Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Folia Med (Plovdiv) ; 62(2): 372-377, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32666750

RESUMO

The objective of this study was to assess the effects of the hydroalcoholic extract of flax seed on the teratogenic activity of lamotrigine in the brain of fetuses of rats who had received the drug. In this experimental study, 40 female rats were assigned randomly into four groups and after mating and confirming the vaginal plug, the control animals (group 1) were kept with no intervention, and the other three experimental groups were intraperitoneally injected with respective lamotrigine (75 mg/kg), and 100 and 200 mg/kg of flax seed hydroalcoholic extract. The drug was administered during the organogenesis period. Rats were sacrificed at the 20th day of gestation (one day before term) and fetuses were macroscopically examined, weighed and crown-rump length measured. Fetal brain specimens were processed for H&E and for histological study, using the ImageJ software. Results showed that fetuses of the experimental groups that received lamotrigine had reduced body weight, prefrontal cortical and hippocampal thickness, and pyramidal neurons in the hip-pocampus; Nevertheless, these factors were improved by high-dose administration of flax seed in the experimental group 3 and 4. Our research concludes that lamotrigine negatively influences the development of brain in rats and flax seed has a protective impact on these complications.


Assuntos
Anticonvulsivantes/toxicidade , Encéfalo/efeitos dos fármacos , Feto/efeitos dos fármacos , Linho , Lamotrigina/toxicidade , Extratos Vegetais/farmacologia , Teratogênese/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/embriologia , Espessura Cortical do Cérebro , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Fármacos Neuroprotetores/farmacologia , Tamanho do Órgão , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/embriologia , Gravidez , Distribuição Aleatória , Ratos
2.
Mol Cell Neurosci ; 98: 54-69, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31085233

RESUMO

Early life traumas lead to neuroprotection by preconditioning mechanisms. To determine which genes and pathways are most likely involved in specific adaptive effects, immature hippocampal cultures were exposed to a single high dose of glutamate (250 µM), NMDA (100 µM), or KA (300 µM) for 48 h (5-7 DIV) based on our prior "two hit" in vitro model of preconditioning. Transcriptome profiling and immunocytochemistry of gene candidates were performed 7 days later when cultured neurons mature (14 DIV). Many genes were up- and down- regulated involving distinct Ca2+-binding protein families, G-coupled proteins, various growth factors, synaptic vesicle docking factors, certain neurotransmitter receptors, heat shock, oxidative stress, and certain anti-apoptotic Bcl-2 gene members that influence neuronal survival. Immunohistochemistry showed a marked decrease in the number of Calb1 and Calm2 positive neurons following NMDA but not after glutamate exposure whereas ryanodine and Cav1.2 voltage gated channel expression was less affected. Survivors had marked increases in Calm2 immunostaining; however, high-density neural clusters observed in controls, were depleted after NMDA and partly diminished after glutamate. While NR1 mRNA expression was decreased in the microarray, specific antibodies revealed selective loss of the NR1C1 splice variant. Calm2 which can inactivate NMDA receptors by binding to C1 but not C2 regions of its NR1 subunit suggests that loss of the C1 splice variant will reduce co-regulation with Calm2 and alter NR1 trafficking, phosphorylation, and NMDA currents following early life NMDA exposure. A dramatic reduction in the density of GABAAα5 and GABAB receptor expressing neurons was observed after NMDA exposure but immunodensity measurements were unchanged as was the expression of the GABA synthesizing enzyme, GAD, suggesting that fast inhibitory neurotransmission and response to benzodiazepines and GABAB-mediated IPSPs may be preserved in matured survivors. Selective upregulation of Chat and CNRIP was detected after glutamate treatment suggesting this condition would decrease cholinergic and excitatory neurotransmission by decreasing Ach content and CB1 interacting protein function. This decrease likely contributes to memory and attention tasks deficits that follow a single early neurological insult. Diverse changes that follow overactivation of excitatory networks of immature neurons appear long-lasting or permanent and are expected to have profound effects on network function and adaptive responses to further insult.


Assuntos
Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/toxicidade , Hipocampo/metabolismo , N-Metilaspartato/toxicidade , Proteoma/metabolismo , Transcriptoma , Animais , Apoptose , Células Cultivadas , Neurônios GABAérgicos/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/embriologia , Neurogênese , Proteoma/genética , Ratos , Transdução de Sinais
3.
J Med Food ; 19(7): 638-44, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27331292

RESUMO

The edible red seaweed Gracilariopsis chorda (Holmes) Ohmi is known for its extensive medicinal benefits and its use as a food ingredient in Korea, Japan, and China. In a previous study, an ethanol extract of G. chorda (GCE) showed potential neuroprotective effects in cultured hippocampal neurons. In this study, we further examined the ability of GCE to promote neurite extension in primary rat hippocampal neurons. Neurons were stained with the lipophilic dye DiO or immunostained to visualize the neuronal morphology. The results indicated that GCE concentration-dependently increased neurite outgrowth, with an optimal concentration of 30 µg/mL. GCE significantly promoted early neuronal differentiation (i.e., polarity and process number) and enhanced axonal and dendritic arborization in a time-responsive manner. In addition, arachidonic acid, which was previously identified and quantified as a major neuroprotective component of GCE, significantly accelerated neurite outgrowth similar to GCE. Our findings suggest that G. chorda and its active component, arachidonic acid, may be useful for developing medicinal food or pharmaceuticals in the prevention and treatment of neurological disorders.


Assuntos
Axônios/efeitos dos fármacos , Gracilaria/química , Hipocampo/ultraestrutura , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/ultraestrutura , Extratos Vegetais/farmacologia , Animais , Ácido Araquidônico/farmacologia , Axônios/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Hipocampo/embriologia , Gravidez , Ratos , Ratos Sprague-Dawley , República da Coreia
4.
J Vis Exp ; (107): e53303, 2016 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-26862715

RESUMO

In utero electroporation is a widely used technique for fast and efficient spatiotemporal manipulation of various genes in the rodent central nervous system. Overexpression of desired genes is just as possible as shRNA mediated loss-of-function studies. Therefore it offers a wide range of applications. The feasibility to target particular cells in a distinct area further increases the range of potential applications of this very useful method. For efficiently targeting specific regions knowledge about the subtleties, such as the embryonic stage, the voltage to apply and most importantly the position of the electrodes, is indispensable. Here, we provide a detailed protocol that allows for specific and efficient in utero electroporation of several regions of the C57BL/6 mouse central nervous system. In particular it is shown how to transfect regions the develop into the retrosplenial cortex, the motor cortex, the somatosensory cortex, the piriform cortex, the cornu ammonis 1-3, the dentate gyrus, the striatum, the lateral septal nucleus, the thalamus and the hypothalamus. For this information about the appropriate embryonic stage, the appropriate voltage for the corresponding embryonic stage is provided. Most importantly an angle-map, which indicates the appropriate position of the positive pole, is depicted. This standardized protocol helps to facilitate efficient in utero electroporation, which might also lead to a reduced number of animals.


Assuntos
Córtex Cerebral/embriologia , Corpo Estriado/embriologia , Eletroporação/métodos , Hipocampo/embriologia , Hipotálamo/embriologia , Prenhez , Núcleos Septais/embriologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Tálamo/embriologia
5.
Metab Brain Dis ; 30(1): 241-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24972880

RESUMO

Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent approaches towards the experimental simulation of congenital and early-age-occurring hypothyroidism.


Assuntos
Acetilcolinesterase/análise , ATPase de Ca(2+) e Mg(2+)/análise , Lobo Frontal/enzimologia , Hipocampo/enzimologia , Hipotireoidismo/fisiopatologia , Proteínas do Tecido Nervoso/análise , Complicações na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal , ATPase Trocadora de Sódio-Potássio/análise , Animais , Feminino , Lobo Frontal/embriologia , Lobo Frontal/crescimento & desenvolvimento , Idade Gestacional , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Lactação , Masculino , Especificidade de Órgãos , Gravidez , Propiltiouracila/administração & dosagem , Propiltiouracila/toxicidade , Ratos , Ratos Wistar
6.
J Ethnopharmacol ; 152(1): 142-50, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24389557

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Moringa oleifera Lam. (Moringaceae) by virtue of its high nutritional as well as ethnomedical values has been gaining profound interest both in nutrition and medicinal research. The leaf of this plant is used in ayurvedic medicine to treat paralysis, nervous debility and other nerve disorders. In addition, research evidence also suggests the nootropic as well as neuroprotective roles of Moringa oleifera leaf in animal models. The aim of the present study was to evaluate the effect of Moringa oleifera leaf in the primary hippocampal neurons regarding its neurotrophic and neuroprotective properties. MATERIALS AND METHODS: The primary culture of embryonic hippocampal neurons was incubated with the ethanol extract of Moringa oleifera leaf (MOE). After an indicated time, cultures were either stained directly with a lipophilic dye, DiO, or fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for neurite maturation and synaptogenesis were performed using Image J software. Neuronal viability was evaluated using trypan blue exclusion and lactate dehydrogenase assays. RESULTS: MOE promoted neurite outgrowth in a concentration-dependent manner with an optimal concentration of 30 µg/mL. As a very initial effect, MOE significantly promoted the earlier stages of neuronal differentiation. Subsequently, MOE significantly increased the number and length of dendrites, the length of axon, and the number and length of both dendrite and axonal branches, and eventually facilitated synaptogenesis. The ß-carotene, one major compound of MOE, promoted neuritogensis, but the increase was not comparable with the effect of MOE. In addition, MOE supported neuronal survival by protecting neurons from naturally occurring cell death in vitro. CONCLUSIONS: Our findings indicate that MOE promotes axodendritic maturation as well as provides neuroprotection suggesting a promising pharmacological importance of this nutritionally and ethnomedically important plant for the well-being of nervous system.


Assuntos
Hipocampo/efeitos dos fármacos , Moringa oleifera/química , Neuritos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipocampo/embriologia , Hipocampo/metabolismo , L-Lactato Desidrogenase/metabolismo , Neuritos/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Extratos Vegetais/administração & dosagem , Folhas de Planta , Ratos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
7.
J Comp Neurol ; 521(14): 3241-59, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23787772

RESUMO

MET, a replicated autism risk gene, encodes a pleiotropic receptor tyrosine kinase implicated in multiple cellular processes during development and following injury. Previous studies suggest that Met modulates excitatory synapse development in the neocortex and hippocampus, although the underlying mechanism is unknown. The peak of Met expression corresponds to the period of process outgrowth and synaptogenesis, with robust expression in hippocampal and neocortical neuropil. Resolving whether neuropil expression represents presynaptic, postsynaptic or glial localization provides insight into potential mechanisms of Met action. The subcellular distribution of Met was characterized using complementary ultrastructural, in situ proximity ligation assay (PLA), and biochemical approaches. At postnatal day (P) 7, immunoelectron microscopy revealed near-equivalent proportions of Met-immunoreactive pre- (axons and terminals) and postsynaptic (dendritic shafts and spines) profiles in the stratum radiatum in the hippocampal CA1 region. Staining was typically in elements in which the corresponding pre- or postsynaptic apposition was unlabeled. By P21, Met-immunoreactive presynaptic profiles predominated and ~20% of Met-expressing profiles were glial. A different distribution of Met-immunoreactive profiles was observed in layer V of somatosensory cortex: Met-labeled spines were rare and a smaller proportion of glial profiles expressed Met. Strikingly, Met-immunoreactive presynaptic profiles predominated over postsynaptic profiles as early as P7. PLA analysis of neurons in vitro and biochemical analysis of tissue subsynaptic fractions confirmed the localization of Met in specific synaptic subcompartments. The study demonstrates that Met is enriched at synapses during development and its activation may modulate synapse formation and stability through both pre- and postsynaptic mechanisms.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/crescimento & desenvolvimento , Neocórtex/crescimento & desenvolvimento , Receptores Proteína Tirosina Quinases/metabolismo , Sinapses/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Dendritos/metabolismo , Dendritos/ultraestrutura , Embrião de Mamíferos , Feminino , Hipocampo/citologia , Hipocampo/embriologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Neocórtex/citologia , Neocórtex/embriologia , Neurópilo/metabolismo , Neurópilo/ultraestrutura , Gravidez , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/ultraestrutura , Frações Subcelulares/metabolismo , Sinapses/ultraestrutura
8.
J Mol Neurosci ; 48(3): 473-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843252

RESUMO

The serotonin 5-HT(7) receptor has been linked to various psychiatric disorders, including schizophrenia, anxiety and depression, and is antagonized by antipsychotics such as risperidone, clozapine and lurasidone. In this study, we examined whether inhibiting the 5-HT(7) receptor could reverse behavioral abnormalities in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP), an experimental mouse model for psychiatric disorders such as schizophrenia. The selective 5-HT(7) antagonist SB-269970 effectively suppressed abnormal jumping behavior in PACAP-deficient mice. SB-269970 tended to alleviate the higher immobility in the forced swim test in PACAP-deficient mice, although SB-269970 reduced the immobility also in wild-type mice. In addition, we found that mutant mice had impaired performance in the Y-maze test, which was reversed by SB-269970. In the mutant mouse brain, 5-HT(7) protein expression did not differ from wild-type mice. In primary embryonic hippocampal neurons, the 5-HT(7) agonist AS19 increased neurite length and number. Furthermore, SB-269970 significantly inhibited the increase in neurite extension mediated by the 5-HT(1A/7) agonist 8-OH-DPAT. These results indicate that 5-HT(7) receptor blockade ameliorates psychomotor and cognitive deficits in PACAP-deficient mice, providing additional evidence that the 5-HT(7) receptor is a rational target for the treatment of psychiatric disorders.


Assuntos
Antipsicóticos/uso terapêutico , Hipocampo/citologia , Proteínas do Tecido Nervoso/fisiologia , Neuritos/efeitos dos fármacos , Fenóis/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Receptores de Serotonina/fisiologia , Antagonistas da Serotonina/uso terapêutico , Sulfonamidas/uso terapêutico , 8-Hidroxi-2-(di-n-propilamino)tetralina/antagonistas & inibidores , 8-Hidroxi-2-(di-n-propilamino)tetralina/toxicidade , Animais , Antipsicóticos/farmacologia , Contagem de Células , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/ultraestrutura , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Comportamento Exploratório/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Hipocampo/embriologia , Hipercinese/tratamento farmacológico , Hipercinese/fisiopatologia , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Neuritos/ultraestrutura , Fenóis/farmacologia , Resistência Física/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Receptores de Serotonina/biossíntese , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/genética , Serotonina/fisiologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/toxicidade , Sulfonamidas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico
9.
Am J Chin Med ; 39(5): 999-1013, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21905288

RESUMO

We aimed to investigate the effects of Panax notoginseng saponins (PNS) on proliferation, differentiation and self-renewal of rat hippocampal neural stem cells (NSCs) in vitro. Rat hippocampal NSCs were isolated from post-natal day 1 (P1) rats and cultured in a serum-free medium. The neurospheres were identified by the expressions of nestin, class III ß-tublin (Tuj-1) and glial fibrillary acid protein (GFAP). The cells were given PNS and subjected to oxygen glucose deprivation (OGD) as an in vitro model of brain ischemia reperfusion. The proliferation of NSCs was determined by MTT colorimetry, nestin/BrdU immunofluorescent double-labeling and RT-PCR. Differentiation of NSCs was assessed by immunofluorescent double-labeling of nestin/BrdU, nestin/vimentin, and nestin/Tuj-1. The primary cells and the first two passages of cells formed certain amount of neurospheres, the cells derived from a single cell clone also formed neurospheres. Nestin, BrdU, GFAP and Tuj-1-positive cells appeared in those neurospheres. Compared to the control group, PNS significantly promoted NSC proliferation and the expression of nestin/BrdU, and also enhanced Tuj-1, vimentin, and nestin mRNA expressions in hippocampal NSCs. PNS significantly increased area density, optical density and numbers of nestin/BrdU, nestin/vimentin, and nestin/Tuj-1 positive cells following OGD. These results indicate that PNS can promote proliferation and differentiation of hippocampus NCSs in vitro after OGD, suggesting its potential benefits on neurogenesis and neuroregeneration in brain ischemic injury.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Hipocampo/citologia , Células-Tronco Neurais/citologia , Panax notoginseng/química , Saponinas/farmacologia , Animais , Células Cultivadas , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Células-Tronco Neurais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
10.
Endocrinology ; 152(5): 1979-88, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21363933

RESUMO

Pregnancy and lactation cause long-lasting enhancements in maternal behavior and other physiological functions, along with increased hypothalamic prolactin receptor expression. To directly test whether reproductive experience increases prolactin responsiveness in the arcuate, paraventricular, and supraoptic nuclei and the medial preoptic area, female rats experienced a full pregnancy and lactation or remained as age-matched virgin controls. At 5 wk after weaning, rats received 2.5, 100, or 4000 ng ovine prolactin or vehicle intracerebroventricularly. The brains underwent immunohistochemistry for the phosphorylated forms of signal transducer and activator of transcription 5 (pSTAT5) or ERK1/2 (pERK1/2). There was a marked increase in pSTAT5 and pERK1/2 in response to prolactin in the regions examined in both virgin and primiparous rats. Primiparous rats exhibited approximately double the number of prolactin-induced pSTAT5-immunoreactive cells as virgins, this effect being most apparent at the higher prolactin doses in the medial preoptic area and paraventricular and supraoptic nuclei and at the lowest prolactin dose in the arcuate nucleus. Dual-label immunohistochemistry showed that arcuate kisspeptin (but not oxytocin or dopamine) neurons displayed increased sensitivity to prolactin in reproductively experienced animals; these neurons may contribute to the reduction in prolactin concentration observed after reproductive experience. There was no effect of reproductive experience on prolactin-induced pERK1/2, indicating a selective effect on the STAT5 pathway. These data show that STAT5 responsiveness to prolactin is enhanced by reproductive experience in multiple hypothalamic regions. The findings may have significant implications for understanding postpartum disorders affecting maternal care and other prolactin-associated pathologies.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Prolactina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipotálamo/citologia , Imuno-Histoquímica , Infusões Intraventriculares , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Paridade/fisiologia , Fosforilação/efeitos dos fármacos , Gravidez , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Prolactina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reprodução/fisiologia , Fator de Transcrição STAT5/metabolismo , Ovinos , Transdução de Sinais/fisiologia , Núcleo Supraóptico/citologia , Núcleo Supraóptico/metabolismo , Fatores de Tempo
11.
Int J Exp Pathol ; 92(4): 243-50, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21324006

RESUMO

Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Chumbo/efeitos adversos , Chumbo/farmacologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/embriologia , Animais , Relação Dose-Resposta a Droga , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipotálamo/embriologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Chumbo/sangue , Masculino , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/embriologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar , Núcleo Supraquiasmático/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Vasopressinas/metabolismo
12.
Biochem J ; 435(2): 327-36, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21281269

RESUMO

DHA (docosahexaenoic acid, C22:6,n-3) has been shown to promote neurite growth and synaptogenesis in embryonic hippocampal neurons, supporting the importance of DHA known for hippocampus-related learning and memory function. In the present study, we demonstrate that DHA metabolism to DEA (N-docosahexaenoylethanolamide) is a significant mechanism for hippocampal neuronal development, contributing to synaptic function. We found that a fatty acid amide hydrolase inhibitor URB597 potentiates DHA-induced neurite growth, synaptogenesis and synaptic protein expression. Active metabolism of DHA to DEA was observed in embryonic day 18 hippocampal neuronal cultures, which was increased further by URB597. Synthetic DEA promoted hippocampal neurite growth and synaptogenesis at substantially lower concentrations in comparison with DHA. DEA-treated neurons increased the expression of synapsins and glutamate receptor subunits and exhibited enhanced glutamatergic synaptic activity, as was the case for DHA. The DEA level in mouse fetal hippocampi was altered according to the maternal dietary supply of n-3 fatty acids, suggesting that DEA formation is a relevant in vivo process responding to the DHA status. In conclusion, DHA metabolism to DEA is a significant biochemical mechanism for neurite growth, synaptogenesis and synaptic protein expression, leading to enhanced glutamatergic synaptic function. The novel DEA-dependent mechanism offers a new molecular insight into hippocampal neurodevelopment and function.


Assuntos
Ácidos Docosa-Hexaenoicos/análogos & derivados , Etanolaminas/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Neurônios/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ácidos Docosa-Hexaenoicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Embrião de Mamíferos , Endocanabinoides , Feminino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurogênese/efeitos dos fármacos , Neurônios/fisiologia , Gravidez
13.
J Neuropathol Exp Neurol ; 69(3): 234-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20142767

RESUMO

To assess the synaptic vesicle protein synaptophysin as a potential marker for maturation in the human fetal brain, synaptophysin immunoreactivity (sIR) was prospectively studied in postmortem sections of 162 normal human fetal and neonatal brains of both sexes from 6 to 41 weeks' gestational age. There was a consistent temporal and spatial pattern of sIR in the hippocampus and cerebral neocortex. In the rostral hippocampus, sIR was first apparent in the molecular zone of the dentate gyrus at 12 weeks, followed by CA2 at 14 weeks, CA3 and CA4 at 15 to 16 weeks, and CA1 at 19 weeks; it was incomplete until 26 weeks. In frontal neocortex, sIR developed in a laminar pattern above and below the cortical plate as early as 12 weeks, around Cajal-Retzius neurons of the molecular zone at 14 weeks, surrounding pyramidal neurons of Layers 5 and 6 at 16 weeks, and at the surface of neuronal somata in Layers 2 and 4 at 22 weeks. At 33 weeks, Layers 2 and 4 still had less sIR than other layers. Uniform sIR among all cortical layers was evident at 38 weeks. Ascending probable thalamocortical axons were reactive as early as 12 weeks and were best demonstrated by 26 weeks, after which increasing sIR in the neuropil diminished the contrast. The sIR was preserved for more than 96 hours postmortem, even in severely autolytic brains. We conclude that synaptophysin is a reliable marker in human fetal brain and that sIR provides the means for objective assessment of cerebral maturation in normal brains and to enable interpretation of abnormal synaptic patterns in pathological conditions.


Assuntos
Hipocampo/embriologia , Hipocampo/metabolismo , Neocórtex/embriologia , Neocórtex/metabolismo , Sinaptofisina/metabolismo , Axônios/metabolismo , Axônios/ultraestrutura , Biomarcadores/metabolismo , Região CA1 Hipocampal/embriologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Região CA2 Hipocampal/embriologia , Região CA2 Hipocampal/crescimento & desenvolvimento , Região CA2 Hipocampal/metabolismo , Região CA3 Hipocampal/embriologia , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/metabolismo , Diferenciação Celular/fisiologia , Giro Denteado/embriologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Feminino , Hipocampo/crescimento & desenvolvimento , Humanos , Imuno-Histoquímica , Recém-Nascido , Masculino , Neocórtex/crescimento & desenvolvimento , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Gravidez , Tálamo/embriologia , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo
14.
Eur J Pharmacol ; 633(1-3): 1-9, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20149790

RESUMO

Nitric oxide (NO), physical exercise and/or antidepressant drugs, through the increased release of norepinephrine and brain-derived neurotrophic factor (BDNF), have been shown to exert profound protective, pro-survival effects on neurons otherwise compromised by injury, disease, prolonged stress, and subsequent depression in vivo. We sought, therefore, to evaluate such survival and neuroprotection in hippocampal neurons in culture, which, in an analogous model of in vivo cellular stress, was deprived of several vital nutrients. We assessed pro-survival outcomes following the application of norepinephrine or the noradrenergic partial agonist, clonidine, a general nitric oxide synthase inhibitor and NO donor, using a cell survival assay and quantitative Western blotting of the survival signaling molecules, BDNF, P-CREB, P-Akt, and P-MAPK in hippocampal neuronal lysates. We demonstrate that norepinephrine, clonidine, the NO donor and various combinations of these drugs increased cell survival and the immunoreactivity of the four survival signaling molecules in the face of nutrient deprivation stress, whereas the NO synthase inhibitor, and each of several survival signaling pathway inhibitors all decreased cell survival even below that of controls without nutrient supplementation. These results demonstrate that conditions that make cells vulnerable to environmental/toxic insult can be offset by norepinephrine and its related drugs or by NO donors and exacerbated by drugs that specifically inhibit a key survival signaling pathway. These results indicate that pharmacological intervention can promote neuroprotection and survival signaling in the face of nutrient withdrawal, but that this may require that several pathways remain intact.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/farmacologia , Norepinefrina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Clonidina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Alimentos , Hipocampo/embriologia , Hipocampo/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Fármacos Neuroprotetores/farmacologia , Nitroprussiato/farmacologia , Gravidez , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico
15.
J Biol Chem ; 285(2): 1008-15, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19889625

RESUMO

The development of fetal brain is influenced by nutrients such as docosahexaenoic acid (DHA, 22:6) and choline. Phosphatidylethanolamine-N-methyltransferase (PEMT) catalyzes the biosynthesis of phosphatidylcholine from phosphatidylethanolamine enriched in DHA and many humans have functional genetic polymorphisms in the PEMT gene. Previously, it was reported that Pemt(-/-) mice have altered hippocampal development. The present study explores whether abnormal phosphatidylcholine biosynthesis causes altered incorporation of DHA into membranes, thereby influencing brain development, and determines whether supplemental dietary DHA can reverse some of these changes. Pregnant C57BL/6 wild type (WT) and Pemt(-/-) mice were fed a control diet, or a diet supplemented with 3 g/kg of DHA, from gestational day 11 to 17. Brains from embryonic day 17 fetuses derived from Pemt(-/-) dams fed the control diet had 25-50% less phospholipid-DHA as compared with WT (p < 0.05). Also, they had 60% more neural progenitor cell proliferation (p < 0.05), 60% more neuronal apoptosis (p < 0.01), and 30% less calretinin expression (p < 0.05; a marker of neuronal differentiation) in the hippocampus compared with WT. The DHA-supplemented diet increased fetal brain Pemt(-/-) phospholipid-DHA to WT levels, and abrogated the neural progenitor cell proliferation and apoptosis differences. Although this diet did not change proliferation in the WT group, it halved the rate of apoptosis (p < 0.05). In both genotypes, the DHA-supplemented diet increased calretinin expression 2-fold (p < 0.05). These results suggest that the changes in hippocampal development in the Pemt(-/-) mouse could be mediated by altered DHA incorporation into membrane phospholipids, and that maternal dietary DHA can influence fetal brain development.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Feto/embriologia , Hipocampo/embriologia , Fosfatidil-N-Metiletanolamina N-Metiltransferase , Animais , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Feto/citologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Fosfolipídeos/metabolismo , Gravidez , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
J Nutr Biochem ; 21(4): 345-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19423322

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by extracellular deposits of fibrillar aggregates of amyloid-beta peptide (Abeta). Levels of docosahexaenoic acid (DHA, 22:6n-3), the major fatty acid component of the neuronal membrane, are reduced in the AD hippocampus. We hypothesized that hippocampal neurons with reduced DHA levels would be more susceptible to aggregated Abeta-induced death and that this might be overcome by increasing hippocampal neuronal DHA levels. Embryonic Day 18 rat hippocampal cells were cultured in neurobasal medium with B27 supplemented with 0-100 microM DHA for 8 days, then were treated with 5 microM aggregated Abeta(42) for 1 day. We found that supplementation with 5-10 microM DHA, which resulted in hippocampal neuron DHA levels of 12-16% of total fatty acids, was optimal for primary hippocampal neuronal survival, whereas supplementation with 5 or 25 microM DHA attenuated aggregated Abeta(42)-induced neurotoxicity and protected hippocampal neurons, with 25 microM DHA being more effective. DHA supplementation also resulted in significant up-regulation of expression of tyrosine tubulin and acetylated tubulin. We suggest that hippocampal neuronal DHA levels may be critical for AD prevention by attenuating the neurotoxicity induced by Abeta and in maintaining hippocampal neuron survival.


Assuntos
Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Hipocampo/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fragmentos de Peptídeos/antagonistas & inibidores , Regulação para Cima , Acetilação , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Hipocampo/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Tubulina (Proteína)/metabolismo
17.
Int J Dev Neurosci ; 28(2): 195-205, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19913087

RESUMO

Status epilepticus occurring in early postnatal development protects CA1 hippocampal neurons, the region most sensitive to seizure-induced injury in the developing brain. Here, we developed a "two hit" model in dissociated cultures of the rat hippocampus to test whether pre-exposure of immature neurons to high concentrations of glutamate, N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) during a relatively resistant period prevents neurons from dying following a second exposure to the same chemicals after neurons mature and become highly vulnerable to excitatory amino acids (EAAs). Cultures were exposed to varied doses of glutamate, NMDA, or AMPA for 48 h at 5 DIV and again at 14 DIV for 5, 15, or 30 min. NeuN immunohistochemistry showed early exposure to glutamate (500 microM) killed approximately half of the neurons (52+/-8.6%) compared to the marked depletion that occurs after one exposure at 14 DIV (98+/-0.79%). When cultures were first challenged with moderate doses of glutamate (200 microM) followed by the high dose 7 days later, a significant population of neurons was spared (35.3+/-1.2%). Similarly, pre-exposure to maximal doses of NMDA (100 microM) increased the proportion of surviving cells following the second challenge. In contrast, AMPA (100 microM) was equally toxic after early or late applications and did not protect from the second exposure. GluR1 subunit expression was markedly decreased at 48 h after one or two exposures to 200 microM glutamate (by 44.57+/-3.6%, 45.07+/-3.69%) whereas GluR2 subunit expression was reduced by a lesser amount (25.7 57+/-3.8%). Confocal microscopy showed that one or two exposures to NMDA caused GluR2 protein to downregulate even further whereas parvalbumin (PV) was dramatically increased in the same neurons by over four-fold. On the other hand, calbindin (CB) immunoreactivity was nearly absent after the first exposure to 500 microM glutamate. These data indicate that early, transient exposure to certain EAAs at high doses can induce long-lasting neuroprotection. Alterations in the GluR1/GluR2 ratio as well as differential expression of specific calcium binding proteins may contribute to this neuroprotection.


Assuntos
Aminoácidos Excitatórios/metabolismo , Hipocampo/embriologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Aminoácidos Excitatórios/administração & dosagem , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , N-Metilaspartato/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Neurotoxinas/administração & dosagem , Neurotoxinas/metabolismo , Ratos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
18.
J Neurochem ; 111(2): 510-21, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19682204

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3), the major polyunsaturated fatty acid accumulated in the brain during development, has been implicated in learning and memory, but underlying cellular mechanisms are not clearly understood. Here, we demonstrate that DHA significantly affects hippocampal neuronal development and synaptic function in developing hippocampi. In embryonic neuronal cultures, DHA supplementation uniquely promoted neurite growth, synapsin puncta formation and synaptic protein expression, particularly synapsins and glutamate receptors. In DHA-supplemented neurons, spontaneous synaptic activity was significantly increased, mostly because of enhanced glutamatergic synaptic activity. Conversely, hippocampal neurons from DHA-depleted fetuses showed inhibited neurite growth and synaptogenesis. Furthermore, n-3 fatty acid deprivation during development resulted in marked decreases of synapsins and glutamate receptor subunits in the hippocampi of 18-day-old pups with concomitant impairment of long-term potentiation, a cellular mechanism underlying learning and memory. While levels of synapsins and NMDA receptor subunit NR2A were decreased in most hippocampal regions, NR2A expression was particularly reduced in CA3, suggesting possible role of DHA in CA3-NMDA receptor-dependent learning and memory processes. The DHA-induced neurite growth, synaptogenesis, synapsin, and glutamate receptor expression, and glutamatergic synaptic function may represent important cellular aspects supporting the hippocampus-related cognitive function improved by DHA.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Hipocampo/citologia , Potenciação de Longa Duração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Células Cultivadas , Ácidos Docosa-Hexaenoicos/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/embriologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/efeitos dos fármacos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Gravidez , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Sinapsinas/metabolismo , Transmissão Sináptica/fisiologia
19.
J Neurosci Res ; 87(13): 2821-32, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19437543

RESUMO

Type 1 insulin-like growth factor receptor (IGF1R) signaling in neuronal development was studied in mutant mice with blunted igf1r gene expression in nestin-expressing neuronal precursors. At birth [postnatal (P) day 0] brain weights were reduced to 37% and 56% of controls in mice homozygous (nes-igf1r(-/-)) and heterozygous (nes-igf1r(-/Wt)) for the null mutation, respectively, and this brain growth retardation persisted postnatally. Stereological analysis demonstrated that the volumes of the hippocampal formation, CA fields 1-3, dentate gyrus (DG), and DG granule cell layer (GCL) were decreased by 44-54% at P0 and further by 65-69% at P90 in nes-igf1r(-/Wt) mice. In nes-igf1r(-/-) mice, volumes were 29-31% of controls at P0 and, in the two mice that survived to P90, 6-19% of controls, although the hilus could not be identified. Neuron density did not differ among the mice at any age studied; therefore, decreased volumes were due to reduced cell number. In postnatal nes-igf1r(-/Wt) mice, the percentage of apoptotic cells, as judged by activated caspase-3 immunostaining, was increased by 3.5-5.3-fold. The total number of proliferating DG progenitors (labeled by BrdU incorporation and Ki67 staining) was reduced by approximately 50%, but the percentage of these cells was similar to the percentages in littermate controls. These findings suggest that 1) the postnatal reduction in DG size is due predominantly to cell death, pointing to the importance of the IGF1R in regulating postnatal apoptosis, 2) surviving DG progenitors remain capable of proliferation despite reduced IGF1R expression, and 3) IGF1R signaling is necessary for normal embryonic brain development.


Assuntos
Hipocampo/crescimento & desenvolvimento , Neurogênese/fisiologia , Receptor IGF Tipo 1/fisiologia , Animais , Apoptose , Contagem de Células , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Feminino , Regulação da Expressão Gênica , Genes Letais , Genes Reporter , Genótipo , Hipocampo/embriologia , Hipocampo/patologia , Hipotálamo/embriologia , Hipotálamo/crescimento & desenvolvimento , Proteínas de Filamentos Intermediários/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Nestina , Neurônios/patologia , Receptor IGF Tipo 1/deficiência , Receptor IGF Tipo 1/genética , Transdução de Sinais/fisiologia , Transgenes
20.
Toxicol In Vitro ; 23(2): 201-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19095056

RESUMO

Protocatechuic acid (PCA), a phenolic compound isolated from the kernels of Alpinia oxyphylla, showed anti-oxidant neuroprotective property in our previous study. However, it is still unknown whether PCA have effects on the cultured neural stem cells (NSCs). In this study, we investigated the roles of PCA in the survival and apoptosis of rat NSCs under normal conditions. NSCs obtained from 13.5-day-old rat embryos were propagated as neurospheres and cultured under normal conditions with or without PCA for 4 and 7 days. The cell viability was determined by the cell counting kit-8 (CCK-8) test, while cell proliferation was assayed by bromodeoxyuridine (BrdU) labeling. PCA increased the cellular viability of NSCs and stimulated cell proliferation in a dose- and time-dependent manner. Apoptotic cells were detected after 4 days by observing the nuclear morphological changes and flow cytometric analysis. Compared with the control on both culture days, treatment with PCA effectively reduced the levels of apoptosis of NSCs. At the same time, the reactive oxygen species (ROS) level in NSCs was depressed. In addition, PCA also significantly decreased the activity of elevated caspase-3, indicating that PCA may inhibit apoptosis of NSCs via suppression of the caspase cascade. These results suggest that PCA may be a potential growth inducer and apoptosis inhibitor for NSCs.


Assuntos
Alpinia/química , Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Neurônios/efeitos dos fármacos , Animais , Bromodesoxiuridina/metabolismo , Agregação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , DNA/análise , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Hipocampo/citologia , Hipocampo/embriologia , Neurônios/metabolismo , Neurônios/patologia , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA