Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 33(7): e12994, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156126

RESUMO

Prader-Willi Syndrome (PWS) is a rare and incurable congenital neurodevelopmental disorder, resulting from the absence of expression of a group of genes on the paternally acquired chromosome 15q11-q13. Phenotypical characteristics of PWS include infantile hypotonia, short stature, incomplete pubertal development, hyperphagia and morbid obesity. Hypothalamic dysfunction in controlling body weight and food intake is a hallmark of PWS. Neuroimaging studies have demonstrated that PWS subjects have abnormal neurocircuitry engaged in the hedonic and physiological control of feeding behavior. This is translated into diminished production of hypothalamic effector peptides which are responsible for the coordination of energy homeostasis and satiety. So far, studies with animal models for PWS and with human post-mortem hypothalamic specimens demonstrated changes particularly in the infundibular and the paraventricular nuclei of the hypothalamus, both in orexigenic and anorexigenic neural populations. Moreover, many PWS patients have a severe endocrine dysfunction, e.g. central hypogonadism and/or growth hormone deficiency, which may contribute to the development of increased fat mass, especially if left untreated. Additionally, the role of non-neuronal cells, such as astrocytes and microglia in the hypothalamic dysregulation in PWS is yet to be determined. Notably, microglial activation is persistently present in non-genetic obesity. To what extent microglia, and other glial cells, are affected in PWS is poorly understood. The elucidation of the hypothalamic dysfunction in PWS could prove to be a key feature of rational therapeutic management in this syndrome. This review aims to examine the evidence for hypothalamic dysfunction, both at the neuropeptidergic and circuitry levels, and its correlation with the pathophysiology of PWS.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Rede Nervosa/fisiopatologia , Síndrome de Prader-Willi , Animais , Humanos , Hiperfagia/etiologia , Hiperfagia/metabolismo , Hiperfagia/psicologia , Hipogonadismo/etiologia , Hipogonadismo/metabolismo , Hipogonadismo/psicologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neuropeptídeos/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/psicologia , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patologia , Síndrome de Prader-Willi/psicologia
2.
Mol Cell Endocrinol ; 527: 111218, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636254

RESUMO

Maternal obesity malprograms offspring obesity and associated metabolic disorder. As a common phenomenon in obesity, endoplasmic reticulum (ER) stress also presents early prior to the development. Here, we investigate metabolic effect of early activated hypothalamic ER stress in offspring exposed to maternal obesogenic environment and the underlying mechanism in ICR mice model. We found higher body weight, hyperphagia and defective hypothalamic feeding-circuit in the offspring born to obese dams, with hypothalamic ER stress, and even more comprehensive cell proteotoxic stress were induced during the early postnatal period. However, neonatal inhibition of hypothalamic ER stress worsened the metabolic end. We believe that the uncoordinated interaction between the unfolded protein response and the heat shock response, regulated by heat shock protein 70, might be responsible for the malformed hypothalamic feeding circuit of the offspring exposure to maternal obesogenic conditions and were linked with deleterious metabolism in adulthood, especially when exposure to high-energy conditions.


Assuntos
Estresse do Retículo Endoplasmático , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Resposta a Proteínas não Dobradas , Animais , Feminino , Hiperfagia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Obesidade Materna/induzido quimicamente , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia
3.
Sci Rep ; 10(1): 19618, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184349

RESUMO

Gestational complications, including preeclampsia and gestational diabetes, have long-term adverse consequences for offspring's metabolic and cardiovascular health. A low-grade systemic inflammatory response is likely mediating this. Here, we examine the consequences of LPS-induced gestational inflammation on offspring's health in adulthood. LPS was administered to pregnant C57Bl/6J mice on gestational day 10.5. Maternal plasma metabolomics showed oxidative stress, remaining for at least 5 days after LPS administration, likely mediating the consequences for the offspring. From weaning on, all offspring was fed a control diet; from 12 to 24 weeks of age, half of the offspring received a western-style diet (WSD). The combination of LPS-exposure and WSD resulted in hyperphagia and increased body weight and body fat mass in the female offspring. This was accompanied by changes in glucose tolerance, leptin and insulin levels and gene expression in liver and adipose tissue. In the hypothalamus, expression of genes involved in food intake regulation was slightly changed. We speculate that altered food intake behaviour is a result of dysregulation of hypothalamic signalling. Our results add to understanding of how maternal inflammation can mediate long-term health consequences for the offspring. This is relevant to many gestational complications with a pro-inflammatory reaction in place.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hiperfagia/etiologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/efeitos adversos , Troca Materno-Fetal/fisiologia , Caracteres Sexuais , Aumento de Peso , Tecido Adiposo/metabolismo , Animais , Regulação do Apetite/genética , Feminino , Hipotálamo/fisiopatologia , Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Gravidez
4.
Nutrients ; 12(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138074

RESUMO

Maternal high-fat (HF) is associated with offspring hyperphagia and obesity. We hypothesized that maternal HF alters fetal neuroprogenitor cell (NPC) and hypothalamic arcuate nucleus (ARC) development with preferential differentiation of neurons towards orexigenic (NPY/AgRP) versus anorexigenic (POMC) neurons, leading to offspring hyperphagia and obesity. Furthermore, these changes may involve hypothalamic bHLH neuroregulatory factors (Hes1, Mash1, Ngn3) and energy sensor AMPK. Female mice were fed either a control or a high fat (HF) diet prior to mating, and during pregnancy and lactation. HF male newborns were heavier at birth and exhibited decreased protein expression of hypothalamic bHLH factors, pAMPK/AMPK and POMC with increased AgRP. As adults, these changes persisted though with increased ARC pAMPK/AMPK. Importantly, the total NPY neurons were increased, which was consistent with the increased food intake and adult fat mass. Further, NPCs from HF newborn hypothalamic tissue showed similar changes with preferential NPC neuronal differentiation towards NPY. Lastly, the role of AMPK was further confirmed with in vitro treatment of Control NPCs with pharmacologic AMPK modulators. Thus, the altered ARC development of HF offspring results in excess appetite and reduced satiety leading to obesity. The underlying mechanism may involve AMPK/bHLH pathways.


Assuntos
Animais Recém-Nascidos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hiperfagia/etiologia , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/etiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Apetite/fisiologia , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Neurogênese/fisiologia , Neurônios/metabolismo , Gravidez , Saciação/fisiologia
5.
Sci Rep ; 10(1): 10160, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576879

RESUMO

A previous study demonstrated that a high-fat diet (HFD), administered for one-three-days, induces hypothalamic inflammation before obesity's established, and the long term affects leptin signaling/action due to inflammation. We investigate whether exposure to particulate matter of a diameter of ≤2.5 µm (PM2.5) in mice fed with a chow diet leads to similar metabolic effects caused by high-fat feeding. Compared to the filtered air group (FA), one-day-exposure-PM2.5 did not affect adiposity. However, five-days-exposure-PM2.5 increased hypothalamic microglia density, toll-like-receptor-4 (Tlr4), and the inhibitor-NF-kappa-B-kinase-epsilon (Ikbke) expression. Concurrently, fat mass, food intake (FI), and ucp1 expression in brown adipose tissue were also increased. Besides, decreased hypothalamic STAT3-phosphorylation and Pomc expression were found after twelve-weeks-exposure-PM2.5. These were accompanied by increased FI and lower energy expenditure (EE), leading to obesity, along with increased leptin and insulin levels and HOMA. Mechanistically, the deletion of Tlr4 or knockdown of the Ikbke gene in the hypothalamus was sufficient to reverse the metabolic outcomes of twelve-weeks-exposure-PM2.5. These data demonstrated that short-term exposure-PM2.5 increases hypothalamic inflammation, similar to a HFD. Long-term exposure-PM2.5 is even worse, leading to leptin resistance, hyperphagia, and decreased EE. These effects are most likely due to chronic hypothalamic inflammation, which is regulated by Tlr4 and Ikbke signaling.


Assuntos
Poluição do Ar/efeitos adversos , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/etiologia , Leptina/metabolismo , Microglia/patologia , Obesidade/etiologia , Material Particulado/efeitos adversos , Adipócitos Marrons/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica , Hiperfagia/etiologia , Hipotálamo/efeitos dos fármacos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/genética , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Am J Emerg Med ; 38(12): 2552-2556, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31889577

RESUMO

AIM: Carbon monoxide (CO) is a colorless, odorless gas and tasteless. CO poisoning (COP) is one of the most frequently encountered inhalation poisonings. The most common cause of morbidity in COP is delayed neurological sequelae (DNS). DNS is the occurrence of neuropsychiatric findings within 2-240 days after discharge of patients with COP and there are no definitive diagnostic criteria. The aim of our study is; to determine the risk factors and incidence of DNS. METHOD: Our study is a retrospective, observational study. Patients with the diagnosis of COP in the emergency department between 2015 and 2016 were included in the study. Patients age, gender, findings in the initial physical examination (PE) and neurological examination (NE), blood carboxyhemoglobin (COHb) level, relation between hyperbaric oxygen (HBO) treatment and DNS were assessed. RESULTS: Total of 72 patients were included in the study. Mean age was 33.43 ±â€¯20.89. It was determined that pathological findings in the initial NE are a significant predictive factor for DNS (Odds ratio 18.600, p:0.004). Significant relation between NE and HBO treatment was present (p:00.1). There was no statistically significant relationship between initial COHb level and receiving HBO treatment (p:0.9). Median COHb level of patients with DNS was 30 (min:10, max: 43), median COHb level of patients without DNS was 25 (min:10, max:44) and there was no statistically significant relationship between the two groups according to COHb levels (p:0.7). CONCLUSION: Pathological findings in the initial neurological examination had a predictive value for delayed neurological sequelae in patients with carbon monoxide poisoning.


Assuntos
Intoxicação por Monóxido de Carbono/fisiopatologia , Carboxihemoglobina/metabolismo , Doenças do Sistema Nervoso/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Atenção , Intoxicação por Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/psicologia , Intoxicação por Monóxido de Carbono/terapia , Criança , Pré-Escolar , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Confusão/epidemiologia , Confusão/etiologia , Confusão/fisiopatologia , Confusão/psicologia , Feminino , Hospitalização , Humanos , Oxigenoterapia Hiperbárica/estatística & dados numéricos , Hiperfagia/epidemiologia , Hiperfagia/etiologia , Hiperfagia/fisiopatologia , Hiperfagia/psicologia , Lactente , Tempo de Internação , Masculino , Transtornos da Memória/epidemiologia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Pessoa de Meia-Idade , Rigidez Muscular/epidemiologia , Rigidez Muscular/etiologia , Rigidez Muscular/fisiopatologia , Rigidez Muscular/psicologia , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/psicologia , Exame Neurológico , Exame Físico , Equilíbrio Postural , Fatores de Risco , Transtornos de Sensação/epidemiologia , Transtornos de Sensação/etiologia , Transtornos de Sensação/fisiopatologia , Transtornos de Sensação/psicologia , Fatores de Tempo
7.
J Neurophysiol ; 121(3): 928-939, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649980

RESUMO

Hyperphagia is common in diabetes and may worsen hyperglycemia and diabetic complications. The responsible mechanisms are not well understood. The hypothalamus is a key center for the control of appetite and energy homeostasis. The ventromedial nucleus (VMH) and arcuate nucleus (ARC) are two critical nuclei involved in these processes. We have reported that R-spondin 1 (Rspo1) and its receptor leucin-rich repeat and G protein-coupled receptor 4 (LGR4) in the VMH and ARC suppressed appetite, but the downstream neuronal pathways are unclear. Here we show that neurons containing cocaine and amphetamine-regulated transcript (CART) in ARC express both LGR4 and insulin receptor; intracerebroventricular injection of Rspo1 induced c-Fos expression in CART neurons of ARC; and silencing CART in ARC attenuated the anorexigenic actions of Rspo1. In diabetic and obese fa/fa rats, Rspo1 mRNA in VMH and CART mRNA in ARC were reduced; this was accompanied by increased food consumption. Insulin treatment restored Rspo1 and CART gene expressions and normalized eating behavior. Chronic intracerebroventricular injection of Rspo1 inhibited food intake and normalized diabetic hyperphagia; intracerebroventricular injection of Rspo1 or insulin increased CART mRNA in ARC. In the CART neuron cell line, Rspo1 and insulin potentiated each other on pERK and ß-catenin, and in rats, they acted synergistically to inhibit food intake. Silencing Rspo1 in VMH reduced CART expression in ARC and attenuated the inhibitory effect of insulin on food intake. In conclusion, our data indicated that CART works downstream of Rspo1 and Rspo1 mediated the action of insulin centrally. The altered Rspo1/CART neurocircuit in the hypothalamus contributes to hyperphagia in diabetes. NEW & NOTEWORTHY This study reports that cocaine and amphetamine-regulated transcript (CART) neurons in the arcuate nucleus (ARC) of hypothalamus acted downstream of R-spondin 1 (Rspo1) to inhibit food intake. The Rspo1 mRNA level in ventromedial nucleus (VMH) and CART mRNA level in ARC were reduced in type 1 diabetic rat and obese fa/fa rat. Rspo1 and insulin acted synergistically on phospho-ERK and ß-catenin signal pathways and in suppressing food intake. The current results proposed that altered Rspo1/CART neurocircuit in the hypothalamus contributes to hyperphagia in diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Trombospondinas/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Ingestão de Alimentos/efeitos dos fármacos , Hiperfagia/tratamento farmacológico , Hiperfagia/etiologia , Hiperfagia/fisiopatologia , Hipotálamo/fisiopatologia , Insulina/farmacologia , Insulina/uso terapêutico , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Trombospondinas/genética
8.
Obesity (Silver Spring) ; 26(6): 1026-1033, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29707908

RESUMO

OBJECTIVE: Ad libitum high-fat diets (HFDs) spontaneously increase caloric intake in rodents, which correlates positively with weight gain. However, it remains unclear why rodents overeat HFDs. This paper investigated how changing the proportion of diet that came from HFDs might alter daily caloric intake in mice. METHODS: Mice were given 25%, 50%, or 90% of their daily caloric need from an HFD, along with ad libitum access to a low-fat rodent chow diet. Food intake was measured daily to determine how these HFD supplements impacted total daily caloric intake. Follow-up experiments addressed the timing of HFD feeding. RESULTS: HFD supplements did not alter total caloric intake or body weight. In a follow-up experiment, mice consumed approximately 50% of their daily caloric need from an HFD in 30 minutes during the light cycle, a time when mice do not normally consume food. CONCLUSIONS: An HFD did not disrupt regulation of total daily caloric intake, even when up to 90% of total calories came from the HFD. However, HFDs increased daily caloric intake when provided ad libitum and were readily consumed by mice outside of their normal feeding cycle. Ad libitum HFDs appear to induce overconsumption beyond the mechanisms that regulate daily caloric intake.


Assuntos
Dieta Hiperlipídica/psicologia , Ingestão de Alimentos , Ingestão de Energia , Comportamento Alimentar , Hiperfagia/etiologia , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso
9.
Nutrition ; 48: 122-126, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29469013

RESUMO

OBJECTIVE: We investigated the effect of intermittent food restriction (IFR) cycles on hypothalamic expression of lipogenic proteins and induction of overeating. METHODS: Female Wistar rats were distributed in three groups: free access to feed (control, C), 2 d feed restriction at 50% of C intake followed by 3 d (restricted 3, R3) or 5 d (restricted 5, R5) ad libitum feeding. After 6 wk, the rats were submitted to euthanasia and collected the hypothalamus and blood. The deposits of retroperitoneal, mesenteric, and gonadal fat were weighed. The expression of the mRNA for sterol regulatory element binding protein (SREBP) 1c and 2 and acetyl-CoA carboxylase in the hypothalamus were determined by real-time polymerase chain reaction, and glucose and triacylglycerol were evaluated by a commercial kit. Body mass and food intake were measured daily. RESULTS: IFR promoted increased expression of SREBP-2 in both treated groups and, in R5, increased expression of SREBP-1c. The serum triacylglycerol, mesenteric deposit, and total fat content were higher in R3. Neither of the treatment intervals altered the expression of the mRNA of acetyl-CoA carboxylase enzyme but induced hyperglycemia and higher food intake immediately after food restriction. CONCLUSION: IFR affected the expression of SREBP-1c in R5 and SREBP-2 in the hypothalamus and caused overeating immediately after fasting in both groups. We suggest that hypothalamic and peripheral alterations, coupled with compulsive eating behavior in the ad libitum period, indicate risks for diabetes mellitus and recovery of body mass after interruption of IFR.


Assuntos
Restrição Calórica/efeitos adversos , Ingestão de Alimentos/genética , Jejum/efeitos adversos , Hiperfagia/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Feminino , Hiperfagia/etiologia , Hipotálamo/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
10.
J Nutr Biochem ; 55: 89-103, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413493

RESUMO

In humans, complementary feeding should be started after 6 months-old; the introduction of any food or water before this time is considered early weaning, which is associated with health problems in adulthood. Cow's milk is a common food introduced to children less than 6 months that has inadequate nutritional composition mainly due to a worse casein: whey protein ratio compared to human milk. We hypothesized that suckling rats fed with cow's milk, rich in bioactive peptides, develop further metabolic dysfunctions. From postnatal day (PN) 14 to 20, Wistar rat pups were divided into 3 groups: rat milk (RM) - pups received rat milk orally in a syringe; cow's milk (CM), pups received cow's milk; CM with high protein (CM-H), CM with twice protein amount of rat milk. Pups were killed on PN21 and PN180. At PN21, CM males had lower visceral fat mass compared with other groups. Serum corticosterone was higher in CM-H males, despite no change in glucocorticoid metabolism in liver and visceral fat. At PN180, CM and CM-H females had greater fat depots and hyperphagia, although no alteration in leptinemia and leptin signaling in hypothalamus. CM-H females had a trend of hypoinsulinemia and significant decrease in HOMA-ß, suggesting lower insulin secretion. Males from CM-H group had only lower total body protein mass. CM males had hypercorticosteronemia associated with lower expression of 11ßHDS1 in visceral fat. In conclusion, early introduction of cow's milk in neonate rats leads to gender-dependent differences in metabolic and endocrine parameters in the short- and long-term.


Assuntos
Adiposidade/fisiologia , Hiperfagia/etiologia , Leite/efeitos adversos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Animais Lactentes , Feminino , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Gordura Intra-Abdominal/fisiologia , Leptina/metabolismo , Masculino , Leite/química , Proteínas do Leite/análise , Ratos Wistar
11.
Appetite ; 120: 527-535, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988760

RESUMO

Consumption of fat and sugar induces hyperphagia and increases the prevalence of obesity and diabetes type 2. Low-grade inflammation in the hypothalamus, a key brain area involved in the regulation of energy homeostasis is shown to blunt signals of satiety after long term high fat diet. The fact that this mechanism can be activated after a few days of hyperphagia before apparent obesity is present led to our hypothesis that hypothalamic inflammation is induced with fat and sugar consumption. Here, we used a free-choice high-fat high-sugar (fcHFHS) diet-induced obesity model and tested the effects of differential overnight nutrient intake during the final experimental night on markers of hypothalamic inflammation. Male Wistar rats were fed a control diet or fcHFHS diet for one week, and assigned to three different feeding conditions during the final experimental night: 1) fcHFHS-fed, 2) fed a controlled amount of chow diet, or 3) fasted. RT-qPCR and Western blot were utilized to measure hypothalamic gene and protein expression, of cytokines and intermediates of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Lastly, we investigated the effects of acute fat intake on markers of hypothalamic inflammation in fat-naïve rats. fcHFHS-fed rats consumed more calories, increased adipose tissue, and showed elevated expression of hypothalamic inflammation markers (increased phosphorylation of NF-κB protein, Nfkbia and Il6 gene expression) compared to chow-fed rats. These effects were evident in rats consuming relative high amounts of fat. Removal of the fat and sugar, or fasting, during the final experimental night ameliorated hypothalamic inflammation. Finally, a positive correlation was observed between overnight acute fat consumption and hypothalamic NF-κB phosphorylation in fat-naïve rats. Our data indicate that one week of fcHFHS diet, and especially the fat component, promotes hypothalamic inflammation, and removal of the fat and sugar component reverses these detrimental effects.


Assuntos
Ingestão de Alimentos , Hipotálamo/fisiopatologia , Inflamação/fisiopatologia , Obesidade/fisiopatologia , Adiposidade , Animais , Citocinas/sangue , Citocinas/genética , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Açúcares da Dieta/administração & dosagem , Modelos Animais de Doenças , Privação de Alimentos , Hiperfagia/dietoterapia , Hiperfagia/etiologia , Leptina/sangue , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Ratos , Ratos Wistar
12.
Appetite ; 122: 6-16, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011002

RESUMO

In this article we review the scientific contributions of Anthony Sclafani, with specific emphasis on his early work on the neural substrate of the ventromedial hypothalamic (VMH) hyperphagia-obesity syndrome, and on the development of diet-induced obesity (DIO). Over a period of 20 years Sclafani systematically investigated the neuroanatomical basis of the VMH hyperphagia-obesity syndrome, and ultimately identified a longitudinal oxytocin-containing neural tract contributing to its expression. This tract has since been implicated in mediating the effects of at least two gastrointestinal satiety factors. Sclafani was one of the first investigators to demonstrate DIO in rats as a result of exposure to multiple palatable food items (the "supermarket diet"), and concluded that diet palatability was the primary factor responsible for DIO. Sclafani went on to investigate the potency of specific carbohydrate and fat stimuli for inducing hyperphagia, and in so doing discovered that post-ingestive nutrient effects contribute to the elevated intake of palatable food items. To further investigate this effect, he devised an intragastric infusion system which allowed the introduction of nutrients into the gut paired with the oral intake of flavored solutions, an apparatus her termed the "electronic esophagus". Sclafani coined the term "appetition" to describe the effect of intestinal nutrient sensing on post-ingestive appetite stimulation. Sclafani's productivity in the research areas he chose to investigate has been nothing short of extraordinary, and his studies are characterized by inventive hypothesizing and meticulous experimental design. His results and conclusions, to our knowledge, have never been contradicted.


Assuntos
Hipotálamo/fisiologia , Animais , Apetite , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Ingestão de Alimentos , Preferências Alimentares , Trato Gastrointestinal/fisiologia , Humanos , Hiperfagia/diagnóstico , Hiperfagia/etiologia , Obesidade/diagnóstico , Obesidade/etiologia , Saciação/fisiologia , Paladar/fisiologia
13.
Diabetes Obes Metab ; 19(12): 1751-1761, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28556449

RESUMO

AIMS: There are no treatments for the extreme hyperphagia and obesity in Prader-Willi syndrome (PWS). The bestPWS clinical trial assessed the efficacy, safety and tolerability of the methionine aminopeptidase 2 (MetAP2) inhibitor, beloranib. MATERIALS AND METHODS: Participants with PWS (12-65 years old) were randomly assigned (1:1:1) to biweekly placebo, 1.8 mg beloranib or 2.4 mg beloranib injection for 26 weeks at 15 US sites. Co-primary endpoints were the changes in hyperphagia [measured by Hyperphagia Questionnaire for Clinical Trials (HQ-CT); possible score 0-36] and weight by intention-to-treat. ClinicalTrials.gov registration: NCT02179151. RESULTS: One-hundred and seven participants were included in the intention-to-treat analysis: placebo (n = 34); 1.8 mg beloranib (n = 36); or 2.4 mg beloranib (n = 37). Improvement (reduction) in HQ-CT total score was greater in the 1.8 mg (mean difference -6.3, 95% CI -9.6 to -3.0; P = .0003) and 2.4 mg beloranib groups (-7.0, 95% CI -10.5 to -3.6; P = .0001) vs placebo. Compared with placebo, weight change was greater with 1.8 mg (mean difference - 8.2%, 95% CI -10.8 to -5.6; P < .0001) and 2.4 mg beloranib (-9.5%, 95% CI -12.1 to -6.8; P < .0001). Injection site bruising was the most frequent adverse event with beloranib. Dosing was stopped early due to an imbalance in venous thrombotic events in beloranib-treated participants (2 fatal events of pulmonary embolism and 2 events of deep vein thrombosis) compared with placebo. CONCLUSIONS: MetAP2 inhibition with beloranib produced statistically significant and clinically meaningful improvements in hyperphagia-related behaviours and weight loss in participants with PWS. Although investigation of beloranib has ceased, inhibition of MetAP2 is a novel mechanism for treating hyperphagia and obesity.


Assuntos
Aminopeptidases/antagonistas & inibidores , Depressores do Apetite/uso terapêutico , Cinamatos/uso terapêutico , Cicloexanos/uso terapêutico , Compostos de Epóxi/uso terapêutico , Glicoproteínas/antagonistas & inibidores , Hiperfagia/prevenção & controle , Obesidade/prevenção & controle , Síndrome de Prader-Willi/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Sesquiterpenos/uso terapêutico , Adolescente , Adulto , Aminopeptidases/metabolismo , Depressores do Apetite/administração & dosagem , Depressores do Apetite/efeitos adversos , Índice de Massa Corporal , Cinamatos/administração & dosagem , Cinamatos/efeitos adversos , Cicloexanos/administração & dosagem , Cicloexanos/efeitos adversos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Término Precoce de Ensaios Clínicos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/efeitos adversos , Feminino , Glicoproteínas/metabolismo , Humanos , Hiperfagia/etiologia , Hiperfagia/fisiopatologia , Análise de Intenção de Tratamento , Masculino , Metionil Aminopeptidases , Obesidade/etiologia , Síndrome de Prader-Willi/fisiopatologia , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/efeitos adversos , Sesquiterpenos/administração & dosagem , Sesquiterpenos/efeitos adversos , Índice de Gravidade de Doença , Trombose Venosa/induzido quimicamente , Trombose Venosa/fisiopatologia , Redução de Peso/efeitos dos fármacos , Adulto Jovem
14.
Endocrinology ; 157(11): 4257-4265, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27649090

RESUMO

Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 µg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11ß-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances.


Assuntos
Glucocorticoides/metabolismo , Hiperfagia/etiologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Obesidade/etiologia , Animais , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida , Ingestão de Alimentos/efeitos dos fármacos , Glucocorticoides/sangue , Glucocorticoides/farmacologia , Hiperfagia/sangue , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Fatores de Tempo
15.
Pak J Pharm Sci ; 29(3): 757-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27166525

RESUMO

Lower levels of 5-hydroxytryptamine (5-HT; serotonin) in the brain elicit sugar craving, while ingestion of sugar rich diet improves mood and alleviates anxiety. Gender differences occur not only in brain serotonin metabolism but also in a serotonin mediated functional responses. The present study was therefore designed to investigate gender related differences on the effects of long term consumption of sugar rich diet on the metabolism of serotonin in the hypothalamus and whole brain which may be relevant with the hyperphagic and anxiety reducing effects of sugar rich diet. Male and female rats were fed freely on a sugar rich diet for five weeks. Hyperphagic effects were monitored by measuring total food intake and body weights changes during the intervention. Anxiolytic effects of sugar rich diet was monitored in light-dark transition test. The results show that ingestion of sugar rich diet decreased serotonin metabolism more in female than male rats. Anxiolytic effects were elicited only in male rats. Hyperphagia was comparable in both male and female rats. Finings would help in understanding the role of sugar rich diet-induced greater decreases of serotonin in sweet craving in women during stress.


Assuntos
Ansiedade , Carboidratos da Dieta/administração & dosagem , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Serotonina/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Fissura , Carboidratos da Dieta/toxicidade , Modelos Animais de Doenças , Regulação para Baixo , Ingestão de Alimentos , Ingestão de Energia , Comportamento Alimentar , Feminino , Preferências Alimentares , Hiperfagia/etiologia , Hiperfagia/fisiopatologia , Hiperfagia/psicologia , Hipotálamo/fisiopatologia , Masculino , Atividade Motora , Ratos Wistar , Fatores Sexuais , Fatores de Tempo , Aumento de Peso
16.
Metabolism ; 65(5): 714-727, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27085778

RESUMO

BACKGROUND: The circadian clock regulates various physiological and behavioral rhythms such as feeding and locomotor activity. Feeding at unusual times of the day (inactive phase) is thought to be associated with obesity and metabolic disorders in experimental animals and in humans. OBJECTIVE: The present study aimed to determine the underlying mechanisms through which time-of-day-dependent feeding influences metabolic homeostasis. METHODS: We compared food consumption, wheel-running activity, core body temperature, hormonal and metabolic variables in blood, lipid accumulation in the liver, circadian expression of clock and metabolic genes in peripheral tissues, and body weight gain between mice fed only during the sleep phase (DF, daytime feeding) and those fed only during the active phase (NF, nighttime feeding). All mice were fed with the same high-fat high-sucrose diet throughout the experiment. To the best of our knowledge, this is the first study to examine the metabolic effects of time-imposed restricted feeding (RF) in mice with free access to a running wheel. RESULTS: After one week of RF, DF mice gained more weight and developed hyperphagia, higher feed efficiency and more adiposity than NF mice. The daily amount of running on the wheel was rapidly and obviously reduced by DF, which might have been the result of time-of-day-dependent hypothermia. The amount of daily food consumption and hypothalamic mRNA expression of orexigenic neuropeptide Y and agouti-related protein were significantly higher in DF, than in NF mice, although levels of plasma leptin that fluctuate in an RF-dependent circadian manner, were significantly higher in DF mice. These findings suggested that the DF induced leptin resistance. The circadian phases of plasma insulin and ghrelin were synchronized to RF, although the corticosterone phase was unaffected. Peak levels of plasma insulin were remarkably higher in DF mice, although HOMA-IR was identical between the two groups. Significantly more free fatty acids, triglycerides and cholesterol accumulated in the livers of DF, than NF mice, which resulted from the increased expression of lipogenic genes such as Scd1, Acaca, and Fasn. Temporal expression of circadian clock genes became synchronized to RF in the liver but not in skeletal muscle, suggesting that uncoupling metabolic rhythms between the liver and skeletal muscle also contribute to DF-induced adiposity. CONCLUSION: Feeding at an unusual time of day (inactive phase) desynchronizes peripheral clocks and causes obesity and metabolic disorders by inducing leptin resistance, hyperphagia, physical inactivity, hepatic fat accumulation and adiposity.


Assuntos
Adiposidade , Comportamento Animal , Relógios Circadianos , Métodos de Alimentação/efeitos adversos , Hiperfagia/etiologia , Doenças Metabólicas/etiologia , Obesidade/etiologia , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Regulação do Apetite , Regulação da Temperatura Corporal , Ingestão de Energia , Metabolismo Energético , Fígado Gorduroso/etiologia , Regulação da Expressão Gênica , Hiperfagia/metabolismo , Hiperfagia/fisiopatologia , Hipotálamo/metabolismo , Metabolismo dos Lipídeos , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
17.
J Biol Chem ; 291(21): 11124-32, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27002145

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1(-/-)) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1(-/-) mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid ß-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1(-/-) mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice.


Assuntos
Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Leptina/metabolismo , Obesidade/etiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Deleção de Genes , Hiperfagia/etiologia , Hiperfagia/genética , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Mutação , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo
18.
Appetite ; 99: 193-199, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26785315

RESUMO

Maternal overnutrition results in programmed offspring obesity, mediated in part, by hyperphagia. This is remarkably similar to the effects of maternal undernutrition on offspring hyperphagia and obesity. In view of the marked differences in the energy environment of the over and under-nutrition exposures, we studied the expression of select epigenetic modifiers associated with energy imbalance including neurogenic factors and appetite/satiety neuropeptides which are indicative of neurogenic differentiation. HF offspring were exposed to maternal overnutrition (high fat diet; HF) during pregnancy and lactation. We determined the protein expression of energy sensors (mTOR, pAMPK), epigenetic factors (DNA methylase, DNMT1; histone deacetylase, SIRT1/HDAC1), neurogenic factors (Hes1, Mash1, Ngn3) and appetite/satiety neuropeptides (AgRP/POMC) in newborn hypothalamus and adult arcuate nucleus (ARC). Despite maternal obesity, male offspring born to obese dams had similar body weight at birth as Controls. However, when nursed by the same dams, male offspring of obese dams exhibited marked adiposity. At 1 day of age, HF newborn males had significantly decreased energy sensors, DNMT1 including Hes1 and Mash1, which may impact neuroprogenitor cell proliferation and differentiation. This is consistent with increased AgRP in HF newborns. At 6 months of age, HF adult males had significantly increased energy sensors and decreased histone deactylases. In addition, the persistent decreased Hes1, Mash1 as well as Ngn3 are consistent with increased AgRP and decreased POMC. Thus, altered energy sensors and epigenetic responses which modulate gene expression and adult neuronal differentiation may contribute to hyperphagia and obesity in HF male offspring.


Assuntos
Hiperfagia/fisiopatologia , Hipotálamo/metabolismo , Desnutrição/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Adiposidade , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Animais Recém-Nascidos , Apetite/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Peso Corporal , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dieta Hiperlipídica , Ingestão de Energia , Epigênese Genética , Feminino , Hiperfagia/etiologia , Hiperfagia/genética , Masculino , Desnutrição/complicações , Desnutrição/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/fisiopatologia , Gravidez , Ratos , Saciação/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
19.
Physiol Behav ; 149: 331-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26143188

RESUMO

Body weight and the levels of stored body fat have fitness consequences. Greater levels of fat may provide protection against catastrophic failures in the food supply, but they may also increase the risk of predation. Animals may therefore regulate their fatness according to their perceived risks of predation and starvation: the starvation-predation trade-off model. We tested the predictions of this model in wood mice (Apodemus sylvaticus) by experimentally manipulating predation risk and starvation risk. We predicted that under increased predation risk individuals would lose weight and under increased starvation risk they would gain it. We simulated increased predation risk by playing the calls made by predatory birds (owls: Tyto alba and Bubo bubo) to the mice. Control groups included exposure to calls of a non-predatory bird (blackbird: Turdus merula) or silence. Mice exposed to owl calls at night lost weight relative to the silence group, mediated via reduced food intake, but exposure to owl calls in the day had no significant effect. Exposure to blackbird calls at night also resulted in weight loss, but blackbird calls in the day had no effect. Mice seemed to have a generalised response to bird calls at night irrespective of their actual source. This could be because in the wild any bird calling at night will be a predation risk, and any bird calling in the day would not be, because at that time the mice would normally be resting, and hence not exposed to avian predators. Consequently, mice have not evolved to distinguish different types of call but only to respond to the time of day that they occur. Mice exposed to stochastic 24h starvation events altered their behaviour (reduced activity) during the refeeding days that followed the deprivation periods to regain the lost mass. However, they only marginally elevated their food intake and consequently had reduced body weight/fat storage compared to that of the control unstarved group. This response may have been constrained by physiological factors (alimentary tract absorption capacity) or behavioural factors (perceived risk of predation). Overall the responses of the mice appeared to provide limited support for the starvation-predation trade-off model, and suggest that wood mice are much more sensitive to predation risk than they are to starvation risk.


Assuntos
Jejum/fisiologia , Murinae/fisiologia , Comportamento Predatório/fisiologia , Inanição/fisiopatologia , Estimulação Acústica/efeitos adversos , Análise de Variância , Animais , Índice de Massa Corporal , Peso Corporal/fisiologia , Corticosterona/metabolismo , Ingestão de Alimentos/fisiologia , Hiperfagia/etiologia , Leptina/sangue , Modelos Animais , Consumo de Oxigênio , Fatores de Risco , Inanição/sangue , Inanição/psicologia , Fatores de Tempo
20.
J Biol Chem ; 290(31): 19353-66, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26105051

RESUMO

Human studies have suggested that early undernutrition increases the risk of obesity, thereby explaining the increase in overweight among individuals from developing countries who have been undernourished as children. However, this conclusion is controversial, given that other studies do not concur. This study sought to determine whether rehabilitation after undernutrition increases the risk of obesity and metabolic disorders. We employed a published experimental food-restriction model. Wistar female rats subjected to severe food restriction since fetal stage and controls were transferred to a moderately high-fat diet (cafeteria) provided at 70 days of life to 6.5 months. Another group of undernourished rats were rehabilitated with chow. The energy intake of undernourished animals transferred to cafeteria formula exceeded that of the controls under this regime and was probably driven by hypothalamic disorders in insulin and leptin signal transduction. The cafeteria diet resulted in greater relative increases in both fat and lean body mass in the undernourished rats when compared with controls, enabling the former group to completely catch up in length and body mass index. White adipose tissues of undernourished rats transferred to the high-lipid regime developed a browning which, probably, contributed to avoid the obesigenic effect observed in controls. Nevertheless, the restricted group rehabilitated with cafeteria formula had greater accretion of visceral than subcutaneous fat, showed increased signs of macrophage infiltration and inflammation in visceral pad, dyslipidemia, and ectopic fat accumulation. The data indicate that early long-term undernutrition is associated with increased susceptibility to the harmful effects of nutritional rehabilitation, without causing obesity.


Assuntos
Desnutrição/complicações , Obesidade/etiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Adiposidade , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Feminino , Hiperfagia/etiologia , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Leptina/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Desnutrição/metabolismo , Desnutrição/reabilitação , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Oxirredução , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos Wistar , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA