiogenesis while in liver tissue these genes were overrepresented in sterol biosynthesis and transportation. Genomic overlapping analyses found that 4 and 5 DEGs were within growth-related QTL in HP and liver tissue respectively. A deeper analysis of these 9 genes revealed 3 genes were functionally linked to the trait of interest. The expression of 2075 lncRNAs in HP tissue and 1490 in liver tissue were also detected, and some of lncRNAs were highly expressed in the two tissues. CONCLUSIONS: Above all, the results of the present study greatly contributed to the knowledge of the regulation of growth and then assisted the design of new selection strategies for bighead carp with improved growth-related traits.


Assuntos
Carpas/crescimento & desenvolvimento , Carpas/genética , Hipotálamo/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Hipófise/crescimento & desenvolvimento , Transcriptoma , Animais , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Hipotálamo/metabolismo , Fígado/metabolismo , Anotação de Sequência Molecular , Fenótipo , Hipófise/metabolismo
7.
Mar Biotechnol (NY) ; 21(4): 463-474, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30941640

RESUMO

Sexual dimorphism is widespread in fish species. The red-tail catfish (Mystus wyckioides) is a commercially important catfish in the lower reaches of the Lancang River and the Mekong basin, and it shows a growth advantage in males. Here, RNA-seq was for the first time used to explore the gene expression difference between the sexes in the hypothalamus and pituitary of red-tail catfish, respectively. In the hypothalamus, 5732 and 271 unigenes have significantly higher and lower expressions, respectively, in males compared with females. KEGG analysis showed that 212 DEGs were annotated to 216 signaling pathways, and enrichment analysis suggested different levels of cAMP and glutamatergic synapse signaling between male and female hypothalami and some of the DEGs appear involved in gonad development and growth. In the pituitary, we found only 19 differentially expressed unigenes, which were annotated to 32 signaling pathways, most of which play important roles in gonad development.


Assuntos
Peixes-Gato/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Caracteres Sexuais , Transdução de Sinais/genética , Transcriptoma , Animais , Peixes-Gato/crescimento & desenvolvimento , Peixes-Gato/metabolismo , AMP Cíclico/metabolismo , Feminino , Proteínas de Peixes/classificação , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Ácido Glutâmico/metabolismo , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Masculino , Anotação de Sequência Molecular , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Diferenciação Sexual , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
8.
Toxicol Lett ; 285: 81-86, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305326

RESUMO

Bisphenol A (BPA) is a component of polycarbonate plastics, epoxy resins and polystyrene found in many common products. Several reports revealed potent in vivo and in vitro effects. In this study we analyzed the effects of the exposure to BPA in the hypothalamic-pituitary-thyroid axis in female rats, both in vivo and in vitro. Female Sprague-Dawley rats were injected sc from postnatal day 1 (PND1) to PND10 with BPA: 500 µg 50 µl-1 oil (B500), or 50 µg 50 µl-1 (B50), or 5 µg 50 µl-1 (B5). Controls were injected with 50 µl vehicle during the same period. Neonatal exposure to BPA did not modify TSH levels in PND13 females, but it increased them in adults in estrus. Serum T4 was lower in B5 and B500 with regards to Control, whereas no difference was seen in T3. No significant differences were observed in TRH, TSHß and TRH receptor expression between groups. TSH release from PPC obtained from adults in estrus was also higher in B50 with regard to Control. In vitro 24 h pre-treatment with BPA or E2 increased basal TSH as well as prolactin release. On the other hand, both BPA and E2 lowered the response to TRH. The results presented here show that the neonatal exposure to BPA alters the hypothalamic pituitary-thyroid axis in adult rats in estrus, possibly with effects on the pituitary and thyroid. They also show that BPA alters TSH release from rat PPC through direct actions on the pituitary.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Hipotálamo/efeitos dos fármacos , Fenóis/toxicidade , Hipófise/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Ratos Sprague-Dawley , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Glândula Tireoide/crescimento & desenvolvimento , Glândula Tireoide/metabolismo , Tireotropina/sangue , Tireotropina/genética , Hormônio Liberador de Tireotropina/sangue
9.
Artigo em Inglês | MEDLINE | ID: mdl-29079226

RESUMO

The influence of chronic stress, induced by food deprivation (FD) and/or high stocking density (HSD), was assessed on stress, vasotocinergic and isotocinergic pathways of the gilthead sea bream (Sparus aurata). Fish were randomly assigned to one of the following treatments: (1) fed at low stocking density (LSD-F; 5kg·m-3); (2) fed at high stocking density (HSD-F, 40kg·m-3); (3) food-deprived at LSD (LSD-FD); and (4) food-deprived at HSD (HSD-FD). After 21days, samples from plasma, liver, hypothalamus, pituitary and head-kidney were collected. Both stressors (FD and HSD) induced a chronic stress situation, as indicated by the elevated cortisol levels, the enhancement in corticotrophin releasing hormone (crh) expression and the down-regulation in corticotrophin releasing hormone binding protein (crhbp) expression. Changes in plasma and liver metabolites confirmed a metabolic adjustment to cope with energy demand imposed by stressors. Changes in avt and it gene expression, as well as in their specific receptors (avtrv1a, avtrv2 and itr) at central (hypothalamus and pituitary) and peripheral (liver and head-kidney) levels, showed that vasotocinergic and isotocinergic pathways are involved in physiological changes induced by FD or HSD, suggesting that different stressors are handled through different stress pathways in S. aurata.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Proteínas de Peixes/metabolismo , Modelos Neurológicos , Ocitocina/análogos & derivados , Dourada/fisiologia , Estresse Fisiológico , Vasotocina/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Restrição Calórica/efeitos adversos , Aglomeração , Proteínas de Peixes/sangue , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Rim Cefálico/crescimento & desenvolvimento , Rim Cefálico/inervação , Rim Cefálico/metabolismo , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Neurônios/metabolismo , Ocitocina/sangue , Ocitocina/metabolismo , Hipófise/crescimento & desenvolvimento , Hipófise/inervação , Hipófise/metabolismo , Distribuição Aleatória , Dourada/sangue , Dourada/crescimento & desenvolvimento , Vasotocina/sangue
10.
Artigo em Inglês | MEDLINE | ID: mdl-28552377

RESUMO

Pejerrey, Odontesthes bonariensis, is an euryhaline fish of commercial importance in Argentina. This work aimed to determine if water salinity affects the expression of genes involved in somatic growth (gh; ghr-I; ghr-II; igf-I), lipid metabolism (Δ6-desaturase) and food intake (nucb2/nesfatin-1). First, we identified the full-length cDNA sequences of Δ6-desaturase (involved in lipid metabolism) and nesfatin-1 (an anorexigen). Then, pejerrey juveniles were reared during 8weeks in three different water salinity conditions: 2.5g/L (S2.5), 15g/L (S15) and 30g/L (S30) of NaCl. Brain, pituitary, liver and muscle samples were collected in order to analyze mRNA expression. The expression of gh and ghr-II mRNAs increased in the pituitary of fish reared at S2.5 and S30 compared with the S15 group. The expression of ghr-I was higher in the liver of S30 group compared to S2.5 and S15. Igf-I mRNA expression in liver increased with the increment of water salinity, while it decreased in the muscle of S15 and S30 groups. Δ6-desaturase expression increased in S2.5 group compared to S15 in both liver and muscle. S30 caused a decrease in the Δ6-desaturase expression in liver compared to S15. The S30 treatment produced an increase in nucb2/nesfatin-1 mRNA expression in the brain and liver compared to S2.5 and S15. The changes in gene expression observed could help pejerrey perform better during salinity challenges. The S30 condition would likely promote pejerrey somatic growth in the long term.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Perciformes/genética , Cloreto de Sódio/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ingestão de Alimentos/genética , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Linoleoil-CoA Desaturase/genética , Linoleoil-CoA Desaturase/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nucleobindinas , Especificidade de Órgãos , Perciformes/crescimento & desenvolvimento , Perciformes/metabolismo , Hipófise/efeitos dos fármacos , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salinidade
11.
Neuroendocrinology ; 105(4): 357-371, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27871073

RESUMO

BACKGROUND: Kisspeptins are important regulators of the development and function of the hypothalamic-pituitary-gonadal axis. However, the importance of kisspeptin at the pituitary level is unclear. METHODS: We examined the expression profile of kisspeptin in the mouse pituitary during development and in adulthood using RT-PCR, quantitative PCR and immunohistochemistry. RESULTS: Kiss1 mRNA was detected in both embryonic and postnatal pituitaries. Kisspeptin-immunoreactive (+) cells were detected from embryonic day (E) 13.5 throughout adulthood, being localized to the rostroventral portion in the anterior pituitary (AP) in embryos, and also to the dorsocaudal AP postnatally. A large proportion of kisspeptin+ cells were double-labeled with gonadotrope markers including Foxl2, SF-1, and LHß, and the percentage of LHß+ cells in kisspeptin+ cells increased during development. No kisspeptin+ cells were positive for the proliferating cell marker MCM7 (minichromosome maintenance protein 7), but a few kisspeptin+ cells co-expressed the stem/progenitor cell marker Sox2. Kisspeptin expression was similar between sexes and between agonadal SF-1 knockout embryos and wild-type littermates. Kiss1 mRNA levels were not significantly different between sexes or during early postnatal development, but levels in females increased when puberty began and were significantly higher than in males at postpubertal ages. CONCLUSIONS: These results suggest that kisspeptin is expressed in gonadotrope precursors during gonadotrope differentiation, and that kisspeptin expression begins soon after the initiation of αGSU production and is extinguished soon after the initiation of LH production. Furthermore, pituitary kisspeptin expression may be regulated in a gonad-independent manner during development, but may be associated with gonadotrope function in adulthood.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Gonadotrofos/metabolismo , Hipotálamo , Kisspeptinas/metabolismo , Hipófise , Fatores Etários , Animais , Animais Recém-Nascidos , Embrião de Mamíferos , Feminino , Hipotálamo/embriologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Hipófise/embriologia , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , RNA Mensageiro/metabolismo , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Tireotropina Subunidade beta/metabolismo
12.
Endocrinology ; 157(4): 1535-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26741195

RESUMO

Vitamin D (VitD) deficiency affects more than 1 billion people worldwide with a higher prevalence in reproductive-aged women and children. The physiological effects of maternal VitD deficiency on the reproductive health of the offspring has not been studied. To determine whether maternal VitD deficiency affects reproductive physiology in female offspring, we monitored the reproductive physiology of C57BL/6J female offspring exposed to diet-induced maternal VitD deficiency at three specific developmental stages: 1) in utero, 2) preweaning, or 3) in utero and preweaning. We hypothesized that exposure to maternal VitD deficiency disrupts reproductive function in exposed female offspring. To test this hypothesis, we assessed vaginal opening and cytology and ovary and pituitary function as well as gonadotropin and gonadal steroid levels in female offspring. The in utero, preweaning, and in utero and preweaning VitD deficiency did not affect puberty. However, all female mice exposed to maternal VitD deficiency developed prolonged and irregular estrous cycles characterized by oligoovulation and extended periods of diestrus. Despite similar gonadal steroid levels and GnRH neuron density, females exposed to maternal VitD deficiency released less LH on the evening of proestrus. When compared with control female offspring, there was no significant difference in the ability of females exposed to maternal VitD deficiency to respond robustly to exogenous GnRH peptide or controlled ovarian hyperstimulation. These findings suggest that maternal VitD deficiency programs reproductive dysfunction in adult female offspring through adverse effects on hypothalamic function.


Assuntos
Sistemas Neurossecretores/fisiopatologia , Complicações na Gravidez/fisiopatologia , Reprodução/fisiologia , Deficiência de Vitamina D/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Hipotálamo/embriologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/fisiopatologia , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sistemas Neurossecretores/embriologia , Sistemas Neurossecretores/crescimento & desenvolvimento , Ovário/embriologia , Ovário/crescimento & desenvolvimento , Ovário/fisiopatologia , Hipófise/embriologia , Hipófise/crescimento & desenvolvimento , Hipófise/fisiopatologia , Gravidez , Maturidade Sexual/fisiologia , Fatores de Tempo , Desmame
14.
Life Sci ; 141: 1-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26409312

RESUMO

AIMS: Administration of estradiol or compounds with estrogenic activity to newborn female rats results in irreversible masculinization as well as defeminization in the brain and the animals exhibit altered reproductive behavior as adults. The cellular and molecular mechanism involved in inducing the irreversible changes is largely unknown. In the present study, we have monitored the changes in the expression of selected synaptogenesis related genes in the sexually dimorphic brain regions such as POA, hypothalamus and pituitary following 17ß-estradiol administration to neonatal female rats. MAIN METHODS: Female Wistar rats which were administered 17ß-estradiol on day 2 and 3 after birth were sacrificed 120days later and the expression levels of genes implicated in synaptogenesis were monitored by semi-quantitative reverse transcription PCR. Since estradiol induced up-regulation of COX-2 in POA is a marker for estradiol induced masculinization as well as defeminization, in the present study only animals in which the increase in expression of COX-2 gene was observed in POA were included in the study. KEY FINDINGS: Down-regulation of genes such as NMDA-2B, NETRIN-1, BDNF, MT-5 MMP and TNF-α was observed in the pre-optic area of neonatally E2 treated female rat brain but not in hypothalamus and pituitary compared to the vehicle- treated controls as assessed by RT-PCR and Western blot analysis. SIGNIFICANCE: Our results suggest a possibility that down-regulation of genes associated with synaptogenesis in POA, may be resulting in disruption of the cyclical regulation of hormone secretion by pituitary the consequence of which could be infertility and altered reproductive behavior.


Assuntos
Animais Recém-Nascidos/fisiologia , Encéfalo/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Neurogênese/genética , Sinapses/efeitos dos fármacos , Animais , Encéfalo/crescimento & desenvolvimento , Ciclo-Oxigenase 2/biossíntese , Regulação para Baixo/efeitos dos fármacos , Feminino , Feminização , Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Masculino , Neurogênese/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Gravidez , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/crescimento & desenvolvimento , Ratos , Diferenciação Sexual/efeitos dos fármacos
15.
PLoS Biol ; 12(9): e1001952, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25248098

RESUMO

Characterization of the genetic defects causing gonadotropic deficiency has made a major contribution to elucidation of the fundamental role of Kisspeptins and Neurokinin B in puberty onset and reproduction. The absence of puberty may also reveal neurodevelopmental disorders caused by molecular defects in various cellular pathways. Investigations of these neurodevelopmental disorders may provide information about the neuronal processes controlling puberty onset and reproductive capacity. We describe here a new syndrome observed in three brothers, which involves gonadotropic axis deficiency, central hypothyroidism, peripheral demyelinating sensorimotor polyneuropathy, mental retardation, and profound hypoglycemia, progressing to nonautoimmune insulin-dependent diabetes mellitus. High-throughput sequencing revealed a homozygous in-frame deletion of 15 nucleotides in DMXL2 in all three affected patients. This homozygous deletion was associated with lower DMXL2 mRNA levels in the blood lymphocytes of the patients. DMXL2 encodes the synaptic protein rabconnectin-3α, which has been identified as a putative scaffold protein for Rab3-GAP and Rab3-GEP, two regulators of the GTPase Rab3a. We found that rabconnectin-3α was expressed in exocytosis vesicles in gonadotropin-releasing hormone (GnRH) axonal extremities in the median eminence of the hypothalamus. It was also specifically expressed in cells expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) within the pituitary. The conditional heterozygous deletion of Dmxl2 from mouse neurons delayed puberty and resulted in very low fertility. This reproductive phenotype was associated with a lower number of GnRH neurons in the hypothalamus of adult mice. Finally, Dmxl2 knockdown in an insulin-secreting cell line showed that rabconnectin-3α controlled the constitutive and glucose-induced secretion of insulin. In conclusion, this study shows that low levels of DMXL2 expression cause a complex neurological phenotype, with abnormal glucose metabolism and gonadotropic axis deficiency due to a loss of GnRH neurons. Our findings identify rabconectin-3α as a key controller of neuronal and endocrine homeostatic processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 1/genética , Hipoglicemia/genética , Hipotireoidismo/genética , Infertilidade Masculina/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Polineuropatias/genética , Deleção de Sequência , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Sequência de Bases , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Haploinsuficiência , Homozigoto , Humanos , Hipoglicemia/metabolismo , Hipoglicemia/patologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/deficiência , Neurônios/metabolismo , Neurônios/patologia , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Hipófise/patologia , Polineuropatias/metabolismo , Polineuropatias/patologia , Maturidade Sexual , Síndrome , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testículo/patologia , Adulto Jovem
16.
J Anat ; 221(1): 9-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22512474

RESUMO

The living monotremes (platypus and echidnas) are distinguished by the development of their young in a leathery-shelled egg, a low and variable body temperature and a primitive teat-less mammary gland. Their young are hatched in an immature state and must deal with the external environment, with all its challenges of hypothermia and stress, as well as sourcing nutrients from the maternal mammary gland. The Hill and Hubrecht embryological collections have been used to follow the structural development of the monotreme hypothalamus and its connections with the pituitary gland both in the period leading up to hatching and during the lactational phase of development, and to relate this structural maturation to behavioural development. In the incubation phase, development of the hypothalamus proceeds from closure of the anterior neuropore to formation of the lateral hypothalamic zone and putative medial forebrain bundle. Some medial zone hypothalamic nuclei are emerging at the time of hatching, but these are poorly differentiated and periventricular zone nuclei do not appear until the first week of post-hatching life. Differentiation of the pituitary is also incomplete at hatching, epithelial cords do not develop in the pars anterior until the first week, and the hypothalamo-neurohypophyseal tract does not appear until the second week of post-hatching life. In many respects, the structure of the hypothalamus and pituitary of the newly hatched monotreme is similar to that seen in newborn marsupials, suggesting that both groups rely solely on lateral hypothalamic zone nuclei for whatever homeostatic mechanisms they are capable of at birth/hatching.


Assuntos
Hipotálamo , Hipófise , Ornitorrinco , Tachyglossidae , Animais , Hipotálamo/embriologia , Hipotálamo/crescimento & desenvolvimento , Hipófise/embriologia , Hipófise/crescimento & desenvolvimento , Ornitorrinco/embriologia , Ornitorrinco/crescimento & desenvolvimento , Tachyglossidae/embriologia , Tachyglossidae/crescimento & desenvolvimento
17.
Pharm Biol ; 50(6): 747-53, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22092072

RESUMO

CONTEXT: Celsia coromandelina Vahl (Scrophulariaceae) is a shrub found throughout Bangladesh and India, and it is distributed widely in the plains of West Bengal. It is used by the tribal people to treat diarrhea, dysentery, insomnia, skin eruption, fever, syphilis, helminthes infection, and to control fertility. OBJECTIVE: The objective of this study was to fractionate stigmasterol derivative and to investigate the effects of petroleum ether extract of C. coromandelina (PECC) aerial parts on the onset of reproductive maturity and the ovarian steroidogenesis in immature female mice. MATERIALS AND METHODS: PECC was prepared by hot extraction process and one compound was isolated by preparative TLC from it. PECC was completely freed from solvent and administered in immature female mice intraperitoneally once on every alternate day for nine doses. The sexual maturity was observed by means of vaginal opening, first estrus (days), rate of body growth, changes in weight of ovary, uterus and pituitary. The content of ascorbic acid, cholesterol, Δ5-3ß-hydroxy steroid dehydrogenase (Δ5-3ß-HSD) and glucose 6-phosphate dehydrogenase (G 6-PDH) activities in ovaries and carbonic anhydrase activity in uterus were measured by means of biochemical technique in control and treated mice. The activity of PECC was compared with standard marker compound ethinyl estradiol. RESULTS: The isolated compound was characterized as stigmasterol derivative. PECC treatment caused a remarkable delay (30.27 and 18.56%, respectively, by low dose) in sexual maturity compared to vehicle control as evidenced by the age of vaginal opening and appearance of first estrus (cornified smear). PECC treatment also caused a significant fall (58.6 and 50.0%, respectively, by low dose) in Δ5-3ß-HSD and G 6-PDH activities involved in ovarian steroidogenesis compared to vehicle control. Total cholesterol and ascorbic acid content in ovaries and carbonic anhydrase activity in uterus were increased significantly (low dose by 49.3, 424.6 and 82.4%, respectively) along with a reduction in the weight of ovary, uterus and pituitary in comparison to that of control. DISCUSSION AND CONCLUSION: Overall, these results demonstrate that PECC has a good antifertility effect and is responsible for the delayed development of sexual maturity, suppression of ovarian steroidogenesis and elevation of carbonic anhydrase activity in uterus of immature mice. This supports the claim by tribal people as a potential remedy for birth control.


Assuntos
Anticoncepcionais Femininos/farmacologia , Ovário/efeitos dos fármacos , Componentes Aéreos da Planta/química , Extratos Vegetais/farmacologia , Scrophulariaceae/química , Maturidade Sexual/efeitos dos fármacos , Estigmasterol/análogos & derivados , 3-Hidroxiesteroide Desidrogenases/metabolismo , Alcanos/química , Animais , Anidrases Carbônicas/metabolismo , Anticoncepcionais Femininos/administração & dosagem , Anticoncepcionais Femininos/química , Anticoncepcionais Femininos/isolamento & purificação , Relação Dose-Resposta a Droga , Etnofarmacologia , Feminino , Glucosefosfato Desidrogenase/metabolismo , Índia , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Hipófise/efeitos dos fármacos , Hipófise/crescimento & desenvolvimento , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solventes/química , Estigmasterol/isolamento & purificação , Estigmasterol/farmacologia , Útero/efeitos dos fármacos , Útero/crescimento & desenvolvimento , Útero/metabolismo
18.
Endocrinology ; 152(3): 869-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21209022

RESUMO

Reversed feeding (RF) is known to disrupt hormone rhythmicity and metabolism. Although these effects may be mediated in part by phase inversion of glucocorticoid secretion, the precise mechanism is incompletely characterized. In this study, we demonstrate that acute nocturnal food deprivation in male rats suppressed the amplitude of spontaneous GH secretion during the dark phase by 62% (P < 0.001), without affecting baseline secretion. Prolonged RF, which reduced pituitary weight (by 22%; P < 0.05), also suppressed GH pulse height sufficiently to reduce skeletal growth (by 4-5%; P < 0.01) and terminal liver weight (by 11%; P < 0.001). Despite this suppression of the GH axis, proportionate adiposity was not elevated, probably due to the accompanying 16% reduction in cumulative food intake (P < 0.01). We demonstrate that RF also resulted in phase inversion of core clock gene expression in liver, abdominal white adipose tissue (WAT) and skeletal muscle, without affecting their expression patterns in the suprachiasmatic nucleus. In addition, RF resulted in phase inversion of hepatic peroxisome proliferator-activated receptor γ2 mRNA expression, a 3- to 5-fold elevation in fatty acid synthase mRNA in WAT in both light- and dark-phase samples (P < 0.01) and an elevation in muscle uncoupling protein 3 mRNA expression at the beginning of the light phase (P < 0.01). Consumption of a high-fat diet increased inguinal (by 36%; P < 0.05) and retroperitoneal WAT weight (by 72%; P < 0.01) only in RF-maintained rats, doubling the efficiency of lipid accumulation (P < 0.05). Thus, RF not only desynchronizes central and peripheral circadian clocks, and suppresses nocturnal GH secretion, but induces a preobesogenic state.


Assuntos
Ritmo Circadiano , Privação de Alimentos , Hormônio do Crescimento/metabolismo , Tecido Adiposo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica/fisiologia , Grelina/sangue , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Rim/anatomia & histologia , Rim/crescimento & desenvolvimento , Fígado/anatomia & histologia , Fígado/crescimento & desenvolvimento , Masculino , Músculo Esquelético/metabolismo , Tamanho do Órgão , Hipófise/anatomia & histologia , Hipófise/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley , Tíbia/crescimento & desenvolvimento , Fatores de Tempo , Aumento de Peso
19.
Psychoneuroendocrinology ; 35(1): 133-40, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19570613

RESUMO

OBJECTIVE: During puberty, the hypothalamus-pituitary-gonadal (HPG) axis is activated, leading to increases in luteinizing hormone (LH), follicle stimulating hormone (FSH) and sex steroids (testosterone and estradiol) levels. We aimed to study the association between hypothalamic and pituitary volumes and development of pubertal hormones in healthy pubertal children. METHOD: Hormone levels of LH, FSH, estradiol (measured in urine) and testosterone (measured in saliva) were assessed in 85 healthy children (39 boys, 46 girls) between 10 and 15 years of age. Hypothalamic and pituitary gland volumes were segmented on high resolution structural MRI scans. Since sex hormone production is regulated in a sex-specific manner, associations between hormones, hypothalamus and pituitary were analyzed in boys and girls separately. RESULTS: LH, estradiol and testosterone levels all increased with age in both sexes, whereas FSH level did not. Pituitary volume also increased with age and explained 12%, 10% and 8% of the variance in female estradiol, testosterone and LH levels respectively. Corrected for age, pituitary volume explained 17% of FSH level in girls (not boys). Hypothalamic volume did not change with age and did not significantly explain variance in any hormonal level. DISCUSSION: Our study suggests that a larger pituitary volume is related to higher FSH production, but this association seems independent of pubertal development. The positive association between estradiol, LH and testosterone and pituitary volume is related to age-related pubertal development. With respect to the hypothalamus, we did not find convincing evidence for a larger structure to be involved in elevated hormonal production.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Hipotálamo/anatomia & histologia , Ovário/fisiologia , Hipófise/anatomia & histologia , Puberdade/fisiologia , Testículo/fisiologia , Criança , Feminino , Hormônios Esteroides Gonadais/fisiologia , Humanos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/fisiologia , Imageamento por Ressonância Magnética , Masculino , Hipófise/crescimento & desenvolvimento , Hipófise/fisiologia , Caracteres Sexuais
20.
Hum Mol Genet ; 17(19): 2956-66, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18614544

RESUMO

To study the role of the neurofibromatosis-1 (NF1) gene in mammalian brain development, we recently generated mice in which Nf1 gene inactivation occurs in neuroglial progenitor cells using the brain lipid binding protein (BLBP) promoter. We found that Nf1(BLBP)CKO mice exhibit significantly reduced body weights and anterior pituitary gland sizes. We further demonstrate that the small anterior pituitary size reflects loss of neurofibromin expression in the hypothalamus, leading to reduced growth hormone releasing hormone, pituitary growth hormone (GH) and liver insulin-like growth factor-1 (IGF1) production. Since neurofibromin both negatively regulates Ras activity and positively modulates cAMP levels, we examined the signaling pathway responsible for these abnormalities. While BLBP-mediated expression of an activated Ras molecule did not recapitulate the body weight and hypothalamic/pituitary defects, treatment of Nf1(BLBP)CKO mice with rolipram to increase cAMP levels resulted in a partial restoration of the body weight phenotype. Furthermore, conditional expression of the Ras regulatory GAP domain of neurofibromin also did not rescue the body weight or Igf1 mRNA defects in Nf1(BLBP)CKO mice. Collectively, these data demonstrate a critical role for neurofibromin in hypothalamic-pituitary axis function and provide further insights into the short stature and GH deficits seen in children with NF1.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/crescimento & desenvolvimento , Neurofibromatose 1/metabolismo , Neurofibromina 1/metabolismo , Hipófise/crescimento & desenvolvimento , Animais , Peso Corporal , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Hormônio do Crescimento/metabolismo , Humanos , Hipopituitarismo/genética , Hipopituitarismo/metabolismo , Hipotálamo/química , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurofibromatose 1/genética , Neurofibromina 1/química , Neurofibromina 1/genética , Tamanho do Órgão , Hipófise/química , Hipófise/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA