Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1355916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665259

RESUMO

Introduction: 24-Hydroxylase, encoded by the CYP24A1 gene, is a crucial enzyme involved in the catabolism of vitamin D. Loss-of-function mutations in CYP24A1 result in PTH-independent hypercalcaemia with high levels of 1,25(OH)2D3. The variety of clinical manifestations depends on age, and underlying genetic predisposition mutations can lead to fatal infantile hypercalcaemia among neonates, whereas adult symptoms are usually mild. Aim of the study: We report a rare case of an adult with primary hyperparathyroidism and loss-of-function mutations in the CYP24A1 gene and a review of similar cases. Case presentation: We report the case of a 58-year-old woman diagnosed initially with primary hyperparathyroidism. Preoperatively, the suspected mass adjoining the upper pole of the left lobe of the thyroid gland was found via ultrasonography and confirmed by 99mTc scintigraphy and biopsy as the parathyroid gland. The patient underwent parathyroidectomy (a histopathology report revealed parathyroid adenoma), which led to normocalcaemia. After 10 months, vitamin D supplementation was introduced due to deficiency, and the calcium level remained within the reference range. Two years later, biochemical tests showed recurrence of hypercalcaemia with suppressed parathyroid hormone levels and elevated 1,25(OH)2D3 concentrations. Further investigation excluded the most common causes of PTH-independent hypercalcaemia, such as granulomatous disease, malignancy, and vitamin D intoxication. Subsequently, vitamin D metabolites were measured using LC-MS/MS, which revealed high levels of 25(OH)D3, low levels of 24,25(OH)2D3 and elevated 25(OH)2D3/24,25(OH)2D3 ratios, suggesting a defect in vitamin D catabolism. Molecular analysis of the CYP24A1 gene using the NGS technique revealed two pathogenic variants: p.(Arg396Trp) and p.(Glu143del) (rs114368325 and rs777676129, respectively). Conclusions: The diagnostic process for hypercalcaemia becomes complicated when multiple causes of hypercalcaemia coexist. The measurement of vitamin D metabolites using LC-MS/MS may help to identify carriers of CYP24A1 mutations. Subsequent molecular testing may contribute to establishing the exact frequency of pathogenic variants of the CYP24A1 gene and introducing personalized treatment.


Assuntos
Adenoma , Hipercalcemia , Neoplasias das Paratireoides , Vitamina D3 24-Hidroxilase , Humanos , Hipercalcemia/genética , Feminino , Pessoa de Meia-Idade , Vitamina D3 24-Hidroxilase/genética , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/complicações , Neoplasias das Paratireoides/cirurgia , Neoplasias das Paratireoides/patologia , Adenoma/genética , Adenoma/complicações , Adenoma/patologia , Mutação , Paratireoidectomia
2.
G Ital Nefrol ; 40(6)2023 Dec 22.
Artigo em Italiano | MEDLINE | ID: mdl-38156538

RESUMO

Mutations in the 24-hydroxylase gene CYP24A1 have been recognized as causes of childhood idiopathic hypercalcemia (IIH), a rare disease (incidence <1:1,000,000 live births) characterized by increased vitamin D sensitivity, with symptomatic severe hypercalcemia. IIH was first described in Great Britain two years after the start of a program of vitamin D supplementation in milk for the prevention of rickets, manifesting in about 200 children with severe hypercalcemia, dehydration, growth failure, weight loss, muscle hypotonia, and nephrocalcinosis. The association between the epidemic occurrence of IIH and vitamin D administration was quickly attributed to intrinsic hypersensitivity to vitamin D, and the pathogenic mechanism was recognized in the inactivation of Cytochrome P450 family 24 subfamily A member 1 (CYP24A1), which was identified as the molecular basis of the pathology. The phenotypic spectrum of CYP24A1 mutation can be variable, manifesting predominantly with childhood onset and severe symptomatology (severe hypercalcemia, growth retardation, lethargy, muscle hypotonia, dehydration), but also with juvenile-adult onset forms with nephrolithiasis, nephrocalcinosis, and alterations in phosphocalcium homeostasis. We describe the case of a patient in whom the diagnosis of IIH was made in adulthood, presenting with finding of nephrocalcinosis in childhood, and with subsequent onset of severe hypercalcemia with hypercalciuria, hypoparathyroidism, hypervitaminosis D, and recurrent renal lithiasis. Genetic investigation revealed the presence in homozygosity of the c_428_430delAAG_p.Glu143del variant in the CYP24A1 gene with autosomal recessive transmission, a mutation not reported in the literature.


Assuntos
Hipercalcemia , Nefrocalcinose , Nefrolitíase , Adulto , Humanos , Desidratação , Hipercalcemia/genética , Hipercalcemia/diagnóstico , Hipotonia Muscular , Mutação , Nefrocalcinose/genética , Vitamina D , Vitamina D3 24-Hidroxilase/genética
3.
Pediatr Nephrol ; 38(4): 1067-1073, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36156733

RESUMO

BACKGROUND: Idiopathic infantile hypercalcemia (IIH) etiologies include pathogenic variants in CYP24A1, leading to increased 1,25(OH)2 D, hypercalciuria and suppressed parathyroid hormone (PTH), and in SLC34A1 and SLC34A3, leading to the same metabolic profile via increased phosphaturia. IIH has not been previously described in CKD due to kidney hypodysplasia (KHD). METHODS: Retrospective study of children with bilateral KHD and simultaneously tested PTH and 1,25(OH)2D, followed in a tertiary care center between 2015 and 2021. RESULTS: Of 295 screened patients, 139 had KHD, of them 16 (11.5%) had IIH (study group), 26 with normal PTH and any 1,25(OH)2D were controls. There were no differences between groups' gender, obstructive uropathy rate and baseline eGFR. Study patients were younger [median (IQR) age: 5.2 (3.2-11.3) vs. 61 (13.9-158.3) months, p < 0.001], had higher 1,25(OH)2D (259.1 ± 91.7 vs. 156.5 ± 46.4 pmol/l, p < 0.001), total calcium (11.1 ± 0.4 vs. 10.7 ± 0.3 mg/dl, p < 0.001), and lower phosphate standard deviation score (P-SDS) [median (IQR): - 1.4 (- 1.9, - 0.4) vs. - 0.3 (- 0.8, - 0.1), p = 0.03]. During 12 months of follow-up, PTH increased among the study group (8.8 ± 2.8 to 22.7 ± 12.4 pg/ml, p < 0.001), calcium decreased (11 ± 0.5 to 10.3 ± 0.6 mg/dl, p = 0.004), 1,25(OH)2D decreased (259.5 ± 91.7 to 188.2 ± 42.6 pmol/l, p = 0.1), P-SDS increased [median (IQR): - 1.4 (- 1.9, - 0.4) vs. - 0.3 (- 0.9, 0.4), p = 0.04], while eGFR increased. Five of 9 study group patients with available urine calcium had hypercalciuria. Five patients had nephrocalcinosis/lithiasis. Genetic analysis for pathogenic variants in CYP24A1, SLC34A1 and SLC34A3 had not been performed. CONCLUSIONS: Transient IIH was observed in infants with KHD, in association with hypophosphatemia, resembling SLC34A1 and SLC34A3 pathogenic variants' metabolic profile. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Hipercalcemia , Insuficiência Renal Crônica , Lactente , Humanos , Criança , Pré-Escolar , Hipercalcemia/genética , Cálcio/metabolismo , Hipercalciúria/complicações , Hipercalciúria/genética , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Estudos Retrospectivos , Mutação , Hormônio Paratireóideo , Insuficiência Renal Crônica/complicações , Fosfatos , Rim/metabolismo
4.
Nutrients ; 14(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745247

RESUMO

Pathogenic mutations of CYP24A1 lead to an impaired catabolism of vitamin D metabolites and should be considered in the differential diagnosis of hypercalcemia with low parathyroid hormone concentrations. Diagnosis is based on a reduced 24,25-dihydroxyvitamin D to 25-hydroxyvitamin D ratio and confirmed by genetic analyses. Pregnancy is associated with an upregulation of the active vitamin D hormone calcitriol and may thus particularly trigger hypercalcemia in affected patients. We present a case report and a narrative review of pregnant women with CYP24A1 mutations (13 women with 29 pregnancies) outlining the laboratory and clinical characteristics during pregnancy and postpartum and the applied treatment approaches. In general, pregnancy triggered hypercalcemia in the affected women and obstetric complications were frequently reported. Conclusions on drugs to treat hypercalcemia during pregnancy are extremely limited and do not show clear evidence of efficacy. Strictly avoiding vitamin D supplementation seems to be effective in preventing or reducing the degree of hypercalcemia. Our case of a 24-year-old woman who presented with hypercalcemia in the 24th gestational week delivered a healthy baby and hypercalcemia resolved while breastfeeding. Pathogenic mutations of CYP24A1 mutations are rare but should be considered in the context of vitamin D supplementation during pregnancy.


Assuntos
Hipercalcemia , Adulto , Calcitriol/uso terapêutico , Feminino , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/genética , Lactente , Mutação , Gravidez , Vitamina D/metabolismo , Vitamina D/uso terapêutico , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Adulto Jovem
5.
BMC Endocr Disord ; 22(1): 164, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733207

RESUMO

BACKGROUND: Familial hypocalciuric hypercalcemia (FHH) is a rare autosomal dominant disease, which requires differential diagnosis from relatively common primary hyperparathyroidism (PHPT) in order to avoid unnecessary surgery. CASE PRESENTATION: A 16-year-old female had been followed by the department of psychosomatic medicine at our institution. Throughout the follow-up period, her plasma calcium levels were high, plasma Pi levels were relatively low, and plasma intact PTH was relatively high. She was referred to our department to determine the cause of her hypercalcemia. Her 24 h urinary calcium excretion was as low as 100 mg/day, and calcium creatinine clearance ratio was below 0.01. Moreover, she had a family history of hypercalcemia (proband, her brother, and her father). The genetic testing for her family revealed that she, her brother, and her father were definitively diagnosed with FHH type 1 due to the heterozygous calcium-sensing receptor mutation (NM_00388:4:c.164C > T:p.Pro55Leu). CONCLUSION: We experienced a 16-year-old female with FHH, in whom genetic testing identified the heterozygous calcium-sensing receptor mutation (NM_00388:4:c.164C > T:p.Pro55Leu) as pathogenic, permitting a definitive diagnosis of FHH type 1. The genetic testing for calcium sensing receptor is beneficial to distinguish asymptomatic primary hyperparathyroidism from FHH.


Assuntos
Hipercalcemia , Hiperparatireoidismo Primário , Adolescente , Cálcio , Feminino , Humanos , Hipercalcemia/congênito , Hipercalcemia/diagnóstico , Hipercalcemia/genética , Hiperparatireoidismo Primário/diagnóstico , Hiperparatireoidismo Primário/genética , Masculino , Mutação , Receptores de Detecção de Cálcio/genética
6.
Am J Case Rep ; 22: e931116, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662328

RESUMO

BACKGROUND Loss-of-function mutations of the CYP24A1 gene cause a deficiency of the CYP24A1 enzyme, which is involved in the catabolism of 1,25-dihydroxyvitamin D3. Patients who are CYP24A1 enzyme deficient are at increased risk of developing hypercalcemia during pregnancy and should avoid additional vitamin D supplementation. This case report provides additional information for managing and diagnosing patients with a CYP24A1 gene mutation. CASE REPORT A primipara woman with a twin pregnancy was admitted to our hospital for frequent hypertensive crises. She had no history of hypercalcemia-associated signs and symptoms except nephrocalcinosis, and reported no other abnormalities or discomfort at presentation. Laboratory tests revealed that the parathyroid hormone level was suppressed and the serum calcium level was markedly increased. The 25-hydroxyvitamin D level was at the upper limit of the reference range while the 1,25-dihydroxyvitamin D3 level was elevated, suggesting a vitamin D catabolism disorder. A genetic test was performed and a homozygous likely pathogenic variant (based on the American College of Medical Genetics and Genomics guidelines) c.964G>A (p.Glu322Lys) was detected in the CYP24A1 gene (NM_000782.5). A cesarean section delivery was performed due to a single intrauterine demise at 33 weeks of gestation. The preterm newborn was diagnosed with transitional hypercalcemia and hyperphosphatemia; however, he was not treated, as he was asymptomatic. CONCLUSIONS Patients with a CYP24A1 gene mutation are at increased risk of hypercalcemia and fetal demise; therefore, 25-hydroxyvitamin D and calcium levels should be monitored in routine blood tests during pregnancy. Hypercalcemia in a newborn should be carefully evaluated and treated, as hypercalciuria can lead to nephrocalcinosis.


Assuntos
Hipercalcemia , Cesárea , Feminino , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/genética , Recém-Nascido , Masculino , Mutação , Gravidez , Gravidez de Gêmeos , Vitamina D3 24-Hidroxilase/genética
7.
J Clin Endocrinol Metab ; 106(10): 2915-2937, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34125233

RESUMO

CONTEXT: Idiopathic infantile hypercalcemia (IIH), an uncommon disorder characterized by elevated serum concentrations of 1,25 dihydroxyvitamin D (1,25(OH)2D) and low parathyroid hormone (PTH) levels, may present with mild to severe hypercalcemia during the first months of life. Biallelic variants in the CYP24A1 or SLC34A1 genes are associated with severe IIH. Little is known about milder forms. OBJECTIVE: This work aims to characterize the genetic associations and biochemical profile of mild IIH. METHODS: This is a cross-sectional study including children between age 6 months and 17 years with IIH who were followed in the Calcium Clinic at the Hospital for Sick Children (SickKids), Toronto, Canada. Twenty children with mild IIH on calcium-restricted diets were evaluated. We performed a dietary assessment and analyzed biochemical measures including vitamin D metabolites and performed a stepwise molecular genetic analysis. Complementary biochemical assessments and renal ultrasounds were offered to first-degree family members of positive probands. RESULTS: The median age was 16 months. Median serum levels of calcium (2.69 mmol/L), urinary calcium:creatinine ratio (0.72 mmol/mmol), and 1,25(OH)2D (209 pmol/L) were elevated, whereas intact PTH was low normal (22.5 ng/L). Mean 1,25(OH)2D/PTH and 1,25(OH)2D/25(OH)D ratios were increased by comparison to healthy controls. Eleven individuals (55%) had renal calcification. Genetic variants were common (65%), with the majority being heterozygous variants in SLC34A1 and SLC34A3, while a minority showed variants of CYP24A1 and other genes related to hypercalciuria. CONCLUSION: The milder form of IIH has a distinctive vitamin D metabolite profile and is primarily associated with heterozygous SLC34A1 and SLC34A3 variants.


Assuntos
Hipercalcemia/genética , Hormônio Paratireóideo/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Vitamina D/análogos & derivados , Adolescente , Cálcio/sangue , Cálcio/urina , Criança , Pré-Escolar , Creatinina/urina , Estudos Transversais , Feminino , Variação Genética , Heterozigoto , Humanos , Hipercalcemia/sangue , Hipercalcemia/urina , Lactente , Masculino , Vitamina D/sangue , Vitamina D3 24-Hidroxilase/genética
8.
BMC Endocr Disord ; 21(1): 20, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33499837

RESUMO

BACKGROUND: Familial hypocalciuric hypercalcemia (FHH) is a heterogeneous autosomal-dominant disorder of calcium hemostasis that may be difficult to distinguish clinically from mild primary hyperparathyroidism. Loss-of-function mutations mainly involving Arg15 residue of the adaptor-related protein complex 2, sigma subunit 1 (AP2S1) cause a rarer, more recently recognized form of FHH, FFH type-3. Recently, 18F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT) showed superior sensitivity to conventional imaging in localizing parathyroid adenomas. We report a new FFH type-3 patient who underwent unnecessary parathyroidectomy in association with misleading FCH-PET/CT imaging. CASE PRESENTATION: A 29-year old woman was initially evaluated for parathyroid hormone (PTH)-dependent hypercalcemia in 2013. Medical history was positive only for chronic constipation and malaise with no personal or family history of hypercalcemia, kidney stones, or neck surgery. Over seven years, serum calcium level was 2.51-2.89 mmol/L with concomitant PTH level of 58.7-94.8 mmol/L. Serum phosphate levels were in the low/low normal range. Serum creatinine and magnesium levels were normal. 25-hydroxy vitamin D level was 13 nmol/L. 24-hour urine calcium level was 1.92 mmol/day but increased to 6.99 mmol/day after treatment with cholecalciferol 1000 IU daily. Bone mineral density and renal ultrasound were normal. Parathyroid ultrasound showed two hypoechoic nodules inferior to the left and right thyroid lobes; however, 99mtechnitium-sestamibi scans (2013, 2016, 2018) were negative. FCH-PET/CT (2019) showed focal uptake co-localizing with the nodule inferior to the left thyroid lobe. The patient underwent left inferior parathyroidectomy and pathology was consistent with parathyroid hyperplasia. However, postoperatively, serum calcium and PTH levels remained elevated and FCH-PET/CT and ultrasound showed persistence of the uptake/nodule. Whole exome sequencing showed Arg15Cys mutation in the AP2S1 gene characteristic of FHH type-3. CONCLUSIONS: In this new case of FHH type-3, FCH-PET/CT failed to localize to the hyperplastic parathyroid glands and localized instead to apparently a lymph node. This, together with increased urinary calcium after vitamin D supplementation, led to unnecessary parathyroidectomy. Given the increasingly lower cost of genetic testing and the cost of follow up and unnecessary surgery, it may prudent to include genetic testing for FHH early on in patients with mild PTH-dependent hypercalcemia.


Assuntos
Cálcio/urina , Colina/análogos & derivados , Hipercalcemia/congênito , Hipercalcemia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Complexo 2 de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Adulto , Densidade Óssea , Cálcio/sangue , Feminino , Humanos , Hipercalcemia/genética , Hiperparatireoidismo Primário/complicações , Hiperparatireoidismo Primário/genética , Hiperparatireoidismo Primário/cirurgia , Rim/diagnóstico por imagem , Glândulas Paratireoides/diagnóstico por imagem , Hormônio Paratireóideo/sangue , Paratireoidectomia , Compostos Radiofarmacêuticos , Resultado do Tratamento
9.
Endocrinology ; 161(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987399

RESUMO

We previously reported that daily administration of a pharmacological dose of eldecalcitol, an analog of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], increased bone mass by suppressing bone resorption. These antiresorptive effects were found to be mediated by the vitamin D receptor (VDR) in osteoblast-lineage cells. Using osteoblast-lineage-specific VDR conditional knockout (Ob-VDR-cKO) mice, we examined whether proresorptive activity induced by the high-dose 1α,25(OH)2D3 was also mediated by VDR in osteoblast-lineage cells. Administration of 1α,25(OH)2D3 (5 µg/kg body weight/day) to wild-type mice for 4 days increased the number of osteoclasts in bone and serum concentrations of C-terminal crosslinked telopeptide of type I collagen (CTX-I, a bone resorption marker). The stimulation of bone resorption was concomitant with the increase in serum calcium (Ca) and fibroblast growth factor 23 (FGF23) levels, and decrease in body weight. This suggests that a toxic dose of 1α,25(OH)2D3 can induce bone resorption and hypercalcemia. In contrast, pretreatment of wild-type mice with neutralizing anti-receptor activator of NF-κB ligand (RANKL) antibody inhibited the 1α,25(OH)2D3-induced increase of osteoclast numbers in bone, and increase of CTX-I, Ca, and FGF23 levels in serum. The pretreatment with anti-RANKL antibody also inhibited the 1α,25(OH)2D3-induced decrease in body weight. Consistent with observations in mice conditioned with anti-RANKL antibody, the high-dose administration of 1α,25(OH)2D3 to Ob-VDR-cKO mice failed to significantly increase bone osteoclast numbers, serum CTX-I, Ca, or FGF23 levels, and failed to reduce the body weight. Taken together, this study demonstrated that the proresorptive, hypercalcemic, and toxic actions of high-dose 1α,25(OH)2D3 are mediated by VDR in osteoblast-lineage cells.


Assuntos
Reabsorção Óssea/genética , Linhagem da Célula/genética , Osteoblastos/metabolismo , Receptores de Calcitriol/fisiologia , Vitamina D/análogos & derivados , Animais , Reabsorção Óssea/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Osteoblastos/citologia , Receptores de Calcitriol/genética , Vitamina D/farmacologia
10.
BMJ Case Rep ; 13(9)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967944

RESUMO

The present case report describes a 65-year-old man with Lynch syndrome and hypercalcaemia associated with hyperparathyroidism. Parathyroid surgery confirmed the diagnosis of parathyroid carcinoma. Serum calcium and parathyroid hormone (PTH) concentrations serially increased after initial surgery. Imaging study and subsequent biopsy confirmed lung metastases with mismatch repair deficiency. Pembrolizumab was initiated achieving 60% reduction in tumour burden.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Colorretais Hereditárias sem Polipose/complicações , Neoplasias Pulmonares/tratamento farmacológico , Instabilidade de Microssatélites , Neoplasias das Paratireoides/terapia , Idoso , Biomarcadores Tumorais/genética , Biópsia , Cálcio/sangue , Quimioterapia Adjuvante/métodos , Neoplasias Colorretais Hereditárias sem Polipose/sangue , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/terapia , Análise Mutacional de DNA , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/genética , Hipercalcemia/terapia , Hiperparatireoidismo/diagnóstico , Hiperparatireoidismo/genética , Hiperparatireoidismo/terapia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/patologia , Glândulas Paratireoides/cirurgia , Hormônio Paratireóideo/sangue , Neoplasias das Paratireoides/diagnóstico , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/patologia , Paratireoidectomia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Tomografia Computadorizada de Emissão de Fóton Único , Resultado do Tratamento , Sequenciamento do Exoma
11.
J Pediatr Endocrinol Metab ; 33(10): 1353-1358, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32866123

RESUMO

Objectives Both CYP24A1 and SLC34A1 gene mutations are responsible for idiopathic infantile hypercalcemia, whereas loss-of-function mutations in CYP24A1 (25-OH-vitamin D-24-hydroxylase) lead to a defect in the inactivation of active 1.25(OH)2D; mutations in SLC34A1 encoding renal sodium phosphate cotransporter NaPi-IIa lead to primary renal phosphate wasting combined with an inappropriate activation of vitamin D. The presence of mutations in both genes has not been reported in the same patient until today. Case presentation Hypercalcemia was incidentally detected when a 13-month-old boy was being examined for urinary tract infection. After 21 months, hypercalcemia was detected in his six-month-old sister. High dose of vitamin D was not given to both siblings. Both of them also had hypophosphatemia and decreased tubular phosphate reabsorption. Intensive hydration, furosemide and oral phosphorus treatment were given. Bilateral medullary nephrocalcinosis was detected in both siblings and their father. Serum Ca and P levels were within normal limits at follow-up in both siblings. Siblings and their parents all carry a homozygous stop codon mutation (p.R466*) in CYP24A1. Interestingly, both siblings and the father also have a heterozygous splice-site mutation (IVS6(+1)G>A) in SLC34A1. The father has nephrocalcinosis. Conclusions A biallelic loss-of-function mutation in the CYP24A1 gene was identified as responsible for hypercalcemia, hypercalciuria and nephrocalcinosis. In addition, a heterozygous mutation in the SLC34A1 gene, although not being the main pathogenic factor, might contribute to the severe phenotype of both patients.


Assuntos
Hipercalcemia/genética , Hipercalcemia/patologia , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Vitamina D3 24-Hidroxilase/genética , Adulto , Criança , Pai , Feminino , Humanos , Lactente , Masculino , Irmãos
13.
Rev. med. Rosario ; 85(2): 77-80, mayo-ago. 2019.
Artigo em Espanhol | LILACS | ID: biblio-1053282

RESUMO

Un paciente de 12 años consultó por vómitos recurrentes asociados con cefaleas, con varios episodios durante 7 meses, y retraso ponderal secundario a esa sintomatología. Había recibido previamente un tratamiento con antibióticos e inhibidores de la bomba de protones, por diagnóstico de gastritis a Helicobacter pylori, después de biopsia gástrica realizada durante una videoendoscopía digestiva alta. Se desconoce su historia familiar porque es hijo adoptivo. Al examen físico el paciente estaba adelgazado, sin tumoración a nivel de cuello; presentaba genitales prepuberales. Como el paciente continuó con vómitos cíclicos recurrentes, siguieron exámenes complementarios donde se constató en 2 oportunidades hipercalcemia (13,2-13,6 mg/dl), acompañada de hipofosfatemia (2,7 mg/dl). Con un diagnóstico presuntivo de hiperparatiroidismo primario se realizaron dosajes de laboratorio: calcemia total e iónica elevada (12,1 y 5,6mg/dl respectivamente), fosfatemia baja (2,8 mg/dl), fosfatasa alcalina sérica normal (151 mU/ml), PTH sérica normal (47,1 pg/ml), 25(OH)vitamina D sérica adecuada (22 ng/ml). La ecografía de glándulas tiroides y paratiroides mostró una imagen redondeada hipoecoica, avascular, de 4 mm axial por 4 mm cefalocaudal, por 3 mm ánteroposterior en topografía paratiroidea derecha, planteándose la posibilidad de hipertrofia paratiroidea versus adenopatía. Se realizó estudio de paratiroides por imágenes: centellograma con 99mTc-MIBI y PET-CT con 18F-colina, pero no se constató captación anormal. Se realizaron nuevos estudios de laboratorio: en orina de 24 horas el calcio era de 19 mg, el cociente calcio/creatinina urinaria 0,03 mg/mg, la reabsorción tubular de fósforo normal (82%) y el cociente de las tasas de depuración de calcio y creatinina muy bajo (0,00046). El CTX sérico era bajo. El diagnóstico clínico fue de hipercalcemia hipocalciúrica; ante la falta de antecedentes familiares, se realizó un estudio de posibles mutaciones puntuales en el gen del receptor de calcio (CaSR), hallándose la presencia en heterocigosis de la mutación p.Arg185Gln (p.R185Q) en la posición 554 (c.554G>A) del exón 4 del gene CaSR. Esto implica el cambio de una arginina por glutamina en el codón 185 de la proteína, y confirma el origen genético de la hipercalcemia hipocalciúrica en nuestro paciente. La edad ósea era de 12 años, y se indicó un tratamiento con testosterona i.m. a bajas dosis para acelerar el desarrollo puberal; luego de 4 aplicaciones mensuales su talla se ha incrementado en 4 cm y su peso en 3 kg. Una aplicación subcutánea de denosumab (60 mg) no controló la hipercalcemia. Continuó por un año con hipoorexia y un episodio de vómitos por semana, pero actualmente tiene buen apetito y excelente tolerancia digestiva. Se le ha prescripto cinacalcet oral (AU)


A 12-year-old patient who consulted for recurrent vomiting associated with headaches, with several episodes for 7 months, and low body weight. The patient had previously received treatment with antibiotics and proton pump inhibitors, due to gastritis with Helicobacter pylori, after gastric biopsy performed during videoendoscopy. His family history is unknown because he is an adopted son. At physical examination the patient was thin, without neck tumor; he had prepubertal genitalia. As he patient continued with recurrent vomiting, he was admitted for further evaluation. Laboratory studies revealed hypercalcemia (13.2-13.6 mg/dl), accompanied by hypophosphatemia (2.7 mg/dl). With a presumptive diagnosis of primary hyperparathyroidism, complementary determinations were performed: total and high total and ionized serum calcium (12.1 and 5.6 mg/dl, respectively), normal serum alkaline phosphatase (151 mU/ml), and PTH (47.1 pg/ml), and normal serum 25(OH) vitamin D (32 ng/ml). The ultrasonography of thyroid and parathyroid glands showed a rounded hypoechoic, avascular image, 4 mm in diameter in the lower right parathyroid topography. A parathyroid imaging studies were performed: scintigraphy with 99mTc-MIBI and PET-CT with 18F-choline, but no abnormal uptake was observed. New laboratory studies were carried out: in 24-hour urine the calcium was 19 mg, the urinary calcium/creatinine ratio was 0.03 mg/mg, the tubular reabsorption of phosphorus was normal (82%) and the ratio of clearances rates of calcium and creatinine very low (0.00046). Serum CTX was low. The clinical diagnosis was hypocalciuric hypercalcemia; in the absence of a family history, a study of possible point mutations in the calcium receptor gene (CaSR) was carried out; there was a heterozygous mutation: p.Arg185Gln (p.R185Q) at position 554 (c.554G)>A) of exon 4 of the CaSR gene. This involves the exchange of an arginine for glutamine at codon 185 of the protein, and confirms the genetic origin of the hypocalciuric hypercalcemia in our patient. Bone age was 12 years, and a treatment with testosterone i.m. at low doses to accelerate pubertal development was started; after 4 monthly applications height has increased by 4 cm and weight by 3 kg. Loss of appetite and a weekly episode of postprandial vomiting continued during one yeas, but now his appetite is normal and vomiting has subsided. A subcutaneous application of denosumab (60 mg) did not control hypercalcemia. He has been prescribed oral cinacalcet (AU)


Assuntos
Humanos , Masculino , Criança , Receptores de Detecção de Cálcio/genética , Cinacalcete/uso terapêutico , Hipercalcemia/diagnóstico , Hipercalcemia/genética , Doenças Genéticas Inatas
14.
Eur J Endocrinol ; 180(1): 59-70, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407919

RESUMO

Objective Molecular diagnosis is a useful diagnostic tool in calcium metabolism disorders. The calcium-sensing receptor (CaSR) is known to play a central role in the regulation of extracellular calcium homeostasis. We performed clinical, biochemical and genetic characterization of sequence anomalies in this receptor in a cohort of 130 individuals from 82 families with suspected alterations in the CASR gene, one of the largest series described. Methods The CASR gene was screened for mutations by polymerase chain reaction followed by direct Sanger sequencing. Results Presumed CaSR-inactivating mutations were found in 65 patients from 26 families. These patients had hypercalcemia (median: 11.3 mg/dL) but normal or abnormally high parathyroid hormone (PTH) levels (median: 52 pg/mL). On the other hand, presumed CaSR-activating mutations were detected in 17 patients from eight families. These patients had a median serum calcium level of 7.4 mg/dL and hypoparathyroidism (median: PTH 13 pg/mL). Further, common polymorphisms previously associated with high blood ionized calcium levels were found in 27 patients (median calcium: 10.6 mg/dL; median PTH: 65 pg/mL) with no other alterations in CASR. Overall, we found 30 different mutations, of which, 14 have not been previously reported (p.Ala26Ser, p.Cys60Arg, p.Lys119Ile, p.Leu123Met, p.Glu133Val, p.Gly222Glu, p.Phe351Ile, p.Cys542Tyr, p.Cys546Gly, p.Cys677Tyr, p.Ile816Val, p.Ala887Asp, p.Glu934*, p.Pro935_Gln945dup). Conclusions Patients with CASR mutations may not fit the classic clinical pictures of hypercalcemia with hypocalciuria or hypocalcemia with hypercalciuria. Molecular studies are important for confirming the diagnosis and distinguishing it from other entities. Our genetic analysis confirmed CaSR disorders in 82 patients in the study cohort.


Assuntos
Hipercalcemia/genética , Hipercalciúria/genética , Hipocalcemia/genética , Mutação , Polimorfismo Genético , Receptores de Detecção de Cálcio/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Extratos Vegetais
15.
Medicine (Baltimore) ; 97(40): e12090, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30290590

RESUMO

RATIONALE: Malakoplakia is a rare disease characterized by the presence of nongranulomatous macrophage infiltration. In most cases, it affects the urinary tract. Malakoplakia can cause acute kidney injury when it is localized in the kidneys. PATIENT CONCERNS: Here, we report the case of a 65-year-old female patient with renal malakoplakia responsible for hypercalcemia. During her initial assessment, she was also diagnosed 25-OH vitamin D insufficiency, for which she was prescribed oral cholecalciferol. Three months later, she developed severe hypercalcemia with normal 25-OH vitamin D and parathyroid hormone levels and high 1,25-dihydroxyvitamin D levels. DIAGNOSES: After a superimposed granulomatous disease was excluded, malakoplakia cells were suspected to be responsible for the abnormal 25-hydroxyvitamin D3 1-alpha-hydroxylase activity, which was confirmed by immunohistochemistry. INTERVENTIONS: Cholecalciferol was stopped, the patient was rehydrated with intravenous physiological saline, and prednisone was initiated to decrease the enzyme activity. OUTCOMES: Six months later, she displayed normal serum calcium, 25-OH vitamin D and 1,25-dihydroxyvitamin D levels. LESSONS: This case illustrates that malakoplakia may exhibit ectopic 25-hydroxyvitamin D3 1-alpha-hydroxylase activity and cause severe hypercalcemia upon vitamin D supplementation. Therefore, such supplementation should not be given in malakoplakia patients without an actual deficiency and requires careful monitoring of serum calcium.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Hipercalcemia/genética , Nefropatias/complicações , Malacoplasia/complicações , Deficiência de Vitamina D/terapia , Idoso , Cálcio/sangue , Colecalciferol/efeitos adversos , Suplementos Nutricionais , Expressão Ectópica do Gene , Feminino , Humanos , Nefropatias/sangue , Nefropatias/genética , Malacoplasia/sangue , Malacoplasia/genética , Hormônio Paratireóideo/sangue , Deficiência de Vitamina D/complicações , Vitaminas/efeitos adversos
16.
G Ital Nefrol ; 35(3)2018 May.
Artigo em Italiano | MEDLINE | ID: mdl-29786188

RESUMO

Mutations of the CYP24A1 gene are associated with alterations in the activity of the enzyme 25-OH-D-24-hydroxylase, resulting in dysfunction of the metabolism of vitamin D. This enzymatic deficiency may cause hypercalcemia, low parathyroid hormone levels, hypercalciuria, nephrolithiasis and nephrocalcinosis. The clinical case of a young woman with recurrent renal lithiasis, hypercalcemia and hypercalciuria is described. These features are linked to deficiency of the enzyme 25-OH-D-24-hydroxylase, therefore to a biallelic mutation of the CYP24A1 gene.


Assuntos
Hipercalcemia/genética , Cálculos Renais/genética , Vitamina D3 24-Hidroxilase/genética , Adulto , Cálcio/sangue , Cálcio/urina , Colecalciferol/sangue , Citratos/urina , Feminino , Genótipo , Humanos , Hipercalcemia/complicações , Hipercalciúria/etiologia , Hipercalciúria/genética , Cálculos Renais/sangue , Cálculos Renais/etiologia , Cálculos Renais/urina , Mutação de Sentido Incorreto , Hormônio Paratireóideo/sangue , Fósforo/sangue , Recidiva , Deleção de Sequência , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase/deficiência
17.
J Clin Res Pediatr Endocrinol ; 10(1): 83-86, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28874334

RESUMO

Idiopathic infantile hypercalcemia (IIH) was associated with vitamin-D supplementation in the 1950's. Fifty years later, mutations in the CYP241A gene, involved in the degradation of vitamin-D, have been identified as being a part of the etiology. We report a case of a 21-month old girl, initially hospitalized due to excessive consumption of water and behavioral difficulties. Blood tests showed hypercalcemia and borderline high vitamin-D levels. Renal ultrasound revealed medullary nephrocalcinosis. An abnormality in vitamin-D metabolism was suspected and genetic testing was performed. This revealed the patient to be compound heterozygous for a common (p.E143del) and a novel (likely) disease-causing mutation (p.H83D) in the CYP24A1 gene. The hypercalcemia normalized following a calcium depleted diet and discontinuation of vitamin-D supplementation. Increased awareness of the typical symptoms of hypercalcemia, such as anorexia, polydipsia, vomiting and failure to thrive, is of utmost importance in diagnosing IHH early and preventing long-term complications such as nephrocalcinosis. Further identification of as many disease-causing mutations in the CYP24A1 gene as possible can help identification of predisposed individuals in whom vitamin-D supplementation should be reconsidered.


Assuntos
Hipercalcemia , Vitamina D3 24-Hidroxilase/genética , Feminino , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/dietoterapia , Hipercalcemia/genética , Lactente , Mutação , Nefrocalcinose/etiologia
18.
J Appl Genet ; 58(3): 349-353, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28470390

RESUMO

Idiopathic infantile hypercalcemia (IIH) is a mineral metabolism disorder characterized by severe hypercalcemia, failure to thrive, vomiting, dehydration, and nephrocalcinosis. The periodical increase in incidence of IIH, which occurred in the twentieth century in the United Kingdom, Poland, and West Germany, turned out to be a side effect of rickets over-prophylaxis. It was recently discovered that the condition is linked to two genes, CYP24A1 and SLC34A1. The aim of the study was to search for pathogenic variants of the genes in adult persons who were shortlisted in infancy as IIH caused by "hypersensitivity to vit. D". All persons were found to carry mutations in CYP24A1 or SLC34A1, nine and two persons respectively. The changes were biallelic, with one exception. Incidence of IIH in Polish population estimated on the basis of allele frequency of recurrent p.R396W CYP24A1 variant, is 1:32,465 births. It indicates that at least a thousand homozygotes and compound heterozygotes with risk of IIH live in the country. Differences in mechanism of developing hypercalcemia indicate that its prevention may vary in both IIH defects. Theoretically, vit. D restriction is a first indication for CYP24A1 defect (which disturbs 1,25(OH)2D degradation) and phosphate supplementation for SLC34A1 defect (which impairs renal phosphate transport). In conclusion, we suggest that molecular testing for CYP24A1 and SLC34A1 mutations should be performed in each case of idiopathic hypercalcemia/hypercalciuria, both in children and adults, to determine the proper way for acute treatment and complications prevention.


Assuntos
Hipercalcemia/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Vitamina D3 24-Hidroxilase/genética , Adulto , Análise Mutacional de DNA , Feminino , Frequência do Gene , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação , Nefrocalcinose/genética , Polônia , Vitamina D , Adulto Jovem
19.
Nephrol Ther ; 13(3): 146-153, 2017 May.
Artigo em Francês | MEDLINE | ID: mdl-28456639

RESUMO

We present the case of a family whose members have high levels of serum calcium (hypercalcaemia) by loss of function of the enzyme vitamin D 24-hydroxylase due to bi-allelic mutations in the CYP24A1 gene: c.443 T>C (p.Leu148Pro) and c.1187 G>A (p.Arg396Gln). 24-VITD hydroxylase is a key player in regulating the circulating calcitriol, its tissue concentration and its biological effects. Transmission is recessive. The estimated prevalence of stones in the affected subjects is estimated between 10 and 15%. The loss of peripheral catabolism of vitamin D metabolites in patients with an inactivating mutation of CYP24A1 is responsible for persistent high levels of 1,25-dihydroxyvitamin D especially after sun exposure and a charge of native vitamin D. Although there are currently no recommendations (French review) on this subject, this disease should be suspected in association with recurrent calcium stones with nephrocalcinosis, and a calcitriol-dependent hypercalcaemia with adapted low parathyroid hormone levels. Resistance to corticosteroid therapy distinguishes it from other calcitriol-dependent hypercalcemia. A ratio of 25-hydroxyvitamin D/24.25 hydroxyvitamin D>50, is in favor of hypercalcemia with vitamin D deficiency 24-hydroxylase. Genetic analysis of CYP24A1 should be performed at the second step. The current therapeutic management includes the restriction native vitamin D supplementation and the limitation of sun exposure. Biological monitoring will be based on serum calcium control and modulation of parathyroid hormone concentrations.


Assuntos
Hipercalcemia/genética , Mutação , Irmãos , Vitamina D3 24-Hidroxilase/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores/sangue , Feminino , Humanos , Masculino , Linhagem , Vitamina D3 24-Hidroxilase/sangue
20.
J Clin Endocrinol Metab ; 102(5): 1440-1446, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28324001

RESUMO

Context: The P450 enzyme CYP24A1 is the principal inactivator of vitamin D metabolites. Biallelic loss-of-function mutations in CYP24A1 are associated with elevated serum levels of 1,25-dihydroxyvitamin D3 with consequent hypercalcemia and hypercalciuria and represent the most common form of idiopathic infantile hypercalcemia (IIH). Current management strategies for this condition include a low-calcium diet, reduced dietary vitamin D intake, and limited sunlight exposure. CYP3A4 is a P450 enzyme that inactivates many drugs and xenobiotics and may represent an alternative pathway for inactivation of vitamin D metabolites. Objective: Our goal was to determine if rifampin, a potent inducer of CYP3A4, can normalize mineral metabolism in patients with IIH due to mutations in CYP24A1. Methods: We treated two patients with IIH with daily rifampin (10 mg/kg/d, up to a maximum of 600 mg). Serum calcium, phosphorus, parathyroid hormone (PTH), liver, and adrenal function and vitamin D metabolites, as well as urinary calcium excretion, were monitored during treatment of up to 13 months. Results: Prior to treatment, both patients had hypercalcemia, hypercalciuria, and nephrocalcinosis with elevated serum 1,25-dihydroxyvitamin D3 and suppressed serum PTH. Daily treatment with rifampin was well tolerated and led to normalization or improvement in all clinical and biochemical parameters. Conclusion: These observations suggest that rifampin-induced overexpression of CYP3A4 provides an alternative pathway for inactivation of vitamin D metabolites in patients who lack CYP24A1 function.


Assuntos
Indutores do Citocromo P-450 CYP3A/uso terapêutico , Hipercalcemia/tratamento farmacológico , Doenças do Recém-Nascido/tratamento farmacológico , Erros Inatos do Metabolismo/tratamento farmacológico , Rifampina/uso terapêutico , Adolescente , Calcitriol/sangue , Cálcio/sangue , Cálcio/urina , Criança , Feminino , Humanos , Hipercalcemia/sangue , Hipercalcemia/complicações , Hipercalcemia/genética , Hipercalciúria/etiologia , Doenças do Recém-Nascido/sangue , Doenças do Recém-Nascido/genética , Masculino , Erros Inatos do Metabolismo/sangue , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/genética , Mutação , Nefrocalcinose/etiologia , Hormônio Paratireóideo/sangue , Fósforo/sangue , Resultado do Tratamento , Vitamina D/sangue , Vitamina D3 24-Hidroxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA