Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res Bull ; 195: 109-119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813046

RESUMO

Metabolic programming may be induced by reduction or enhancement of litter size, which lead to neonatal over or undernutrition, respectively. Changes in neonatal nutrition can challenge some regulatory processes in adulthood, such as the hypophagic effect of cholecystokinin (CCK). In order to investigate the effects of nutritional programming on the anorexigenic function of CCK in adulthood, pups were raised in small (SL, 3 pups per dam), normal (NL, 10 pups per dam), or large litters (LL, 16 pups per dam), and on postnatal day 60, male rats were treated with vehicle or CCK (10 µg/Kg) for the evaluation of food intake and c-Fos expression in the area postrema (AP), nucleus of solitary tract (NTS), and paraventricular (PVN), arcuate (ARC), ventromedial (VMH), and dorsomedial (DMH) nuclei of the hypothalamus. Overnourished rats showed increased body weight gain that was inversely correlated with neuronal activation of PaPo, VMH, and DMH neurons, whereas undernourished rats had lower body weight gain, inversely correlated with increased neuronal activation of PaPo only. SL rats showed no anorexigenic response and lower neuron activation in the NTS and PVN induced by CCK. LL exhibited preserved hypophagia and neuron activation in the AP, NTS, and PVN in response to CCK. CCK showed no effect in c-Fos immunoreactivity in the ARC, VMH, and DMH in any litter. These results indicate that anorexigenic actions, associated with neuron activation in the NTS and PVN, induced by CCK were impaired by neonatal overnutrition. However, these responses were not disrupted by neonatal undernutrition. Thus, data suggest that an excess or poor supply of nutrients during lactation display divergent effects on programming CCK satiation signaling in male adult rats.


Assuntos
Desnutrição , Hipernutrição , Ratos , Masculino , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Colecistocinina/farmacologia , Colecistocinina/metabolismo , Ratos Wistar , Núcleo Solitário/metabolismo , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Hipernutrição/metabolismo , Peso Corporal , Ingestão de Alimentos
2.
Int J Obes (Lond) ; 46(6): 1138-1144, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35173277

RESUMO

BACKGROUND/OBJECTIVES: Alteration of the perinatal nutritional environment is an important risk factor for the development of metabolic diseases in later life. The hormone leptin plays a critical role in growth and development. Previous studies reported that postnatal overnutrition increases leptin secretion during the pre-weaning period. However, a direct link between leptin, neonatal overnutrition, and lifelong metabolic regulation has not been investigated. METHODS: We used the small litter mouse model combined with neonatal leptin antagonist injections to examine whether attenuating leptin during early life improves lifelong metabolic regulation in postnatally overnourished mice. RESULTS: Postnatally overnourished mice displayed rapid weight gain during lactation and remained overweight as adults. These mice also showed increased adiposity and perturbations in glucose homeostasis in adulthood. Neonatal administration of a leptin antagonist normalized fat mass and insulin sensitivity in postnatally overnourished mice. These metabolic improvements were associated with enhanced sensitivity of hypothalamic neurons to leptin. CONCLUSIONS: Early postnatal overnutrition causes metabolic alterations that can be permanently attenuated with the administration of a leptin antagonist during a restricted developmental window.


Assuntos
Leptina , Hipernutrição , Animais , Feminino , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Obesidade/metabolismo , Hipernutrição/metabolismo , Gravidez , Aumento de Peso
3.
Cell Rep ; 37(10): 110075, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879284

RESUMO

The neuroendocrine system coordinates metabolic and behavioral adaptations to fasting, including reducing energy expenditure, promoting counterregulation, and suppressing satiation and anxiety to engage refeeding. Here, we show that steroid receptor coactivator-2 (SRC-2) in pro-opiomelanocortin (POMC) neurons is a key regulator of all these responses to fasting. POMC-specific deletion of SRC-2 enhances the basal excitability of POMC neurons; mutant mice fail to efficiently suppress energy expenditure during food deprivation. SRC-2 deficiency blunts electric responses of POMC neurons to glucose fluctuations, causing impaired counterregulation. When food becomes available, these mutant mice show insufficient refeeding associated with enhanced satiation and discoordination of anxiety and food-seeking behavior. SRC-2 coactivates Forkhead box protein O1 (FoxO1) to suppress POMC gene expression. POMC-specific deletion of SRC-2 protects mice from weight gain induced by an obesogenic diet feeding and/or FoxO1 overexpression. Collectively, we identify SRC-2 as a key molecule that coordinates multifaceted adaptive responses to food shortage.


Assuntos
Metabolismo Energético , Jejum/metabolismo , Comportamento Alimentar , Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Obesidade/metabolismo , Hipernutrição/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Modelos Animais de Doenças , Jejum/psicologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Hipotálamo/fisiopatologia , Masculino , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Obesidade/genética , Obesidade/fisiopatologia , Obesidade/psicologia , Hipernutrição/genética , Hipernutrição/fisiopatologia , Hipernutrição/psicologia , Pró-Opiomelanocortina/genética , Resposta de Saciedade , Transdução de Sinais , Aumento de Peso
4.
Nutrients ; 13(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34959754

RESUMO

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Assuntos
Tecido Adiposo/metabolismo , Fibras na Dieta/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hipernutrição/metabolismo , Aminoácidos/metabolismo , Animais , Pão , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Feminino , Alimentos Fermentados , Glucose/metabolismo , Incretinas/metabolismo , Intestinos/metabolismo , Ácido Láctico/metabolismo , Suínos , Porco Miniatura , Ureia/metabolismo
5.
Nutrients ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684464

RESUMO

As a precursor for a universal metabolic coenzyme, vitamin B1, also known as thiamine, is a vital nutrient in all living organisms. We previously found that high-dose thiamine therapy prevents overnutrition-induced hepatic steatosis in sheep by enhancing oxidative catabolism. Based on this capacity, we hypothesized that thiamine might also reduce whole-body fat and weight. To test it, we investigated the effects of high-dose thiamine treatment in sheep under overnutrition and calorie-restricted undernutrition to respectively induce positive energy balance (PEB) and negative energy balance (NEB). Eighteen mature ewes were randomly assigned to three treatment groups (n = 6 each). The control group (CG) was administered daily with subcutaneous saline, whereas the T5 and T10 groups were administered daily with equivoque of saline containing 5 mg/kg and 10 mg/kg of thiamine, respectively. Bodyweight and blood biochemistry were measured twice a week for a period of 22 days under PEB and for a consecutive 30 days under NEB. Surprisingly, despite the strong effect of thiamine on liver fat, no effect on body weight or blood glucose was detectable. Thiamine did, however, increase plasma concentration of non-esterified fatty acids (NEFA) during NEB (575.5 ± 26.7, 657.6 ± 29.9 and 704.9 ± 26.1 µEqL-1 for CG, T5, and T10, respectively: p < 0.05), thereby favoring utilization of fatty acids versus carbohydrates as a source of energy. Thiamine increased serum creatinine concentrations (p < 0.05), which paralleled a trending increase in urea (p = 0.09). This may indicate an increase in muscle metabolism by thiamine. Reduction of fat content by thiamine appears more specific to the liver than to adipose tissue. Additional studies are needed to evaluate the potential implications of high-dose vitamin B1 therapy in muscle metabolism.


Assuntos
Desnutrição/metabolismo , Hipernutrição/metabolismo , Ovinos/metabolismo , Tiamina/metabolismo , Tecido Adiposo/metabolismo , Animais , Biomarcadores , Glicemia , Peso Corporal , Creatinina/sangue , Metabolismo Energético , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Lipólise , Micronutrientes/metabolismo , Minerais/sangue , Tiamina/administração & dosagem , Tiamina/uso terapêutico
6.
Sci Rep ; 11(1): 14032, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234216

RESUMO

Overconsumption of saturated fats promotes obesity and type 2 diabetes. Excess weight gain in early life may be particularly detrimental by promoting earlier diabetes onset and potentially by adversely affecting normal development. In the present study we investigated the effects of dietary fat composition on early overnutrition-induced body weight and glucose regulation in Swiss Webster mice, which show susceptibility to high-fat diet-induced diabetes. We compared glucose homeostasis between a high-fat lard-based (HFL) diet, high in saturated fats, and a high-fat olive oil/fish oil-based (HFO) diet, high in monounsaturated and omega-3 fats. We hypothesized that the healthier fat profile of the latter diet would improve early overnutrition-induced glucose dysregulation. However, early overnutrition HFO pups gained more weight and adiposity and had higher diabetes incidence compared to HFL. In contrast, control pups had less weight gain, adiposity, and lower diabetes incidence. Plasma metabolomics revealed reductions in various phosphatidylcholine species in early overnutrition HFO mice as well as with diabetes. These findings suggest that early overnutrition may negate any beneficial effects of a high-fat diet that favours monounsaturated and omega-3 fats over saturated fats. Thus, quantity, quality, and timing of fat intake throughout life should be considered with respect to metabolic health outcomes.


Assuntos
Dieta Hiperlipídica , Gorduras Insaturadas na Dieta/metabolismo , Metabolismo Energético , Ácidos Graxos Ômega-3/metabolismo , Hipernutrição/metabolismo , Fatores Etários , Animais , Biomarcadores , Diabetes Mellitus Experimental , Glucose/metabolismo , Hormônios/sangue , Hormônios/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Fosfatidilcolinas/sangue
7.
Clin Nutr ; 40(4): 1519-1529, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33743287

RESUMO

BACKGROUND & AIMS: Excess nutrient supply, such as high fat and high glucose intake, promotes oxidative stress and advanced glycation end products accumulation. Oxidative stress and AGE accumulation cause pathological elevation of arginase activity and pro-inflammatory signaling implicated in endothelial dysfunction. Several studies showed positive effects of l-arginine supplementation in endothelial function but little is currently known about the role of l-arginine as prevention of endothelial dysfunction caused by excessive nutrient supply (overfeeding). Our aim was to evaluate a possible protective effect of l-arginine on endothelial dysfunction caused by excessive nutrient supply (overfeeding), using human endothelial cells line in an in vitro study. METHODS: Endothelial EA.hy926 cells were pre-treated with 1.72 mM of l-arginine for 24 h and afterwards subjected to nutritional stress (high lipid, high insulin and high glucose concentrations) for further 24 h. After treatment discontinuation, the cells were kept in culture for 48 h, in physiological condition, to evaluate the effects of treatments after normalization. RESULTS: Excess nutrient supply in EA.hy926 cell line showed an increase of oxidative and nitrosative stress, a rise of AGEs production, high arginase activity, leading the cells to acidosis and to cell death. l-arginine pretreatment protects the cells by reducing apoptosis, acidosis, oxidative and nitrosative stress, arginase activity and AGE accumulation. l-arginine pretreatment reduces AGEs generation and accumulation by regulating STAB1 and RAGE gene expression levels. STAB1, acting as receptor scavenger of AGEs, interferes with AGE-RAGE binding and thus prevents activation of intracellular signaling pathways leading to cell damage. Moreover the reduction of oxidative stress promotes a decrease of excessive activation of arginase involved in endothelial dysfunction. The effects of pretreatment with l-arginine last even in the absence of stimuli and despite after treatment discontinuation. CONCLUSIONS: An early l-arginine treatment is able to prevent oxidative stress and AGEs accumulation caused by overfeeding in human endothelial cell line by regulating STAB1/RAGE gene expression and by reducing excess arginase activity. The positive effects of l-arginine pretreatment continue even after treatment discontinuation in normal conditions.


Assuntos
Arginina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Hipernutrição/prevenção & controle , Substâncias Protetoras/farmacologia , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Hipernutrição/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Mol Cell Endocrinol ; 524: 111147, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33388353

RESUMO

This work evaluated the effects of neonatal overfeeding, induced by litter size reduction, on fertility and the noradrenaline-kisspeptin-gonadotrophin releasing hormone (GnRH) pathway in adult female rats. The litter size was adjusted to 3 pups with each mother in the small litters (SL) and 10 pups with each mother in the normal litters (NL). SL females exhibited metabolic changes associated with reproductive dysfunctions, shown by earlier vaginal opening and first estrus, later regular cyclicity onset, and lower and higher occurrences of estrus and diestrus phases, respectively, as well as reduced fertility, estradiol plasma levels, and mRNA expressions of tyrosine hydroxylase in the locus coeruleus, kisspeptin, and GnRH in the preoptic area in adult females in the afternoon of proestrus. These results suggest that neonatal overfeeding in female rats promotes reproductive dysfunctions in adulthood, such as lower estradiol plasma levels associated with impairments in fertility and noradrenaline-kisspeptin-GnRH pathway during positive feedback.


Assuntos
Envelhecimento/fisiologia , Estradiol/sangue , Fertilidade/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Norepinefrina/metabolismo , Hipernutrição/sangue , Hipernutrição/metabolismo , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Tronco Encefálico/patologia , Ciclo Estral , Feminino , Hormônio Liberador de Gonadotropina/genética , Gônadas/patologia , Hipotálamo/patologia , Lipídeos/sangue , Tamanho da Ninhada de Vivíparos , Masculino , Hipófise/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Maturidade Sexual , Aumento de Peso
9.
Eur J Pharmacol ; 881: 173200, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445706

RESUMO

Nutritional imbalance in early life may disrupt the hypothalamic control of energy homeostasis and increase the risk of metabolic disease. The hypothalamic serotonin (5-hydroxytryptamine; 5-HT) system based in the hypothalamus plays an important role in the homeostatic control of energy balance, however the mechanisms underlying the regulation of energy metabolism by 5-HT remain poorly described. Several crucial mitochondrial functions are altered by mitochondrial stress. Adaptations to this stress include changes in mitochondrial multiplication (i.e, mitochondrial biogenesis). Due to the scarcity of evidence regarding the effects of serotonin reuptake inhibitors (SSRI) such as fluoxetine (FLX) on mitochondrial function, we sought to investigate the potential contribution of FLX on changes in mitochondrial function and biogenesis occurring in overfed rats. Using a neonatal overfeeding model, male Wistar rats were divided into 4 groups between 39 and 59 days of age based on nutrition and FLX administration: normofed + vehicle (NV), normofed + FLX (NF), overfed + vehicle (OV) and overfed + FLX (OF). We found that neonatal overfeeding impaired mitochondrial respiration and increased oxidative stress biomarkers in the hypothalamus. FLX administration in overfed rats reestablished mitochondrial oxygen consumption, increased mitochondrial uncoupling protein 2 (Ucp2) expression, reduced total reactive species (RS) production and oxidative stress biomarkers, and up-regulated mitochondrial biogenesis-related genes. Taken together our results suggest that FLX administration in overfed rats improves mitochondrial respiratory chain activity and oxidative balance and increases the transcription of genes employed in mitochondrial biogenesis favoring mitochondrial energy efficiency in response to early nutritional imbalance.


Assuntos
Fármacos Antiobesidade/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fluoxetina/farmacologia , Hipotálamo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Biogênese de Organelas , Hipernutrição/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Animais Lactentes , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estado Nutricional , Hipernutrição/metabolismo , Hipernutrição/patologia , Hipernutrição/fisiopatologia , Oxirredução , Consumo de Oxigênio , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
10.
Int J Dev Neurosci ; 71: 146-155, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30232036

RESUMO

Prenatal and early postnatal environments can permanently influence health throughout life. Early overnutrition increases the risk to develop chronic diseases. Conversely, the intake of flavonoids and exercise practice during pregnancy seem to promote long-term benefits to offspring. We hypothesized that benefic interventions during pregnancy could protect against possible postnatal neurochemical alterations caused by overnutrition induced by reduced litter size. Female Wistar rats were divided into four groups: (1) sedentary + vehicle, (2) sedentary + naringenin, (3) swimming exercise + vehicle, and (4) swimming exercise + naringenin. One day after birth, the litter was culled to 8 pups (control) or 3 pups (overfed) per dam, yielding control and overfed subgroups for each maternal group. Serum of 21-days-old pups was collected, also the cerebellum, hippocampus, and hypothalamus were dissected. Litter size reduction increased fat mass and enhanced body weight. Maternal interventions, when isolated, caused reduced glucose serum levels in offspring nurtured in control litters. In the cerebellum, reducing the litter size decreased the activity of thioredoxin reductase, which was prevented by maternal supplementation with naringenin. Hippocampus and hypothalamus have shown altered antioxidant enzymes activities in response to litter size reduction. Interestingly, when maternal exercise and naringenin supplementation were allied, the effect disappeared, suggesting a concurrent effect of the two maternal interventions. In conclusion, exercise or naringenin supplementation during pregnancy can be important interventions for combating the increasing rates of overweight during the infancy and its related neurochemical changes, especially when applied isolated.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes/farmacologia , Encéfalo/metabolismo , Tamanho da Ninhada de Vivíparos/fisiologia , Condicionamento Físico Animal/fisiologia , Desmame , Animais , Animais Recém-Nascidos , Peso Corporal/fisiologia , Antagonistas de Estrogênios/administração & dosagem , Feminino , Flavanonas/administração & dosagem , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Hipernutrição/metabolismo , Oxidantes/metabolismo , Gravidez , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA