Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 812
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Geriatr Psychiatry ; 32(8): 1014-1027, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38521736

RESUMO

OBJECTIVE: Converging evidence indicates that subjective cognitive decline (SCD) could be an early indicator of dementia. The hippocampus is the earliest affected region during the progression of cognitive impairment. However, little is known about whether and how acupuncture change the hippocampal structure and function of SCD individuals. METHODS: Here, we used multi-modal MRI to reveal the mechanism of acupuncture in treating SCD. Seventy-two older participants were randomized into acupuncture or sham acupuncture group and treated for 12 weeks. RESULTS: At the end of the intervention, compared to sham acupuncture, participants with acupuncture treatment showed improvement in composite Z score from multi-domain neuropsychological tests, as well as increased hippocampal volume and functional connectivity. Moreover, the greater white matter integrity of the fornix, which is the major output tract of the hippocampus, was shown in the acupuncture group. CONCLUSION: These findings suggest that acupuncture may improve the cognitive function of SCD individuals, and increase hippocampal volume on the regional level and enhance the structural and functional connectivity of hippocampus on the connective level.


Assuntos
Terapia por Acupuntura , Disfunção Cognitiva , Hipocampo , Imageamento por Ressonância Magnética , Humanos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/fisiopatologia , Terapia por Acupuntura/métodos , Masculino , Feminino , Disfunção Cognitiva/terapia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Idoso , Testes Neuropsicológicos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Pessoa de Meia-Idade
2.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055048

RESUMO

Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc-/-) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc-/- and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.


Assuntos
Dieta , Disbiose , Microbioma Gastrointestinal , Histamina/metabolismo , Comportamento Social , Estresse Psicológico , Animais , Comportamento Animal , Biomarcadores , Peso Corporal , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Locomoção , Masculino , Metagenoma , Metagenômica , Camundongos , Camundongos Knockout , Modelos Animais
3.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-35092409

RESUMO

Depression is characterized by indifferent and slow thinking, leading to highly unfavorable social and economic burden. Hydroxysafflor yellow A (HSYA) is a traditional Chinese medicine and has many pharmacological properties, such as anti-oxidative and anti-inflammatory activities. However, the underlying mechanism unraveling the effect of HSYA on depression is still unclear. Here, depression animal model was established. It was demonstrated that HSYA improved depressive behavior in rat model of depression, which increased horizontal movement, vertical movement, sucrose percent index and decreased immobility of depressed rats. Moreover, HSYA inhibited the activation of HPA signaling, inflammation and oxidative stress in brain of depressed rats. HSYA played an opposite effect on production of chronic unpredicted mild stress (CUMS)-induced pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß). CUMS increased MDA expression but decreased SOD and GSH-Px expression, which were reversed by HSYA treatment. Furthermore, HSYA exerted a suppressive role in TLR4/NF-jB signaling pathway in brain of depressed rats. In conclusion, these findings indicted that HSYA can improve depressive behavior through inhibiting HPA signaling, repressing hippocampal inflammation and oxidative stress, which will provide a new therapeutic method for treating depression.


Assuntos
Chalcona/análogos & derivados , Transtorno Depressivo/tratamento farmacológico , Encefalite/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Quinonas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Chalcona/farmacologia , Citocinas/metabolismo , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Encefalite/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos Wistar , Receptor 4 Toll-Like/metabolismo
4.
Oxid Med Cell Longev ; 2022: 8295580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087621

RESUMO

This study was designed to explore the potential mechanisms of electroacupuncture (EA) in treating inflammatory bowel disease- (IBD-) related anxiety and mood disorders. A colitis model was induced in rats with 2, 4, 6-trinitrohydrosulfonic acid (TNBS), followed by ST36 and SP6 targeted therapy by EA or sham EA treatment. The elevated plus maze (EPM) and open-field test (OFT) were performed to assess the state of anxiety and depression-like behavior. Tests were carried out by 16S rDNA amplification sequence, 1H nuclear magnetic resonance (1H NMR) spectroscopy, immunofluorescence staining, and enzyme-linked immunosorbent assay (ELISA). The analyses detailed metabolic alterations and the Toll-like receptor 4 (TLR4) signaling pathway/NOD-like receptor protein 3 (NLRP3) inflammasome in rats' hippocampal region. Furthermore, the activity of the hypothalamic-pituitary adrenal (HPA) axis and gut microbiome was assessed. As a result of treatment, EA significantly improved in the behavioral tests and altered the composition of the gut microbiome through a significant increase in the density of short chain fatty acids (SCFAs) producers mainly including Ruminococcaceae, Phascolarctobacterium, and Akkermansiaceae. EA upregulated the metabolites of the hippocampus mainly containing l-glutamine and gamma-aminobutyric acid (GABA), as well as ZO-1 expression. Whereas the treatment blocked the TLR4/nuclear factor- kappa B (NF-κB) signaling pathways and NLRP3 inflammasomes, along with downregulating the interleukin- (IL-) 1ß level. The hyperactivity of the HPA axis was also diminished. In conclusion, EA at ST36 and SP6 attenuated anxiety and depression-like behavior in colitis model rats through their effects on the gut microbiome by modulating the hippocampal inflammatory response and metabolic disorders, as well as the HPA axis. This study provides evidence for clinical application of EA to serve as an adjunctive treatment for IBD-related anxiety and depression.


Assuntos
Ansiedade/terapia , Encefalopatias Metabólicas/fisiopatologia , Depressão/terapia , Eletroacupuntura/métodos , Hipocampo/fisiopatologia , Inflamação/fisiopatologia , Doenças Inflamatórias Intestinais/terapia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
5.
Gene ; 806: 145920, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34455026

RESUMO

Depression is deemed a mood disorder characterized by a high rate of relapse. Therefore, overcoming of the recurrent depression is globally expecting. Kososan, a traditional Japanese herbal medicine, has been clinically used for mild depressive mood, and our previous studies have shown some evidence for its antidepressive-like efficacy in experimental animal models of depression. However, it remains unclear whether kososan has beneficial effects on recurrent depression. Here, we examined its effect using a mouse model of modified repeated social defeat stress (SDS) paradigm. Male BALB/c mice were exposed to a 5-min SDS from unfamiliar aggressive CD-1 mice for 5 days. Kososan extract (1.0 kg/kg/day) or an antidepressant milnacipran (60 mg/kg/day) was administered orally for 26 days (days 7-32) to depression-like mice with social avoidant behaviors on day 6. Single 5 min of SDS was subjected to mice recovered from the social avoidance on day 31, and then the recurrence of depression-like behaviors was evaluated on day 32. Hippocampal gene expression patterns were also assayed by DNA microarray analysis. Water- or milnacipran-administered mice resulted in a recurrence of depression-like behaviors by re-exposure of single SDS, whereas kososan-administered mice did not recur depression-like behaviors. Distinct gene expression patterns were also found for treating kososan and milnacipran. Collectively, this finding suggests that kososan exerts a preventive effect on recurrent depression-like behaviors in mice. Pretreatment of kososan is more useful for recurrent depression than that of milnacipran.


Assuntos
Antidepressivos/farmacologia , Depressão/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Proteínas do Tecido Nervoso/genética , Derrota Social , Estresse Psicológico/tratamento farmacológico , Administração Oral , Animais , Depressão/genética , Depressão/fisiopatologia , Depressão/psicologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Japão , Masculino , Medicina Kampo/métodos , Camundongos , Camundongos Endogâmicos BALB C , Milnaciprano/farmacologia , Anotação de Sequência Molecular , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Recidiva , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia
6.
J Ethnopharmacol ; 286: 114871, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34856360

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD), the most common disease in the brain, is associated with cognitive and mitochondrial dysfunction. Emerging evidence suggests that endurance training and Syzygium aromaticum (L.) Merrill and Perry (Myrtaceae) (commonly referred to as clove) are effective interventions to maintain oxidative balance and improve cognitive function. AIM OF THE STUDY: The present study aimed to investigate the effect of endurance training and clove oil affect spatial memory, apoptosis, mitochondrial homeostasis, and cognitive function in Alzheimer's rats. MATERIALS AND METHODS: 81 rats were randomly assigned to 9 groups: Healthy (H), sham (sh), Healthy-exercise (HE), Healthy-clove (HC), Healthy-exercise-clove (HEC), Alzheimer's (A), Alzheimer's-exercise (AE), Alzheimer's-clove (AC), and Alzheimer's-exercise-clove (AEC). Alzheimer's induction was induced by the injection of 1-42 amyloid into the CA1 region of the hippocampus. The exercise training protocol was performed for 3 weeks, every day for 30 min in swimming training, and clove oil supplementation (0.1 mg/kg) was gavaged daily for 3 weeks in the supplement rat. Shuttle box test was used to measure spatial memory after the last training session, and to determine the mRNAs and protein levels and apoptosis, Real-Time PCR, immunofluorescent, and tunnel methods were used, respectively. RESULTS: Alzheimer's caused a significant decrease in the PRDX6 and GCN5L1 mRNAs and protein levels and a significant increase in apoptosis in the hippocampus of the Alzheimer's group compared to the control group (P = 0.001). Alzheimer's also reduced the time delay in entering the dark environment and increased the time spent in the dark environment (P = 0.001). Following endurance training and consumption of clove oil, spatial memory (P = 0.001), apoptosis (P = 0.001) and mRNAs and protein levels of PRDX6 (P = 0.001) and GCN5L1 (P = 0.017), were recovered in AE, AC and AEC groups, as compared with A group. CONCLUSION: Swimming training and consumption of clove can possibly be considered as an effective intervention to maintain oxidative balance and improve mitochondrial homeostasis in Alzheimer's disease.


Assuntos
Doença de Alzheimer/terapia , Condicionamento Físico Animal/métodos , Extratos Vegetais/farmacologia , Syzygium/química , Doença de Alzheimer/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Terapia Combinada , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/fisiopatologia , Transtornos da Memória/terapia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Ratos , Ratos Wistar , Natação
7.
CNS Neurosci Ther ; 27(12): 1472-1482, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34623740

RESUMO

AIMS: This study aimed to investigate whether electroacupuncture (EA) promotes the survival and synaptic plasticity of hippocampal neurons by activating brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase (TrkB)/extracellular signal-regulated kinase (Erk) signaling, thereby improving spatial memory deficits in rats under SD. METHODS: In vivo, Morris water maze (MWM) was used to detect the effect of EA on learning and memory, at the same time Western blotting (WB), immunofluorescence (IF), and transmission electron microscopy (TEM) were used to explore the plasticity of hippocampal neurons and synapses, and the expression of BDNF/TrkB/Erk signaling. In vitro, cultured hippocampal neurons were treated with exogenous BDNF and the TrkB inhibitor K252a to confirm the relationship between BDNF/TrkB/Erk signaling and synaptic plasticity. RESULTS: Our results showed that EA mitigated the loss of hippocampal neurons and synapses, stimulated hippocampal neurogenesis, and improved learning and memory of rats under SD accompanied by upregulation of BDNF and increased phosphorylation of TrkB and Erk. In cultured hippocampal neurons, exogenous BDNF enhanced the expression of synaptic proteins, the frequency of the postsynaptic currents, and the phosphorylation of TrkB and Erk; these effects were reversed by treatment with K252a. CONCLUSIONS: Electroacupuncture alleviates SD-induced spatial memory impairment by promoting hippocampal neurogenesis and synaptic plasticity via activation of BDNF/TrkB/Erk signaling, which provided evidence for EA as a therapeutic strategy for countering the adverse effects of SD on cognition.


Assuntos
Eletroacupuntura , Hipocampo/fisiopatologia , Transtornos da Memória/fisiopatologia , Transtornos da Memória/terapia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Privação do Sono/complicações
8.
J Neuroendocrinol ; 33(7): e12975, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942400

RESUMO

The Wistar audiogenic rat (WAR) strain is used as an animal model of epilepsy, which when submitted to acute acoustic stimulus presents tonic-clonic seizures, mainly dependent on brainstem (mesencephalic) structures. However, when WARs are exposed to chronic acoustic stimuli (audiogenic kindling-AK), they usually present tonic-clonic seizures, followed by limbic seizures, after recruitment of forebrain structures such as the cortex, hippocampus and amygdala. Although some studies have reported that hypothalamic-hypophysis function is also altered in WAR through modulating vasopressin (AVP) and oxytocin (OXT) secretion, the role of these neuropeptides in epilepsy still is controversial. We analyzed the impact of AK and consequent activation of mesencephalic neurocircuits and the recruitment of forebrain limbic (LiR) sites on the hypothalamic-neurohypophysial system and expression of Avpr1a and Oxtr in these structures. At the end of the AK protocol, nine out of 18 WARs presented LiR. Increases in both plasma vasopressin and oxytocin levels were observed in WAR when compared to Wistar rats. These results were correlated with an increase in the expressions of heteronuclear (hn) and messenger (m) RNA for Oxt in the paraventricular nucleus (PVN) in WARs submitted to AK that presented LiR. In the paraventricular nucleus, the hnAvp and mAvp expressions increased in WARs with and without LiR, respectively. There were no significant differences in Avp and Oxt expression in supraoptic nuclei (SON). Also, there was a reduction in the Avpr1a expression in the central nucleus of the amygdala and frontal lobe in the WAR strain. In the inferior colliculus, Avpr1a expression was lower in WARs after AK, especially those without LiR. Our results indicate that both AK and LiR in WARs lead to changes in the hypothalamic-neurohypophysial system and its receptors, providing a new molecular basis to better understaind epilepsy.


Assuntos
Epilepsia Reflexa , Hipotálamo/metabolismo , Excitação Neurológica/fisiologia , Sistemas Neurossecretores/metabolismo , Neuro-Hipófise/metabolismo , Estimulação Acústica , Animais , Modelos Animais de Doenças , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Epilepsia Reflexa/patologia , Epilepsia Reflexa/fisiopatologia , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Excitação Neurológica/patologia , Masculino , Sistemas Neurossecretores/patologia , Sistemas Neurossecretores/fisiopatologia , Ocitocina/sangue , Ocitocina/genética , Ocitocina/metabolismo , Neuro-Hipófise/patologia , Neuro-Hipófise/fisiopatologia , Ratos , Ratos Wistar , Convulsões/genética , Convulsões/metabolismo , Convulsões/fisiopatologia , Convulsões/psicologia , Vasopressinas/sangue , Vasopressinas/genética , Vasopressinas/metabolismo
9.
Neurochem Int ; 147: 105071, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34000331

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder presenting cognitive decline accompanied by deposits of amyloid-ß (Aß) and tau hyperphosphorylation. Without current treatment to AD, many studies suggested diverse approaches, one of which was herbal medicine and its active compounds. Very few studies have examined the effect of Lindera glauca Blume (L. glauca) in models of degenerative disease despite the attention that it received as a novel potential treatment source. We examined the efficacy of L. glauca in a mouse model of AD, which was induced by intrahippocampal injection of Aß1-42. METHODS: Mice were intrahippocampally infused with Aß1-42 and were orally administered ethanolic extract of L.glauca before and after infusion for 21 days. Y-maze test and Morris water maze was conducted to assess memory impairment. Immunohistochemistry and western blot analysis were performed to assess the effect of L. glauca administration on pathological changes in mice. RESULTS: L. glauca exhibited beneficial effects in spatial and reference learning as shown in increased time spent in the target quadrant in Morris water maze and increased spontaneous alternation in Y-maze. At the same time, decline of Aß burden and phosphorylated tau were observed in the hippocampus of L. glauca-treated mouse under intrahippocampal injection of Aß1-42. The results corresponded with amelioration of the decreased neuronal marker, neuronal-specific nuclear protein (NeuN) and attenuation of the increased reactive astrocyte marker, glial fibrillary acidic protein (GFAP) levels in hippocampus. Additionally, 21-day treatment with L. glauca inhibited downregulation of phosphorylated cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) levels. CONCLUSION: L. glauca improves behavioral deficits induced by Aß1-42 and inhibits both Aß- and tau-related pathological changes, stimulating neuroprotection mediated by CREB activation. L. glauca can be suggested as a new candidate for treatment of AD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/fisiopatologia , Lindera/metabolismo , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/farmacologia , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia
10.
Mol Brain ; 14(1): 84, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034796

RESUMO

Down syndrome (DS) is the most frequent genetic cause of intellectual disability including hippocampal-dependent memory deficits. We have previously reported hippocampal mTOR (mammalian target of rapamycin) hyperactivation, and related plasticity as well as memory deficits in Ts1Cje mice, a DS experimental model. Here we characterize the proteome of hippocampal synaptoneurosomes (SNs) from these mice, and found a predicted alteration of synaptic plasticity pathways, including long term depression (LTD). Accordingly, mGluR-LTD (metabotropic Glutamate Receptor-LTD) is enhanced in the hippocampus of Ts1Cje mice and this is correlated with an increased proportion of a particular category of mushroom spines in hippocampal pyramidal neurons. Remarkably, prenatal treatment of these mice with rapamycin has a positive pharmacological effect on both phenotypes, supporting the therapeutic potential of rapamycin/rapalogs for DS intellectual disability.


Assuntos
Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Síndrome de Down/patologia , Síndrome de Down/fisiopatologia , Depressão Sináptica de Longo Prazo , Receptores de Glutamato Metabotrópico/metabolismo , Sirolimo/farmacologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos Transgênicos , Proteínas Mitocondriais/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Proteômica , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
11.
Sci Rep ; 11(1): 9182, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911138

RESUMO

Neurodegenerative disorders are characterized by the decline of cognitive function and the progressive loss of memory. The dysfunctions of the cognitive and memory system are closely related to the decreases in brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) signalings. Ribes fasciculatum, a medicinal plant grown in diverse countries, has been reported to pharmacological effects for autoimmune diseases and aging recently. Here we found that afzelin is a major compound in Ribes fasciculatum. To further examine its neuroprotective effect, the afzelin (100 ng/µl, three times a week) was administered into the third ventricle of the hypothalamus of C57BL/6 mice for one month and scopolamine was injected (i.p.) to these mice to impair cognition and memory before each behavior experiment. The electrophysiology to measure long-term potentiation and behavior tests for cognitive and memory functions were performed followed by investigating related molecular signaling pathways. Chronic administration of afzelin into the brain ameliorated synaptic plasticity and cognitive/memory behaviors in mice given scopolamine. Studies of mice's hippocampi revealed that the response of afzelin was accountable for the restoration of the cholinergic systems and molecular signal transduction via CREB-BDNF pathways. In conclusion, the central administration of afzelin leads to improved neurocognitive and neuroprotective effects on synaptic plasticity and behaviors partly through the increase in CREB-BDNF signaling.


Assuntos
Demência/tratamento farmacológico , Demência/etiologia , Manosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Proantocianidinas/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Demência/induzido quimicamente , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Manosídeos/química , Manosídeos/isolamento & purificação , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/química , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Ribes/química , Escopolamina/toxicidade
12.
Oxid Med Cell Longev ; 2021: 8879060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747352

RESUMO

OBJECTIVE: To explore the oxidative stress mechanism of modified Buyang Huanwu decoction (MBHD) in intervention of vascular dementia (VD) based on systems biology strategy. METHODS: In this study, through the reverse virtual target prediction technology and transcriptomics integration strategy, the active ingredients and potential targets of MBHD treatment of VD were analyzed, and the drug-disease protein-protein interaction (PPI) network was constructed. Then, bioinformatics analysis methods are used for Gene Ontology (GO) enrichment analysis and pathway enrichment analysis, and finally find the core biological process. After that, in animal models, low-throughput technology is used to detect gene expression and protein expression of key molecular targets in oxidative stress-mediated inflammation and apoptosis signaling pathways to verify the mechanism of MBHD treatment of VD rats. Finally, the potential interaction relationship between MBHD and VD-related molecules is further explored through molecular docking technology. RESULTS: There are a total of 54 MBHD components, 252 potential targets, and 360 VD genes. The results of GO enrichment analysis and pathway enrichment analysis showed that MBHD may regulate neuronal apoptosis, nitric oxide synthesis and metabolism, platelet activation, NF-κB signaling pathway-mediated inflammation, oxidative stress, angiogenesis, etc. Among them, SIRT1, NF-κB, BAX, BCL-2, CASP3, and APP may be important targets for MBHD to treat VD. Low-throughput technology (qRT-PCR/WB/immunohistochemical technology) detects oxidative stress-mediated inflammation and apoptosis-related signaling pathway molecules. The molecular docking results showed that 64474-51-7, cycloartenol, ferulic acid, formononetin, kaempferol, liquiritigenin, senkyunone, wallichilide, xanthinin, and other molecules can directly interact with NF-κB p65, BAX, BCL-2, and CASP3. CONCLUSION: The active compounds of MBHD interact with multiple targets and multiple pathways in a synergistic manner, and have important therapeutic effects on VD mainly by balancing oxidative stress/anti-inflammatory and antiapoptotic, enhancing metabolism, and enhancing the immune system.


Assuntos
Demência Vascular/patologia , Medicamentos de Ervas Chinesas/farmacologia , Estresse Oxidativo , Biologia de Sistemas , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Análise por Conglomerados , Demência Vascular/genética , Demência Vascular/fisiopatologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Ligantes , Masculino , Memória/efeitos dos fármacos , Mapas de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Transdução de Sinais/genética
13.
Hum Brain Mapp ; 42(1): 259-270, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33048406

RESUMO

Insomnia disorder is the most common sleep disorder and has drawn increasing attention. Many studies have shown that hyperarousal plays a key role in the pathophysiology of insomnia disorder. However, the specific brain mechanisms underlying insomnia disorder remain unclear. To elucidate the neuropathophysiology of insomnia disorder, we investigated the brain functional networks of patients with insomnia disorder and healthy controls across the sleep-wake cycle. EEG-fMRI data from 33 patients with insomnia disorder and 31 well-matched healthy controls during wakefulness and nonrapid eye movement sleep, including N1, N2 and N3 stages, were analyzed. A medial and anterior thalamic region was selected as the seed considering its role in sleep-wake regulation. The functional connectivity between the thalamic seed and voxels across the brain was calculated. ANOVA with factors "group" and "stage" was performed on thalamus-based functional connectivity. Correlations between the misperception index and altered functional connectivity were explored. A group-by-stage interaction was observed at widespread cortical regions. Regarding the main effect of group, patients with insomnia disorder demonstrated decreased thalamic connectivity with the left amygdala, parahippocampal gyrus, putamen, pallidum and hippocampus across wakefulness and all three nonrapid eye movement sleep stages. The thalamic connectivity in the subcortical cluster and the right temporal cluster in N1 was significantly correlated with the misperception index. This study demonstrated the brain functional basis in insomnia disorder and illustrated its relationship with sleep misperception, shedding new light on the brain mechanisms of insomnia disorder and indicating potential therapeutic targets for its treatment.


Assuntos
Conectoma , Rede Nervosa/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Fases do Sono/fisiologia , Tálamo/fisiopatologia , Vigília/fisiologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiopatologia , Eletroencefalografia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Giro Para-Hipocampal/diagnóstico por imagem , Giro Para-Hipocampal/fisiopatologia , Polissonografia , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Tálamo/diagnóstico por imagem
14.
J Ethnopharmacol ; 267: 113468, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049345

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sesame (Sesamum indicum, L., Family: Pedaliaceae) is a notable folk medicine in Middle East, Asia and Africa. Many traditional and pharmacological studies have documented the unique nature of sesame oil (SO). SO has been reported to have many pharmacological effects related to the anti-inflammatory and antioxidant capacity of its components. Neuroinflammation and oxidative stress have been the predominant pathogenic events in Alzheimer's disease (AD) which is one of the most common neurodegenerative diseases. AIM OF STUDY: we aimed to explore the neuroprotective effect and the probable mechanisms of SO against aluminium chloride (AlCl3)-induced AD symptoms. MATERIALS AND METHODS: Rats were treated daily with AlCl3 (100 mg/kg/i.p.) either alone or with SO (two different doses) for six weeks. Behavioral (Open-field and Morris water maze tests), histopathological, and biochemical examinations were used to evaluate the neuroprotective effect and the underlying mechanisms of SO against AlCl3-induced AD symptoms. RESULTS: Our results indicated that SO significantly improved learning and memory impairments induced by AlCl3. Indeed, SO treatment significantly restored the elevated level of acetylcholinesterase (AChE) and amyloid beta (Aß) overexpression. Moreover, AlCl3 treatment afforded histopathological changes, increase the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) in addition to mitigation of oxidative stress status in the brain. SO abolished all these abnormalities. Meanwhile, AlCl3 induced activation of p38 mitogen-activated protein kinase (p38MAPK) and decreased brain-derived neurotrophic factor (BDNF) which were inhibited by SO. Furthermore, SO administration modulated the expression of the peroxisome proliferator-activated receptor gamma (PPAR-γ) and nuclear factor kappa B (NF-κB). CONCLUSIONS: In conclusion, the neuroprotective effect of SO involved the modulation of different mechanisms targeting oxidative stress, neuroinflammation, and cognitive functions. SO may modulate different molecular targets involved in AD pathogenesis by alterations of NF-κB/p38MAPK/BDNF/PPAR-γ signalling and this may be attributed to the synergistic effect of their active components.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Memória/efeitos dos fármacos , Degeneração Neural , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Óleo de Gergelim/farmacologia , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/enzimologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/enzimologia , Transtornos da Memória/patologia , Transtornos da Memória/psicologia , NF-kappa B/metabolismo , PPAR gama/metabolismo , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Biomed Pharmacother ; 133: 110844, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33186793

RESUMO

Cerebral palsy (CP) is a non-progressive motor-impairment disorder related to brain injury early in development. To gain new insights into the mechanisms of CP and the therapeutic efficacy of Baimai ointment, we used a high-throughput quantitative proteomic approach to evaluate proteomic changes in the hippocampus and motor cortex in a rat model of CP induced by lipopolysaccharide (LPS) combined with hypoxia/ischemia (H/I). More than 2000 proteins were identified in each brain region with high confidence. Quantitative analysis demonstrated profound disturbances in the proteomes of the hippocampus and motor cortex after LPS + H/I, in addition to the disruption of the motor system. In contrast, the topical application of Baimai ointment not only alleviated the motor deficit in the CP model rats, but also restored the proteomes in the brain cortex. Furthermore, astrocytes in the hippocampus were strongly activated in the Baimai-treated CP rat brains, associated with an increase in neurotrophic factors. Proteomic analysis demonstrated that the CP model induced neuroinflammatory responses in the brain which were reversed by the topical application of Baimai ointment. This study highlights the unexpected roles of hippocampus and motor cortex neurons in CP progress and treatment, thus providing potentially novel therapeutic targets for CP.


Assuntos
Comportamento Animal/efeitos dos fármacos , Paralisia Cerebral/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Hipocampo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Proteoma , Proteômica , Administração Cutânea , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Paralisia Cerebral/metabolismo , Paralisia Cerebral/fisiopatologia , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pomadas , Gravidez , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
16.
J Chem Neuroanat ; 111: 101888, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212191

RESUMO

Koumine (KM) is a major alkaloid monomer in the traditional Chinese medicine herb Gelsemium elegans Benth that has exhibited therapeutic potential in clinical applications. However, the pharmacological toxicological mechanism of this drug has not been fully explored. The purpose of this study was to evaluate the impacts of KM administration at a therapeutic dose in offspring. On gestational day 0, mice were injected with KM once daily for 4 consecutive days. Male and female offspring were subjected to behavioral tests and neuropathological analyses from postnatal day 60. Prenatal KM exposure resulted in cognitive and memory impairments in the Morris water maze, Y-maze test, and novel object recognition test. The open field test and elevated plus maze test indicated that prenatal KM exposure induced anxiety-like behavior in offspring. Electrophysiological experiments demonstrated that KM exposure inhibited hippocampal long-term potentiation. Immunostaining for neurogenesis markers DCX and BrdU demonstrated that KM suppressed adult neurogenesis in the subgranular zone of the dentate gyrus. In addition, prenatal KM exposure induced a significant reduction in dendritic spine density in hippocampal neurons. Synaptic formation-related proteins were decreased in the KM group based on western blot. No sex differences in the effects of KM were observed. Collectively, our results indicate that prenatal KA exposure has detrimental neural effects on offspring. This study provides a preliminary preclinical toxicological assessment of the safety of KM use during pregnancy.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/fisiopatologia , Alcaloides Indólicos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Proteína Duplacortina , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Camundongos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gravidez
17.
J Ethnopharmacol ; 267: 113625, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248184

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: The water extract of Panax ginseng (GT) and Polygala tenuifolia (YT), the main constituents of the commonly used kai-xin-san formula of traditional Chinese medicine, represents SY. It possesses strong neuroprotective effects. Using behavioural tests, we have previously established that the SY formulation exerts superior antidepressant activity than that of GT or YT. AIM: To elucidate the impact of SY treatment on chronic unpredictable mild stress (CUMS)-induced depressive-like behaviours and the prospective mechanism related to hippocampal neurogenesis and the BDNF signaling pathway. METHODS: We exposed Sprague-Dawley rats (male; 180-200 g) to CUMS for 35 days. The rats in the experimental treatment groups were daily treated with either fluoxetine (10 mg kg-1d-1) or SY (67.5, 135, or 270 mg kg-1d-1) orally until the behavioural tests (tail suspension test [TST], novelty-suppressed feeding test [NSFT], sucrose preference test [SPT], and forced swim test [FST]) were completed. We assessed the modifications in the hippocampal neurogenesis and the BDNF signaling pathway post-treatment with CUMS and SY. Additionally, K252a, a tyrosine protein kinase inhibitor, was utilized to evaluate the antidepressant mechanisms of SY. RESULT: s: The results of SPT, NSFT, FST, and TST in CUMS-exposed rats confirmed the antidepressant actions of SY. Additionally, SY treatment induced the BDNF signaling pathway and reversed the hippocampal neurogenesis caused by CUMS. Moreover, we found that the TrkB antagonist K252a blocked SY effects on behavioural improvement, inhibited the incremental effects of SY on hippocampal neurogenesis, and eliminated the impact of SY on BDNF-TrkB signaling activation. Thus, the impact of SY treatment on BDNF signaling molecules (pAkt, pERK1/2, and pCREB) were significantly inhibited by K252a. CONCLUSIONS: This study showed that SY acted as an antidepressant in rats exhibiting CUMS-induced depressive-like behaviours, and was facilitated by promoting hippocampal neurogenesis and the BDNF signaling pathway activation. Thus, SY could act as a potential novel supplement or adjuvant to prevent or treat clinical depressive disorders.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/prevenção & controle , Hipocampo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Panax , Extratos Vegetais/farmacologia , Polygala , Receptor trkB/metabolismo , Animais , Antidepressivos/isolamento & purificação , Depressão/metabolismo , Depressão/fisiopatologia , Depressão/psicologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Panax/química , Extratos Vegetais/isolamento & purificação , Polygala/química , Ratos Sprague-Dawley , Transdução de Sinais , Solventes/química , Água/química
18.
Gynecol Endocrinol ; 37(4): 315-319, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33307896

RESUMO

Background: Acupuncture is an effective therapy for premenstrual syndrome (PMS). However, the mechanisms behind this method are still unclear. Our previous study found that aberrant amygdala resting-state functional networks were involved in PMS. Thereby, a deep investigation on the alterations of amygdala resting-state functional networks induced by acupuncture stimulation might contribute to a better understanding of the intricate mechanisms of acupuncture treatment on PMS. Methods: Twenty three PMS patients were recruited in this study. All patients received a 6-minute electro-acupuncture stimulation (EAS) at Sanyinjiao acupoint (SP6) and underwent two 6-minute resting-state fMRI scannings before and after EAS. With amygdala as the seed region, functional connectivity (FC) method was adopted to examine EAS-related modulation of intrinsic connectivity in PMS patients by comparing pre-EAS. Results: The results showed that EAS at SP6 induced increased FC between the left amygdala and brainstem, right hippocampus, and decreased FC between the left amygdala and left thalamus, bilateral supplementary motor area (SMA). Moreover, the results also showed that EAS at SP6 induced increased FC between the right amygdala and brainstem, right hippocampus, right orbitofrontal cortex, bilateral anterior cingulate cortex (ACC), and decreased FC between the right amygdala and right SMA. Conclusions: Based on the results of our previous study, our findings might improve our understanding of neural mechanisms behind acupuncture effects on PMS.


Assuntos
Encéfalo/diagnóstico por imagem , Eletroacupuntura , Síndrome Pré-Menstrual/terapia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Encéfalo/fisiopatologia , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/fisiopatologia , Feminino , Neuroimagem Funcional , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Vias Neurais , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Síndrome Pré-Menstrual/diagnóstico por imagem , Síndrome Pré-Menstrual/fisiopatologia , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia , Adulto Jovem
19.
Molecules ; 25(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327458

RESUMO

(1) Background: Sesame has been popular as a healthy food since ancient times, and effects of the aroma component of roasted sesame are also expected. However, little research has been reported on its scent; (2) Methods: Jcl:ICR male mice were housed under water immersion stress for 24 h. Then, the scent of saline or sesame oil was inhaled to stress groups for 90 min. We investigated the effects of sesame oil aroma on the behavior and brains of mice; (3) Results: In an elevated plus maze test, the rate of entering to open arm and the staying time were decreased by the stress. These decrements were significantly enhanced by sesame oil aroma. Stress had a tendency to increase the serum corticosterone concentration, which was slightly decreased by the aroma. Expression of Kruppel-like factor-4 (Klf-4) and Dual-specificity phosphatase-1 (Dusp-1) in the striatum were increased by water immersion stress, and the level of Klf-4 and Dusp-1 in the striatum and hippocampus were significantly attenuated by sesame oil aroma (4) Conclusions: The present results strongly suggest that the odor component of sesame oil may have stress suppressing effects. Moreover, Klf-4 and Dusp-1 may be sensitive stress-responsive biomarkers.


Assuntos
Ansiolíticos/farmacologia , Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Odorantes/análise , Óleo de Gergelim/farmacologia , Estresse Psicológico/tratamento farmacológico , Administração por Inalação , Animais , Ansiolíticos/química , Biomarcadores/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Corticosterona/sangue , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Óleo de Gergelim/química , Sesamum/química , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Natação/psicologia
20.
Nutrients ; 12(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238473

RESUMO

The creatine (Cr) energy system has been implicated in Alzheimer's disease (AD), including reductions in brain phosphoCr and Cr kinase, yet no studies have examined the neurobehavioral effects of Cr supplementation in AD, including the 3xTg mouse model. This studied investigated the effects of Cr supplementation on spatial cognition, plasticity- and disease-related protein levels, and mitochondrial function in the 3xTg hippocampus. Here, 3xTg mice were fed a control or Cr-supplemented (3% Cr (w/w)) diet for 8-9 weeks and tested in the Morris water maze. Mitochondrial oxygen consumption (Seahorse) and protein levels (Western blots) were measured in the hippocampus in subsets of mice. Overall, 3xTg females exhibited impaired memory as compared to males. In females, Cr supplementation decreased escape latency and was associated with increased spatial search strategy use. In males, Cr supplementation decreased the use of spatial search strategies. Pilot data indicated mitochondrial enhancements with Cr supplementation in both sexes. In females, Cr supplementation increased CREB phosphorylation and levels of IκB (NF-κB suppressor), CaMKII, PSD-95, and high-molecular-weight amyloid ß (Aß) species, whereas Aß trimers were reduced. These data suggest a beneficial preventative effect of Cr supplementation in females and warrant caution against Cr supplementation in males in the AD-like brain.


Assuntos
Doença de Alzheimer/prevenção & controle , Comportamento Animal/efeitos dos fármacos , Creatina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Memória Espacial/efeitos dos fármacos , Doença de Alzheimer/fisiopatologia , Animais , Comportamento Animal/fisiologia , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Fatores Sexuais , Memória Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA