Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.550
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118145, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582153

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic famous prescription that has been utilized for centuries to address dementia. New investigations have shown that the anti-dementia effect of KXS is connected with improved neuroinflammation. Nevertheless, the underlying mechanism is not well elucidated. AIM OF THE STUDY: We propose to discover the ameliorative impact of KXS on Alzheimer's disease (AD) and its regulatory role on the mitochondrial autophagy-nod-like receptor protein 3 (NLRP3) inflammasome pathway. MATERIALS AND METHODS: The Y maze, Morris water maze, and new objection recognition tests were applied to ascertain the spatial learning and memory capacities of amyloid precursor protein/presenilin 1 (APP/PS1) mice after KXS-treatment. Meanwhile, the biochemical indexes of the hippocampus were detected by reagent kits. The pathological alterations and mitochondrial autophagy in the mice' hippocampus were detected utilizing hematoxylin and eosin (H&E), immunohistochemistry, immunofluorescence staining, and transmission electron microscopy. Besides, the PTEN-induced putative kinase 1 (PINK1)/Parkin and NLRP3 inflammasome pathways protein expressions were determined employing the immunoblot analysis. RESULTS: The results of behavioral tests showed that KXS significantly enhanced the AD mice' spatial learning and memory capacities. Furthermore, KXS reversed the biochemical index levels and reduced amyloid-ß protein deposition in AD mice brains. Besides, H&E staining showed that KXS remarkably ameliorated the neuronal damage in AD mice. Concurrently, the results of transmission electron microscopy suggest that KXS ameliorated the mitochondrial damage in microglia and promoted mitochondrial autophagy. Moreover, the immunofluorescence outcomes exhibited that KXS promoted the expression of protein 1 light chain 3B (LC3B) associated with microtubule and the generation of autophagic flux. Notably, the immunofluorescence co-localization results confirmed the presence of mitochondrial autophagy in microglia. Finally, KXS promoted the protein expressions of the PINK1/Parkin pathway and reduced the activation of NLRP3 inflammasome. Most importantly, these beneficial effects of KXS were attenuated by the mitochondrial autophagy inhibitor chloroquine. CONCLUSION: KXS ameliorates AD-related neuropathology and cognitive impairment in APP/PS1 mice by enhancing the mitochondrial autophagy and suppressing the NLRP3 inflammasome pathway.


Assuntos
Doença de Alzheimer , Autofagia , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Inflamassomos , Camundongos Transgênicos , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Camundongos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças , Presenilina-1/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Transdução de Sinais/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases
2.
J Ethnopharmacol ; 329: 118161, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599474

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic herbal formula for the treatment and prevention of AD (Alzheimer's disease) with definite curative effect, but its mechanism, which involves multiple components, pathways, and targets, is not yet fully understood. AIM OF THE STUDY: To verify the effect of KXS on gut microbiota and explore its anti-AD mechanism related with gut microbiota. MATERIALS AND METHODS: AD rat model was established and evaluated by intraperitoneal injection of D-gal and bilateral hippocampal CA1 injections of Aß25-35. The pharmacodynamics of KXS in vivo includes general behavior, Morris water maze test, ELISA, Nissl & HE staining and immunofluorescence. Systematic analysis of gut microbiota was conducted using 16S rRNA gene sequencing technology. The potential role of gut microbiota in the anti-AD effect of KXS was validated with fecal microbiota transplantation (FMT) experiments. RESULTS: KXS could significantly improve cognitive impairment, reduce neuronal damage and attenuate neuroinflammation and colonic inflammation in vivo in AD model rats. Nine differential intestinal bacteria associated with AD were screened, in which four bacteria (Lactobacillus murinus, Ligilactobacillus, Alloprevotella, Prevotellaceae_NK3B31_group) were very significant. CONCLUSION: KXS can maintain the ecological balance of intestinal microbiota and exert its anti-AD effect by regulating the composition and proportion of gut microbiota in AD rats through the microbiota-gut-brain axis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Neurônios , Fragmentos de Peptídeos , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Ratos , Neurônios/efeitos dos fármacos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos
3.
Neuropsychopharmacology ; 49(6): 1024-1032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431758

RESUMO

The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.


Assuntos
Variações do Número de Cópias de DNA , Síndrome de DiGeorge , Dosagem de Genes , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Variações do Número de Cópias de DNA/genética , Adulto , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Síndrome de DiGeorge/diagnóstico por imagem , Estudos Longitudinais , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/crescimento & desenvolvimento , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tálamo/diagnóstico por imagem , Tálamo/crescimento & desenvolvimento , Tálamo/patologia , Tamanho do Órgão
4.
Brain Res ; 1831: 148814, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395250

RESUMO

BACKGROUND: Influenced by the global aging population, the incidence of Alzheimer's disease (AD) has increased sharply. In addition to increasing ß-amyloid plaque deposition and tau tangle formation, neurogenesis dysfunction has recently been observed in AD. Therefore, promoting regeneration to improve neurogenesis and cognitive dysfunction can play an effective role in AD treatment. Acupuncture and moxibustion have been widely used in the clinical treatment of neurodegenerative diseases because of their outstanding advantages such as early, functional, and benign two-way adjustment. It is urgent to clarify the effectiveness, greenness, and safety of acupuncture and moxibustion in promoting neurogenesis in AD treatment. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice at various ages were used as experimental models to simulate the pathology and behaviors of AD mice. Behavioral experiments, immunohistochemistry, Western blot, and immunofluorescence experiments were used for comparison between different groups. RESULTS: Acupuncture and moxibustion could increase the number of PCNA+ DCX+ cells, Nissl bodies, and mature neurons in the hippocampal Dentate gyrus (DG) of SAMP8 mice, restore the hippocampal neurogenesis, delay the AD-related pathological presentation, and improve the learning and memory abilities of SAMP8 mice. CONCLUSION: The pathological process underlying AD and cognitive impairment were changed positively by improving the dysfunction of neurogenesis. This indicates the promising role of acupuncture and moxibustion in the prevention and treatment of AD.


Assuntos
Terapia por Acupuntura , Doença de Alzheimer , Moxibustão , Camundongos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Hipocampo/patologia , Neurogênese/fisiologia , Giro Denteado/patologia , Modelos Animais de Doenças
5.
Brain Res ; 1831: 148744, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163562

RESUMO

BACKGROUND: Electroacupuncture, recognized as a crucial non-pharmacological therapeutic approach, has demonstrated notable efficacy in enhancing cognitive function among Alzheimer's disease (AD) patients. This study aimed to investigate the neuroprotective properties of electroacupuncture in APP/PS1 mice with AD. METHODS: A total of thirty APP/PS1 mice were randomly assigned to three groups: the Alzheimer's disease group (AD), the electroacupuncture treatment group (EA), and the ferroptosis inhibitor deferasirox treatment group (DFX). Additionally, ten C57BL/6 mice were included as a control group (Control). In the EA group, mice underwent flat needling at Baihui and Yintang, as well as point needling at Renzhong, once daily for 15 min each time. In the DFX group, mice received intraperitoneal injections of deferasirox at a dosage of 100 mg/kg/day. Following the 28-day treatment period, behavioral evaluation, morphological observation of neurons, and detection of neuronal ferroptosis were conducted. RESULTS: The electroacupuncture treatment demonstrated a significant improvement in spatial learning, memory ability, and neuronal damage in mice with AD. Analysis of neuronal ferroptosis markers indicated that electroacupuncture interventions reduced the elevated levels of malondialdehyde, iron, and ptgs2 expression, while also increasing superoxide dismutase activity, Ferroportin 1 and glutathione peroxidase 4 expression. Moreover, the regulatory impact of electroacupuncture on ferroptosis may be attributed to its ability to enhance the expression and nuclear translocation of Nrf2. CONCLUSIONS: This study suggested that electroacupuncture could inhibit the neuronal ferroptosis by activating the antioxidant function in neurons through p62/Keap1/Nrf2 signal pathway, thereby improve the cognitive function of AD mice by the neuronal protection effect.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Ferroptose , Animais , Camundongos , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/genética , Cognição , Deferasirox , Hipocampo/metabolismo , Hipocampo/patologia , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Presenilina-1/genética
6.
Altern Ther Health Med ; 30(1): 111-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37773653

RESUMO

Objective: To explore the effects on cognitive function and survival time of whole-brain intensity-modulated radiotherapy using radiotherapy equipment to protect the hippocampus. Methods: Thirty-six patients with brain metastases treated at Qianjiang Central Hospital were enrolled in this study from January 2019 to September 2022. The patients were randomly divided into 2 groups: 15 patients received hippocampal-protection whole-brain radiotherapy, and 21 patients received conventional whole-brain radiotherapy. The Montreal Cognitive Assessment was used to evaluate the cognitive function of patients before and 24 hours, 2 months, 6 months, and 12 months after radiotherapy. Cognitive dysfunction and survival time were compared between the 2 groups. Results: The overall mean differences in the Montreal Cognitive Assessment scores between the hippocampal-protection group and the conventional whole-brain radiotherapy group were statistically significant at 6 months (P = .006) and 12 months (P = .04) after radiotherapy. The median overall survival was 16 months (95% CI, 11.54-20.46) for the hippocampal-protection group and 14 months (95% CI, 12.9-15.21) for the conventional whole-brain radiotherapy group (P = .578). The median progression-free survival was 12 months (95% CI, 9.74-14.26) for the hippocampal-protection group and 9 months (95% CI, 6.60-11.44) for the conventional whole-brain radiotherapy group (P = .494). Conclusion: Whole-brain radiotherapy for protecting the hippocampus can delay cognitive dysfunction in patients to some extent.


Assuntos
Neoplasias Encefálicas , Irradiação Craniana , Humanos , Neoplasias Encefálicas/radioterapia , Cognição , Hipocampo/patologia , Planejamento da Radioterapia Assistida por Computador
7.
Cent Nerv Syst Agents Med Chem ; 23(2): 86-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37612866

RESUMO

BACKGROUND: Depression and anxiety are the most common mental disorders worldwide. OBJECTIVE: We aimed to review silymarin and silibinin effects and underlying mechanisms in the central nervous system (CNS) for depression and anxiety treatment. METHODS: The research protocol was prepared based on following the PRISMA statement. An extensive search was done in essential databases such as PubMed, Cochrane Library, Web of Science (ISI), Embase, and Scopus. Considering the study inclusion and exclusion criteria, 17 studies were finally included. The desired information was extracted from the studies and recorded in Excel, and the consequences and mechanisms were reviewed. RESULTS: Silymarin and silibinin upregulated brain-derived neurotrophic factor (BDNF) and improved neural stem cells (NSCs) proliferation in the cortex and hippocampus. They also increased neurochemical serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels. Silymarin and silibinin reduced malondialdehyde (MDA) formation and increased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. In addition, silymarin and silibinin reduced interleukin (IL)-6, IL-1ß, and IL-12ß, reducing tumor necrosis factor α (TNF-α) induced neuroinflammation. CONCLUSION: Silymarin and silibinin exert anti-depression and anxiolytic effects by regulating neurotransmitters, endocrine, neurogenesis, and immunologic systems. Therefore, as natural and complementary medicines, they can be used to reduce the symptoms of depression and anxiety; However, more clinical studies are needed in this field.


Assuntos
Silimarina , Humanos , Silimarina/farmacologia , Silimarina/uso terapêutico , Silibina/uso terapêutico , Silibina/farmacologia , Depressão/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/patologia , Hipocampo/patologia , Glutationa/farmacologia
8.
Neuroendocrinology ; 113(6): 615-624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36634641

RESUMO

INTRODUCTION: Diet rich in purines may increase the serum level of uric acid causing hyperuricemia, contributing to learning and memory to impairments. Ascorbic acid has a potent antioxidant potential. The hippocampus is a pivotal component of human brains and other vertebrates that plays crucial roles in the consolidation of information and spatial memory. Our study was mainly designated to examine the potential palliative role of ascorbic acid supplements on harmful effects induced hyperuricemia on the hippocampus of albino Wistar rats. METHODS: Forty rats were subgrouped into the control group, ascorbate-only group, hyperuricemic group, and combined hyperuricemia and ascorbate group. RESULTS: Ascorbic acid has strongly preserved the histological architecture and maintained the normal hippocampal functions in the hyperuricemic group. CONCLUSION: The anti-inflammatory and antioxidant properties of ascorbic acid could protect the hippocampus of albino Wistar rats against the hazardous impact of hyperuricemia.


Assuntos
Ácido Ascórbico , Hiperuricemia , Humanos , Ratos , Animais , Ratos Wistar , Ácido Ascórbico/farmacologia , Antioxidantes/farmacologia , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/patologia , Hipocampo/patologia
9.
Neurobiol Aging ; 121: 88-106, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395544

RESUMO

Parkinson's disease (PD) is a multifaceted neurodegenerative disorder accompanied by mild cognitive impairment (MCI) as a crucial nonmotor manifestation. Event-related oscillations (EROs) are suggested to reflect cognitive status associated with subcortical structures in neurodegenerative conditions. In this study, 36 individuals with PD-MCI and 32 PD-CN were compared with 60 healthy control (HC) participants using visual EROs by measures of event-related spectral perturbation and inter-trial coherence, along with subcortical gray matter volumes based on the FIRST algorithm. Cross-correlations among electrophysiological, neuropsychological, and structural parameters were investigated exploratively. Both PD-MCI and PD-CN patients had diminished delta and alpha phase-locking than HC, however, electrophysiological abnormalities were more pronounced in PD-MCI over frontal, central, parietal, and temporal locations in almost all frequency bands, accompanied by bilateral thalamus, hippocampus, and right putamen atrophy. PD-CN had lower hippocampal volumes than HC, without exhibiting any subcortical differences from PD-MCI. Lastly, EROs showed low-to-high correlations with structural and neuropsychological measures. These findings may highlight the complex interplay between electrophysiological, neuropsychological, and structural parameters in detected abnormalities of PD-CN and PD-MCI.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Putamen , Imageamento por Ressonância Magnética , Disfunção Cognitiva/patologia , Atrofia/patologia , Tálamo/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Testes Neuropsicológicos
10.
Genes (Basel) ; 13(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421810

RESUMO

Multiple sclerosis (MS) is a complex disease of the central nervous system for which human leukocyte antigen (HLA) alleles are major contributors to susceptibility. Several investigations have focused on the relationship between HLA and clinical parameters, while few studies have evaluated its correlation with brain magnetic resonance imaging (MRI) measures. We investigated the association between the HLA genetic burden (HLAGB), originating from the most updated HLA alleles associated with MS, and neuroimaging endophenotypes, with a specific focus on brain atrophy metrics. A monocentric Italian cohort of 334 MS patients with imputed HLA alleles and cross-sectional volumetric measures of white matter (WM), gray matter (GM), hippocampus, thalamus and T2-hyperintense lesions was investigated. Linear regression models with covariate adjustment were fitted for each metric. We detected no effect of HLAGB on WM and GM volumes. Interestingly, we found a marginal correlation between higher HLAGB and lower hippocampal volume (ß = -0.142, p = 0.063) and a nominal association between higher HLAGB and lower thalamic volume (ß = -0.299, p = 0.047). No association was found with T2 lesion volumes. The putative impact of higher HLAGB on hippocampus and thalamus suggests, if replicated in independent cohorts, a possible cumulative contribution of HLA risk loci on brain volumetric traits linked to clinical deficits in MS.


Assuntos
Antígenos HLA , Esclerose Múltipla , Humanos , Atrofia/patologia , Estudos Transversais , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Antígenos HLA/genética
11.
Vet J ; 290: 105928, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36347391

RESUMO

Feline epilepsy is treated with antiseizure medications, which achieves fair to good seizure control. However, a small subset of feline patients with drug-resistant epilepsy requires alternative therapies. Furthermore, approximately 50 % of cats with epileptic seizures are diagnosed with structural epilepsy with or without hippocampal abnormality and may respond to surgical intervention. The presence of hippocampal pathology and intracranial tumors is a key point to consider for surgical treatment. This review describes feline epilepsy syndrome and epilepsy-related pathology, and discusses the indications for and availability of neurosurgery, including lesionectomy, temporal lobectomy with hippocampectomy, and corpus callosotomy, for cats with different epilepsy types.


Assuntos
Doenças do Gato , Epilepsia Resistente a Medicamentos , Epilepsia , Síndromes Epilépticas , Neurocirurgia , Animais , Gatos , Epilepsia/cirurgia , Epilepsia/veterinária , Epilepsia Resistente a Medicamentos/veterinária , Convulsões/veterinária , Hipocampo/patologia , Síndromes Epilépticas/patologia , Síndromes Epilépticas/veterinária , Eletroencefalografia , Doenças do Gato/cirurgia , Doenças do Gato/patologia
12.
Food Chem Toxicol ; 169: 113441, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162616

RESUMO

Melatonin, as a dietary supplement, has a potent neuroprotective effect and exerts a certain antidepressant effect. This study explored the molecular mechanisms and targets of melatonin on chronic stress-induced hippocampal damage from the perspective of inhibiting inflammatory cytokines release. Our results indicated that melatonin alleviated chronic restraint stress (CRS)-induced inflammatory response and apoptosis, thus improving hippocampal structural damage and subsequent depression-like behaviors in rats. The radar map displayed that the change of TNF-α content was the most significant. Meanwhile, correlation analysis showed that TNF-α content was highly positively correlated with apoptosis. Molecular autodocking studies suggested that TNF-α converting enzyme ADAM17 as a potential target has a priority in docking with melatonin. Molecular mechanism studies indicated that melatonin inhibited CRS-induced activation of the ADAM17/TNF-α axis and its downstream proteins p38 and p53 phosphorylation in the hippocampus. Analogously, Both ADAM17 inhibitor TMI-1 and TNF-α inhibitor thalidomide relieved the effects of CRS on ADAM17/TNF-α axis and its downstream proteins phosphorylation, hippocampal apoptosis, hippocampal inflammatory response, and depression-like behaviors in rats. Altogether, these findings reveal that melatonin relieves CRS-induced inflammatory response and apoptosis, and subsequent depression-like behaviors by inhibiting ADAM17/TNF-α axis.


Assuntos
Proteína ADAM17 , Apoptose , Hipocampo , Melatonina , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Estresse Psicológico , Animais , Ratos , Proteína ADAM17/antagonistas & inibidores , Citocinas/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Talidomida/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etnologia , Estresse Psicológico/complicações , Doença Crônica
13.
J Chem Neuroanat ; 123: 102119, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697268

RESUMO

Vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) seriously affects the quality of life of elderly patients and places a great burden on society and family. With the development of traditional Chinese medicine (TCM), TCM approaches to the prevention and treatment of senile ischemic cerebrovascular disease has received increasing attention. In this study, rats with bilateral common carotid artery occlusion (BCCAO) were treated with berberine (BBR). Their learning and memory function, neuronal injury and repair, the extracellular regulatory protein kinase (ERK)/nuclear factor-E2-related factor 2 (Nrf2) signaling pathway, and impairment and improvement of the blood-brain barrier (BBB) were evaluated. This study found that BBR can alleviate the pathological injury to the brain, reduce neuronal loss and promote neuronal cell survival after CCH by interfering with the ERK/Nrf2 signaling pathway. BBR can reduce BBB injury in CCH rats by inhibiting the expression of VEGF-A and MMP-9 in plasma, which reveals a protective effect of BBR on vascular cognitive impairment. This study provides a new research direction for BBR in the treatment of ischemic cerebrovascular disease.


Assuntos
Berberina , Isquemia Encefálica , Disfunção Cognitiva , Sistema de Sinalização das MAP Quinases , Fator 2 Relacionado a NF-E2 , Animais , Berberina/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases/metabolismo , Qualidade de Vida , Ratos , Ratos Sprague-Dawley
14.
Behav Brain Res ; 430: 113918, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35533893

RESUMO

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative condition caused by repetitive mild traumatic brain injury (TBI) that leads to impaired executive functioning, emotional disturbances, and disordered memory, warranting both basic and translational research of potential therapeutic targets. One area of research concerns prophylactic zinc (Zn) supplementation; however, Zn supplementation remains poorly understood. This study explored the effects of Zn supplementation in a mouse model of repetitive mild TBI. Four-week-old male (n = 50) and female (n = 50) C57BL/6J mice consumed tap water or 10 parts per million Zn-supplemented water for eight weeks prior to injury. At 12 weeks of age, mice underwent either five sham procedures or five closed-head injuries spaced apart by 48 h after which they completed behavioral tests. Zinc-supplemented injured mice righted themselves and regained normal ambulatory function as fast as non-injured mice across four out of the five injury days. In contrast, non-supplemented injured mice exhibited impairment in normal ambulation by days 4 and 5. Injury also reduced free, ionic Zn in the dentate gyrus and CA3 region of the hippocampus and Zn supplementation partially remediated this reduction but not to the levels of non-injured mice. There were no structural differences in cortex, hippocampus, striatum, and corpus callosum, suggesting that Zn reduction was not due to macroscopic abnormalities. Overall, these results suggest that Zn may improve short-term and physical neurological recovery, but it may not be sufficient as a single pre-treatment for consequences of repetitive mild TBI such as cognitive impairment. These results further demonstrate the need for additional research documenting the underlying mechanisms of Zn in TBI-related neuropathology.


Assuntos
Concussão Encefálica , Zinco , Animais , Concussão Encefálica/complicações , Concussão Encefálica/tratamento farmacológico , Concussão Encefálica/patologia , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Água
15.
Oxid Med Cell Longev ; 2022: 9973678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126824

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by loss of memory and cognitive impairment via dysfunction of the cholinergic nervous system. In cholinergic dysfunction, it is well known that impaired cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) signaling are major pathological markers and are some of the strategies for the development of AD therapy. Therefore, this study is aimed at evaluating whether a mixture comprising Ginkgo biloba L. leaf (GL) and Hericium erinaceus (Bull.) Pers. (HE) fruit extract (GH mixture) alleviated cognitive impairment induced in a scopolamine-induced model. It was discovered that GH reduced neuronal apoptosis and promoted neuronal survival by activating BDNF signaling in an in vitro assay. In addition, the GH (p.o. 240 mg/kg) oral administration group significantly restored the cognitive deficits of the scopolamine-induced mouse group (i.p. 1.2 mg/kg) in the behavior tests such as Y-maze and novel object recognition task (NORT) tests. This mixture also considerably enhanced cholinergic system function in the mouse brain. Furthermore, GH markedly upregulated the expressed levels of extracellular signal-regulated kinase (ERK), CREB, and BDNF protein levels. These results demonstrated that GH strongly exerted a neuroprotective effect on the scopolamine-induced mouse model, suggesting that an optimized mixture of GL and HE could be used as a good material for developing functional foods to aid in the prevention of neurodegenerative diseases, including AD.


Assuntos
Ginkgo biloba/química , Hericium/química , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Frutas/química , Frutas/metabolismo , Ginkgo biloba/metabolismo , Hericium/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escopolamina/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
Food Chem Toxicol ; 161: 112847, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35143918

RESUMO

Although accumulation of amyloid ß (Aß) plaque is a major hallmark of Alzheimer's disease (AD), various pathologies have been suggested therapeutic targets. Therefore, therapies-targeting multiple pathologies would be required for effective managements of AD. Accordingly, natural products, which has multiple active ingredients, have been receiving a lot of attention. In this study, we tested whether standardized ethanol extract of leaves of Perilla frutescens var. acuta (L.) Britt. (Lamiaceae) (ELPF) could modulate various pathologies in AD using 5XFAD mice. ELPF blocked Aß aggregation and disassembled pre-formed Aß aggregates. ELPF blocked Aß aggregates-induced LTP impairment and ELPF-disassembled Aß aggregates failed to impair hippocampal LTP. Systemic administration of ELPF blocked Aß aggregates-induced memory impairment in a passive avoidance test. ELPF-disassembled Aß aggregates failed to impair passive avoidance memory. Prolonged administration of ELPF ameliorated memory impairments in 5XFAD mice. In the hippocampus of 5XFAD mice, ELPF administration significantly reduced Aß deposits and neuroinflammation. These results demonstrate that ELPF could be a promising therapeutic candidate for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Perilla frutescens/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Feminino , Hipocampo/patologia , Masculino , Camundongos Transgênicos , Extratos Vegetais/química
17.
Nutrients ; 14(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057429

RESUMO

For thousands of years, mankind has been using plant extracts or plants themselves as medicinal herbs. Currently, there is a great deal of public interest in naturally occurring medicinal substances that are virtually non-toxic, readily available, and have an impact on well-being and health. It has been noted that dietary curcumin is one of the regulators that may positively influence changes in the brain after ischemia. Curcumin is a natural polyphenolic compound with pleiotropic biological properties. The observed death of pyramidal neurons in the CA1 region of the hippocampus and its atrophy are considered to be typical changes for post-ischemic brain neurodegeneration and for Alzheimer's disease. Additionally, it has been shown that one of the potential mechanisms of severe neuronal death is the accumulation of neurotoxic amyloid and dysfunctional tau protein after cerebral ischemia. Post-ischemic studies of human and animal brains have shown the presence of amyloid plaques and neurofibrillary tangles. The significant therapeutic feature of curcumin is that it can affect the aging-related cellular proteins, i.e., amyloid and tau protein, preventing their aggregation and insolubility after ischemia. Curcumin also decreases the neurotoxicity of amyloid and tau protein by affecting their structure. Studies in animal models of cerebral ischemia have shown that curcumin reduces infarct volume, brain edema, blood-brain barrier permeability, apoptosis, neuroinflammation, glutamate neurotoxicity, inhibits autophagy and oxidative stress, and improves neurological and behavioral deficits. The available data suggest that curcumin may be a new therapeutic substance in both regenerative medicine and the treatment of neurodegenerative disorders such as post-ischemic neurodegeneration.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Isquemia Encefálica/complicações , Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/etiologia , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Atrofia/etiologia , Disponibilidade Biológica , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Edema Encefálico/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Curcumina/química , Curcumina/farmacocinética , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Gerbillinae , Hipocampo/patologia , Humanos , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Ratos , Proteínas tau/efeitos dos fármacos , Proteínas tau/metabolismo
18.
Hum Brain Mapp ; 43(1): 341-351, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32198905

RESUMO

Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD-related differences in subcortical regions using shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta-analysis. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = -0.164 to -0.180). Relative to first-episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = -0.173 to -0.184). Our results suggest that previously reported MDD-associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.


Assuntos
Tonsila do Cerebelo/patologia , Corpo Estriado/patologia , Transtorno Depressivo Maior/patologia , Hipocampo/patologia , Neuroimagem , Tálamo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Estudos Multicêntricos como Assunto , Tálamo/diagnóstico por imagem
19.
J Ethnopharmacol ; 282: 114598, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492320

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Qisheng Wan formula (QWF) was first described in the book Sheng Ji Zong Lu in 1117. The book states that QWF can cure forgetfulness, improve the mind, and make people smart. Hence, QWF has been widely used to treat patients with forgetfulness or dementia. QWF, a classic Chinese formulation, comprises seven herbal drugs: the sclerotium of Poria cocos (Schw.) Wolf, bark of Cinnamomum cassia Presl, root of Polygala tenuifolia Willd., root and rhizome of Panax ginseng C. A. Mey., root of Asparagus cochinchinensis (Lour.) Merr., root and rhizome of Acorus tatarinowii Schott, and root bark of Lycium chinense Mill. AIM OF THE STUDY: This study aimed to utilize modern pharmacological methods to evaluate the therapeutic effects and explore the underlying mechanism of QWF action on rats with Alzheimer's disease (AD). MATERIALS AND METHODS: The chemical profile of QWF was characterized using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The AD rat model was established via a bilateral intraventricular injection of amyloid-ß (1-42) (Aß1-42). The rats were subsequently treated daily with QWF for 4 weeks. The Morris water maze test was performed to evaluate the cognition processes in the rats, whereas histological changes in the hippocampus were observed using hematoxylin and eosin staining. The expression levels of Aß1-42, nuclear factor-kappa B (NF-κB), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in the hippocampus and colon were assessed. Moreover, the diversity and composition of the intestinal microbiota were analyzed using 16S rDNA gene sequencing. RESULTS: One hundred and fourteen compounds were characterized in QWF. QWF significantly ameliorated the cognition processes and histopathological damages due to AD in rats by decreasing the deposition of Aß1-42 and downregulating the expression of NF-κB, TNF-α, and IL-6. QWF also modulated changes in the diversity and composition of intestinal microbiota to suppress the relative abundance of inflammation-associated microbiota. CONCLUSION: This study showed that QWF can suppress proinflammatory factors and modulate the intestinal microbiota in AD rats.


Assuntos
Acorus , Peptídeos beta-Amiloides/análise , Cinnamomum aromaticum , Demência/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Hipocampo , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Wolfiporia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Ratos
20.
Mult Scler ; 28(4): 550-560, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34378437

RESUMO

BACKGROUND: The underlying pathogenesis of surface-in grey matter abnormalities in MS, demonstrated by both neuropathology and advanced MRI analyses, is under investigation and it might be related to CSF-mediated mechanism of inflammation and/or damage. OBJECTIVE: To examine the link of CSF inflammatory profile with the damage of three regions early-involved in MS and bordering with CSF: thalamus, hippocampus and cerebellum. METHODS: In this longitudinal, prospective study, we evaluated, in 109 relapsing-remitting MS patients, at diagnosis and after 2-year follow-up, the association between the baseline CSF level of 19 inflammatory mediators and the volume changes of thalamus, hippocampus, cerebellar cortex and control regions (globus pallidus, putamen). RESULTS: The multivariable analysis showed that the CXCL13 and sCD163 CSF levels at baseline were independent predictors of thalamus (Rmodel2=0.80; p < 0.001) and hippocampus (Rmodel2=0.47; p < 0.001) volume change after 2-year follow-up. These molecules, plus CCL25, IFN-γ and fibrinogen, were independent predictors of the cerebellar cortex volume loss (Rmodel2=0.60; p < 0.001). No independent predictors of volume changes of the control regions were found. CONCLUSION: Our results indicate an association between the CSF inflammatory profile and grey matter volume loss of regions anatomically close to CSF boundaries, thus supporting the hypothesis of a surface-in GM damage in MS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Atrofia/patologia , Encéfalo/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/patologia , Estudos Prospectivos , Tálamo/diagnóstico por imagem , Tálamo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA