Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37261917

RESUMO

Glucose is the basic fuel essential for maintenance of viability and functionality of all cells. However, some neurons - namely, glucose-inhibited (GI) neurons - paradoxically increase their firing activity in low-glucose conditions and decrease that activity in high-glucose conditions. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here, we showed that currents mediated by the anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMHAno4 neurons increased food intake and blood glucose, while chronic inhibition of VMHAno4 neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMHAno4 neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of neurons that do not express Ano4 in the VMH (VMHnon-Ano4) suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.


Assuntos
Glucose , Hipoglicemia , Animais , Camundongos , Anoctaminas , Glicemia , Glucose/farmacologia , Hipoglicemia/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo
2.
Mol Metab ; 61: 101479, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35339728

RESUMO

OBJECTIVES: Glucagon secretion to stimulate hepatic glucose production is the first line of defense against hypoglycemia. This response is triggered by so far incompletely characterized central hypoglycemia-sensing mechanisms, which control autonomous nervous activity and hormone secretion. The objective of this study was to identify novel hypothalamic genes controlling insulin-induced glucagon secretion. METHODS: To obtain new information on the mechanisms of hypothalamic hypoglycemia sensing, we combined genetic and transcriptomic analysis of glucagon response to insulin-induced hypoglycemia in a panel of BXD recombinant inbred mice. RESULTS: We identified two QTLs on chromosome 8 and chromosome 15. We further investigated the role of Irak4 and Cpne8, both located in the QTL on chromosome 15, in C57BL/6J and DBA/2J mice, the BXD mouse parental strains. We found that the poor glucagon response of DBA/2J mice was associated with higher hypothalamic expression of Irak4, which encodes a kinase acting downstream of the interleukin-1 receptor (Il-1R), and of Il-ß when compared with C57BL/6J mice. We showed that intracerebroventricular administration of an Il-1R antagonist in DBA/2J mice restored insulin-induced glucagon secretion; this was associated with increased c-fos expression in the arcuate and paraventricular nuclei of the hypothalamus and with higher activation of both branches of the autonomous nervous system. Whole body inactivation of Cpne8, which encodes a Ca++-dependent regulator of membrane trafficking and exocytosis, however, had no impact on insulin-induced glucagon secretion. CONCLUSIONS: Collectively, our data identify Irak4 as a genetically controlled regulator of hypoglycemia-activated hypothalamic neurons and glucagon secretion.


Assuntos
Glucagon , Hipoglicemia , Hipotálamo , Quinases Associadas a Receptores de Interleucina-1 , Animais , Glucagon/metabolismo , Hipoglicemia/genética , Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
3.
Eur J Hum Genet ; 30(8): 976-979, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34764427

RESUMO

Mitochondrial flavin adenine dinucleotide (FAD) transporter deficiencies are new entities recently reported to cause a neuro-myopathic phenotype. We report three patients from two unrelated families who presented primarily with hypoketotic hypoglycemia. They all had acylcarnitine profiles suggestive of multiple acyl-CoA dehydrogenase deficiency (MADD) with negative next-generation sequencing of electron-transfer flavoprotein genes (ETFA, ETFB, and ETFDH). Whole exome sequencing revealed a homozygous c.272 G > T (p.Gly91Val) variant in exon 2 of the SLC25A32 gene. The three patients shared the same variant, and they all demonstrated similar clinical and biochemical improvement with riboflavin supplementation. To date, these are the first patients to be reported with hypoketotic hypoglycemia without the neuromuscular phenotype previously reported in patients with SLC25A32 deficiency.


Assuntos
Hipoglicemia , Proteínas Ferro-Enxofre , Proteínas de Membrana Transportadoras , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Humanos , Hipoglicemia/genética , Proteínas Ferro-Enxofre/genética , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Riboflavina/metabolismo
4.
Lipids Health Dis ; 17(1): 245, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376839

RESUMO

BACKGROUND: Dracocephalum kotschyi, as a wild-growing flowering plant (from Lamiaceae family), is locally prescribed for its various health-promoting properties including hypolipidemic and hypoglycemic effects. To evaluate the scientific basis of the traditional use of Dracocephalum kotschyi extract (DKE), we aimed to disclose its mode of action with main focus on white adipose tissue of diabetic rats. METHODS: Streptozotocin-induced diabetic rats were exposed to different doses of DKE for 28 days followed by the determination of the sera biochemical factors. The oxidative stress status of the diabetic versus nondiabetic rats' adipose tissue under the influence of DKE were also evaluated in terms of malondialdehyde (MDA) and some of antioxidant enzymes (superoxide dismutase, SOD, and catalase). Furthermore, we exposed 3T3-L1 cells to DKE and then evaluated both the extent of cells differentiation to adipocytes and measured the expression levels of some of the key signaling elements involved in adipogenesis and lipogenesis with main focus on PPARγ. RESULTS: Our results indicated that DKE administration attenuated the levels of TG (triglycerides), TC (total cholesterol), LDL and blood glucose by 54, 40, 54 and 25%, respectively and enhanced the levels of HDL, catalase and SOD by 45, 74 and 56%, respectively. In addition to profound adipogenic and lipogenic effects on 3T3-L1 cells, DKE significantly enhanced p-AKT, p-FOXO1, PPARγ and SREBP-1 expressions while that of p-JNK was quenched parallel to effect of pioglitazone, an antidiabetic agent, used in our investigation as the positive control drug. CONCLUSIONS: Besides of confirming the hypolipidemic action of the plant, our results provided documents on at least one mode of action of DKE with profound effect on lipid metabolism in adipose tissue. Regarding our results, further investigation on DKE, as a new potential hypolipidemic alternative drug is warranted.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemia/tratamento farmacológico , Proteínas do Tecido Nervoso/genética , PPAR gama/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Colesterol/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemia/genética , Hipoglicemia/patologia , Hipolipemiantes/administração & dosagem , Hipolipemiantes/química , Lamiaceae/química , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/sangue
5.
Diabetes ; 66(3): 587-597, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27797912

RESUMO

GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose.


Assuntos
Glicemia/metabolismo , Encéfalo/metabolismo , Intolerância à Glucose/genética , Hipoglicemia/genética , Resistência à Insulina/genética , Animais , Western Blotting , Dieta Hiperlipídica , Epinefrina/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4 , Homeostase/genética , Hipotálamo/citologia , Hipotálamo/metabolismo , Técnicas In Vitro , Indinavir/farmacologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
6.
PLoS One ; 11(7): e0158796, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391814

RESUMO

G protein-coupled receptor (GPR) 119 is expressed in pancreatic ß-cells and intestinal L cells, and is involved in glucose-stimulated insulin secretion and glucagon-like peptide-1 (GLP-1) release, respectively. Therefore, the development of GPR119 agonists is a potential treatment for type 2 diabetes. We screened 1500 natural plant extracts for GPR119 agonistic actions and investigated the most promising extract, that from Angelica dahurica (AD), for hypoglycemic actions in vitro and in vivo. Human GPR119 activation was measured in GeneBLAzer T-Rex GPR119-CRE-bla CHO-K1 cells; intracellular cAMP levels and insulin secretion were measured in INS-1 cells; and GLP-1 release was measured in GLUTag cells. Glucose tolerance tests and serum plasma insulin levels were measured in normal C57BL6 mice and diabetic db/db mice. AD extract-treated cells showed significant increases in GPR119 activation, intracellular cAMP levels, GLP-1 levels and glucose-stimulated insulin secretion as compared with controls. In normal mice, a single treatment with AD extract improved glucose tolerance and increased insulin secretion. Treatment with multiple doses of AD extract or n-hexane fraction improved glucose tolerance in diabetic db/db mice. Imperatorin, phellopterin and isoimperatorin were identified in the active fraction of AD extract. Among these, phellopterin activated GPR119 and increased active GLP-1 and insulin secretion in vitro and enhanced glucose tolerance in normal and db/db mice. We suggest that phellopterin might have a therapeutic potential for the treatment of type 2 diabetes.


Assuntos
Angelica/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Extratos Vegetais/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Teste de Tolerância a Glucose , Humanos , Hipoglicemia/tratamento farmacológico , Hipoglicemia/genética , Hipoglicemia/metabolismo , Células L , Masculino , Camundongos , Extratos Vegetais/química , Ratos , Receptores Acoplados a Proteínas G/genética
7.
Sci Rep ; 6: 27557, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27272163

RESUMO

Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain unclear. Here, we investigated the physiological role of RFVT3 using Slc52a3 knockout (Slc52a3-/-) mice. Most Slc52a3-/- mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in Slc52a3-/- mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates. Slc52a3-/- fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of Slc52a3 gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.


Assuntos
Proteínas de Membrana Transportadoras/genética , Deficiência de Riboflavina/genética , Riboflavina/sangue , Animais , Animais Recém-Nascidos/genética , Feminino , Humanos , Hiperlipidemias/genética , Hiperlipidemias/mortalidade , Hiperlipidemias/patologia , Hipoglicemia/genética , Hipoglicemia/mortalidade , Hipoglicemia/patologia , Camundongos , Camundongos Knockout , Placenta/metabolismo , Placenta/patologia , Gravidez , Riboflavina/genética , Deficiência de Riboflavina/mortalidade , Deficiência de Riboflavina/patologia
9.
PLoS Biol ; 12(9): e1001952, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25248098

RESUMO

Characterization of the genetic defects causing gonadotropic deficiency has made a major contribution to elucidation of the fundamental role of Kisspeptins and Neurokinin B in puberty onset and reproduction. The absence of puberty may also reveal neurodevelopmental disorders caused by molecular defects in various cellular pathways. Investigations of these neurodevelopmental disorders may provide information about the neuronal processes controlling puberty onset and reproductive capacity. We describe here a new syndrome observed in three brothers, which involves gonadotropic axis deficiency, central hypothyroidism, peripheral demyelinating sensorimotor polyneuropathy, mental retardation, and profound hypoglycemia, progressing to nonautoimmune insulin-dependent diabetes mellitus. High-throughput sequencing revealed a homozygous in-frame deletion of 15 nucleotides in DMXL2 in all three affected patients. This homozygous deletion was associated with lower DMXL2 mRNA levels in the blood lymphocytes of the patients. DMXL2 encodes the synaptic protein rabconnectin-3α, which has been identified as a putative scaffold protein for Rab3-GAP and Rab3-GEP, two regulators of the GTPase Rab3a. We found that rabconnectin-3α was expressed in exocytosis vesicles in gonadotropin-releasing hormone (GnRH) axonal extremities in the median eminence of the hypothalamus. It was also specifically expressed in cells expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) within the pituitary. The conditional heterozygous deletion of Dmxl2 from mouse neurons delayed puberty and resulted in very low fertility. This reproductive phenotype was associated with a lower number of GnRH neurons in the hypothalamus of adult mice. Finally, Dmxl2 knockdown in an insulin-secreting cell line showed that rabconnectin-3α controlled the constitutive and glucose-induced secretion of insulin. In conclusion, this study shows that low levels of DMXL2 expression cause a complex neurological phenotype, with abnormal glucose metabolism and gonadotropic axis deficiency due to a loss of GnRH neurons. Our findings identify rabconectin-3α as a key controller of neuronal and endocrine homeostatic processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 1/genética , Hipoglicemia/genética , Hipotireoidismo/genética , Infertilidade Masculina/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Polineuropatias/genética , Deleção de Sequência , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Sequência de Bases , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Haploinsuficiência , Homozigoto , Humanos , Hipoglicemia/metabolismo , Hipoglicemia/patologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/deficiência , Neurônios/metabolismo , Neurônios/patologia , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Hipófise/patologia , Polineuropatias/metabolismo , Polineuropatias/patologia , Maturidade Sexual , Síndrome , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testículo/patologia , Adulto Jovem
10.
Gen Comp Endocrinol ; 208: 1-4, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25157791

RESUMO

Chickens selected for low (LWS) or high (HWS) body weight for more than 56 generations now have a 10-fold difference in body weight at 56 days of age and correlated responses in appetite and glucose regulation. The LWS chickens are lean and some are anorexic, while the HWS are compulsive feeders and have a different threshold sensitivity of food intake and blood glucose to both central and peripheral insulin, respectively. We previously demonstrated that at 90-days of age, insulin-induced hypoglycemia was associated with reduced glucose transporter expression in the liver of both lines, and differences in expression of neuropeptide Y (NPY) and NPY receptor sub-type genes between LWS and HWS in the hypothalamus. The objective of this study was to determine effects of insulin-induced hypoglycemia on gene expression in the hypothalamus and liver of early post-hatch LWS and HWS chicks. On day 5 post-hatch chicks from each line were fasted for 3h and injected intraperitoneally with insulin or vehicle. At 1h post-injection, chicks were euthanized, blood glucose was measured, and hypothalamus and liver were removed. Total RNA was isolated and real time PCR performed. Insulin injection was associated with a more pronounced reduction in blood glucose in HWS compared with LWS chicks (two-way interaction; P<0.05). Aromatic L-amino acid decarboxylase, NPY, and NPY receptor sub-types 2 and 5 mRNA quantities were greater in LWS than HWS chicks in the hypothalamus (P<0.05), whereas pro-opiomelanocortin mRNA was greater in the hypothalamus of HWS than LWS (P<0.05). In the liver, glucose transporter 1, 2 and 3 (GLUT 1, 2 and 3, respectively) mRNA abundance was greater in HWS than LWS chicks (P<0.05). Compared to the vehicle, insulin treatment was associated with an increase in tryptophan hydroxylase 2 mRNA in the hypothalamus of both lines (P=0.02). In the liver of both lines, insulin treatment was associated with decreased (P=0.01) GLUT2 mRNA and increased (P=0.01) GLUT1 mRNA, compared to vehicle-treated chicks. Results suggest that NPY-associated factors and glucose transporters are differentially-expressed between LWS and HWS chickens and that HWS chicks display greater sensitivity to exogenous insulin during the early post-hatch period.


Assuntos
Peso Corporal/genética , Galinhas/genética , Regulação da Expressão Gênica , Hipoglicemia/genética , Hipotálamo/metabolismo , Insulina/efeitos adversos , Fígado/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hipotálamo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Neuropeptídeo Y/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Diabetes ; 63(12): 4064-75, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25024372

RESUMO

Hepatic gluconeogenesis is a main source of blood glucose during prolonged fasting and is orchestrated by endocrine and neural pathways. Here we show that the hepatocyte-secreted hormone fibroblast growth factor 21 (FGF21) induces fasting gluconeogenesis via the brain-liver axis. Prolonged fasting induces activation of the transcription factor peroxisome proliferator-activated receptor α (PPARα) in the liver and subsequent hepatic production of FGF21, which enters into the brain to activate the hypothalamic-pituitary-adrenal (HPA) axis for release of corticosterone, thereby stimulating hepatic gluconeogenesis. Fasted FGF21 knockout (KO) mice exhibit severe hypoglycemia and defective hepatic gluconeogenesis due to impaired activation of the HPA axis and blunted release of corticosterone, a phenotype similar to that observed in PPARα KO mice. By contrast, intracerebroventricular injection of FGF21 reverses fasting hypoglycemia and impairment in hepatic gluconeogenesis by restoring corticosterone production in both FGF21 KO and PPARα KO mice, whereas all these central effects of FGF21 were abrogated by blockage of hypothalamic FGF receptor-1. FGF21 acts directly on the hypothalamic neurons to activate the mitogen-activated protein kinase extracellular signal-related kinase 1/2 (ERK1/2), thereby stimulating the expression of corticotropin-releasing hormone by activation of the transcription factor cAMP response element binding protein. Therefore, FGF21 maintains glucose homeostasis during prolonged fasting by fine tuning the interorgan cross talk between liver and brain.


Assuntos
Encéfalo/metabolismo , Jejum/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Gluconeogênese/genética , Glucose/metabolismo , Hipoglicemia/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Fígado/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Jejum/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Gluconeogênese/fisiologia , Homeostase/genética , Homeostase/fisiologia , Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores
12.
Am J Physiol Regul Integr Comp Physiol ; 306(7): R457-69, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381179

RESUMO

Nerve cell metabolic activity is monitored in multiple brain regions, including the hypothalamus and hindbrain dorsal vagal complex (DVC), but it is unclear if individual metabolosensory loci operate autonomously or interact to coordinate central nervous system (CNS) reactivity to energy imbalance. This research addressed the hypothesis that hypoglycemia-associated DVC lactoprivation stimulates hypothalamic AMPK activity and metabolic neurotransmitter expression. As DVC catecholaminergic neurons express biomarkers for metabolic monitoring, we investigated whether these cells are a source of lactate deficit signaling to the hypothalamus. Caudal fourth ventricle (CV4) infusion of the glucose metabolite l-lactate during insulin-induced hypoglycemia reversed changes in DVC A2 noradrenergic, arcuate neuropeptide Y (NPY) and pro-opiomelanocortin (POMC), and lateral hypothalamic orexin-A (ORX) neuronal AMPK activity, coincident with exacerbation of hypoglycemia. Hindbrain lactate repletion also blunted hypoglycemic upregulation of arcuate NPY mRNA and protein. This treatment did not alter hypoglycemic paraventricular oxytocin (OT) and lateral hypothalamic ORX mRNA profiles, but exacerbated or reversed adjustments in OT and ORX neuropeptide synthesis, respectively. CV4 delivery of the monocarboxylate transporter inhibitor, 4-CIN, increased A2 phosphoAMPK (pAMPK), elevated circulating glucose, and stimulated feeding, responses that were attenuated by 6-hydroxydopamine pretreatment. 4-CIN-infused rats exhibited increased (NPY, ORX neurons) or decreased (POMC neurons) pAMPK concurrent with hyperglycemia. These data show that hindbrain lactoprivic signaling regulates hypothalamic AMPK and key effector neurotransmitter responses to hypoglycemia. Evidence that A2 AMPK activity is lactate-dependent, and that DVC catecholamine cells are critical for lactoprivic control of glucose, feeding, and hypothalamic AMPK, implies A2 derivation of this metabolic regulatory stimulus.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Hipoglicemia/enzimologia , Hipotálamo/enzimologia , Ácido Láctico/metabolismo , Neuropeptídeos/metabolismo , RNA Mensageiro/metabolismo , Rombencéfalo/metabolismo , Neurônios Adrenérgicos/metabolismo , Animais , Modelos Animais de Doenças , Ativação Enzimática , Comportamento Alimentar , Regulação da Expressão Gênica , Hipoglicemia/induzido quimicamente , Hipoglicemia/genética , Hipoglicemia/fisiopatologia , Hipoglicemia/psicologia , Hipotálamo/fisiopatologia , Infusões Intraventriculares , Insulina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Láctico/administração & dosagem , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeos/genética , Orexinas , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Rombencéfalo/fisiopatologia , Transdução de Sinais
13.
J Clin Endocrinol Metab ; 98(11): 4279-84, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24037885

RESUMO

UNLABELLED: OBJECTIVE/CONTEXT: Long-fasting hypoglycemia in children may be induced by neurotransmitter disorders. CASE REPORT: A 5-year-old girl with a medical history of chronic diarrhea presented three episodes of severe hypoglycemia (20 mg/dL) between ages 3 and 5 years. She became pale and sweaty with hypothermia (33.5°C), bradycardia (45 bpm), and acidosis and presented a generalized seizure. During the 17-hour fast test performed to determine the etiology of her hypoglycemia, insulin and C-peptide were appropriately low, and human GH, IGF-I, cortisol, amino acids, and acylcarnitines were in the usual range for fasting duration. However, the presence of vanillactic and vanilpyruvic acids in urine led us to investigate the metabolism of dopamine and serotonin in the cerebrospinal fluid. Indeed, these results indicated an aromatic L-amino acid decarboxylase deficiency that impairs the synthesis of serotonin, dopamine, and catecholamines. The diagnosis was confirmed by the low aromatic L-amino acid decarboxylase (AADC) enzyme activity in plasma (5 pmol/min/mL; reference value, 20-130) and the presence of two heterozygous mutations, c.97G>C (p.V33L, inherited from her father) and c.1385G>C (p.R462P, inherited from her mother) in the DCC gene. She was supplemented with pyridoxine and raw cornstarch (1 g/kg) at evening dinner to reduce the night fast. The episodes of hypoglycemia and the chronic diarrhea were suppressed. CONCLUSION: Here is the first case report of long-fasting hypoglycemia due to a nontypical AADC deficiency. Hypoglycemia was severe, but the other neurological clinical hallmarks present in AADC-deficient patients were mild to moderate. Thus, neurotransmitter disorders should be considered in any patients presenting hypoglycemia with urine excretion of vanillactic acid.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/genética , Descarboxilases de Aminoácido-L-Aromático/deficiência , Descarboxilases de Aminoácido-L-Aromático/genética , Hipoglicemia/etiologia , Hipoglicemia/genética , Glicemia/genética , Pré-Escolar , Jejum , Feminino , Homeostase/genética , Humanos
14.
Eur J Med Genet ; 56(9): 475-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23832106

RESUMO

The 5q14.3 deletion syndrome is a rare chromosomal disorder characterized by moderate to severe intellectual disability, seizures and dysmorphic features. We report a 14-year-old boy with 5q14.3 deletion syndrome who carried a heterozygous deletion of the myocyte-specific enhancer factor 2c (MEF2C) gene. In addition to the typical neurodevelopmental features of 5q14.3 deletion syndrome, he showed recurrent hypoglycemia, appetite loss and hypothermia. Hormonal loading tests using insulin, arginine and growth hormone-releasing factor revealed that growth hormone was insufficiently released into serum in response to these stimuli, thus disclosing the hypothalamic dysfunction in the present case. To uncover the biological roles of MEF2C in the hypothalamus, we studied its expression in the postnatal mouse brain. Notably, neuropeptide Y (NPY)-positive interneurons in the hypothalamic arcuate nuclei highly expressed MEF2C. In contrast, the Rett syndrome-associated protein, Methyl-CpG binding Protein 2 (MECP2) was barely expressed in these neurons. MEF2C knockdown or overexpression experiments using Neuro2a cells revealed that MEF2C activated the endogenous transcription of NPY. Conversely, siRNA-mediated knockdown of MECP2 led to derepression of the Npy gene. These data support the concept that MEF2C and MECP2 share common molecular pathways regulating the homeostatic expression of NPY in the adult hypothalamus. We propose that individuals with 5q14.3 deletion syndrome may exhibit neuroendocrine phenotypes through the functional loss of MEF2C in the postnatal hypothalamus.


Assuntos
Transtornos Cromossômicos/genética , Cromossomos Humanos Par 5/genética , Deleção de Genes , Hipotálamo/metabolismo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adolescente , Animais , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/metabolismo , Feminino , Humanos , Hipoglicemia/diagnóstico , Hipoglicemia/genética , Hipotálamo/crescimento & desenvolvimento , Hipotermia/diagnóstico , Hipotermia/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Fenótipo , Síndrome
15.
Diabetologia ; 55(9): 2432-44, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22760787

RESUMO

AIMS/HYPOTHESIS: Hypothalamic glucose-excited (GE) neurons contribute to whole-body glucose homeostasis and participate in the detection of hypoglycaemia. This system appears defective in type 1 diabetes, in which hypoglycaemia commonly occurs. Unfortunately, it is at present unclear which molecular components required for glucose sensing are produced in individual neurons and how these are functionally linked. We used the GT1-7 mouse hypothalamic cell line to address these issues. METHODS: Electrophysiological recordings, coupled with measurements of gene expression and protein levels and activity, were made from unmodified GT1-7 cells and cells in which AMP-activated protein kinase (AMPK) catalytic subunit gene expression and activity were reduced. RESULTS: Hypothalamic GT1-7 neurons express the genes encoding glucokinase and ATP-sensitive K(+) channel (K(ATP)) subunits K ( ir ) 6.2 and Sur1 and exhibit GE-type glucose-sensing behaviour. Lowered extracellular glucose concentration hyperpolarised the cells in a concentration-dependent manner, an outcome that was reversed by tolbutamide. Inhibition of glucose uptake or metabolism hyperpolarised cells, showing that energy metabolism is required to maintain their resting membrane potential. Short hairpin (sh)RNA directed to Ampkα2 (also known as Prkaa2) reduced GT1-7 cell AMPKα2, but not AMPKα1, activity and lowered the threshold for hypoglycaemia-induced hyperpolarisation. shAmpkα1 (also known as Prkaa1) had no effect on glucose-sensing or AMPKα2 activity. Decreased uncoupling protein 2 (Ucp2) mRNA was detected in AMPKα2-reduced cells, suggesting that AMPKα2 regulates UCP2 levels. CONCLUSIONS/INTERPRETATION: We have demonstrated that GT1-7 cells closely mimic GE neuron glucose-sensing behaviour, and reducing AMPKα2 blunts their responsiveness to hypoglycaemic challenge, possibly by altering UCP2 activity. These results show that suppression of AMPKα2 activity inhibits normal glucose-sensing behaviour and may contribute to defective detection of hypoglycaemia.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Linhagem Celular/metabolismo , Hipoglicemia/genética , Hipotálamo/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Hipoglicemia/fisiopatologia , Secreção de Insulina , Canais Iônicos/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteína Desacopladora 2
16.
Arch Biochem Biophys ; 519(2): 69-80, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22079166

RESUMO

Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.


Assuntos
Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/genética , Humanos , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/enzimologia , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hipoglicemia/tratamento farmacológico , Hipoglicemia/enzimologia , Hipoglicemia/genética , Hipoglicemia/metabolismo , Insulina/metabolismo
17.
Neonatology ; 100(3): 277-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21701219

RESUMO

Familial glucocorticoid deficiency (FGD) or hereditary unresponsiveness to adrenocorticotropin (ACTH) is an autosomal recessive disorder characterized by isolated glucocorticoid deficiency associated with normal mineralocorticoid secretion. Mutations in genes encoding either ACTH receptor or melanocortin 2 receptor accessory protein are responsible for the disease in about 50% of cases, named FGD type 1 and type 2, respectively. Patients may present with hyperpigmentation, recurrent infections, failure to thrive, hypoglycemic seizures, and coma in infancy or early childhood. Here we report the case of a 17-day-old newborn diagnosed with FGD type 1 who presented with hyperbilirubinemia and hyperpigmentation, a sign which was erroneously assumed to be due to prolonged phototherapy by the referring physician. Hormone analysis showed low cortisol and high ACTH levels with normal serum electrolytes and renin-aldosterone axis. Genetic analysis revealed a novel homozygous melanocortin 2 receptor mutation p.Leu225Arg in the patient. The healthy parents were heterozygous for the mutation.


Assuntos
Insuficiência Adrenal/genética , Glucocorticoides/deficiência , Glucocorticoides/genética , Mutação , Receptor Tipo 2 de Melanocortina/genética , Erros Inatos do Metabolismo de Esteroides/genética , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/patologia , Insuficiência Adrenal/tratamento farmacológico , Insuficiência Adrenal/patologia , Hormônio Adrenocorticotrópico/sangue , Testes de Química Clínica , Análise Mutacional de DNA , Saúde da Família , Feminino , Terapia de Reposição Hormonal , Humanos , Hidrocortisona/uso terapêutico , Hiperbilirrubinemia/tratamento farmacológico , Hiperbilirrubinemia/genética , Hiperbilirrubinemia/patologia , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/genética , Hiperpigmentação/patologia , Hipoglicemia/tratamento farmacológico , Hipoglicemia/genética , Hipoglicemia/patologia , Recém-Nascido , Masculino , Pais , Erros Inatos do Metabolismo de Esteroides/tratamento farmacológico , Erros Inatos do Metabolismo de Esteroides/patologia , Ultrassonografia
18.
J Biol Chem ; 286(11): 8866-74, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21239484

RESUMO

Suckling "F/A2" mice, which overexpress arginase-I in their enterocytes, develop a syndrome (hypoargininemia, reduced hair and muscle growth, impaired B-cell maturation) that resembles IGF1 deficiency. The syndrome may result from an impaired function of the GH-IGF1 axis, activation of the stress-kinase GCN2, and/or blocking of the mTORC1-signaling pathway. Arginine deficiency inhibited GH secretion and decreased liver Igf1 mRNA and plasma IGF1 concentration, but did not change muscle IGF1 concentration. GH supplementation induced Igf1 mRNA synthesis, but did not restore growth, ruling out direct involvement of the GH-IGF1 axis. In C2C12 muscle cells, arginine withdrawal activated GCN2 signaling, without impacting mTORC1 signaling. In F/A2 mice, the reduction of plasma and tissue arginine concentrations to ∼25% of wild-type values activated GCN2 signaling, but mTORC1-mediated signaling remained unaffected. Gcn2-deficient F/A2 mice suffered from hypoglycemia and died shortly after birth. Because common targets of all stress kinases (eIF2α phosphorylation, Chop mRNA expression) were not increased in these mice, the effects of arginine deficiency were solely mediated by GCN2.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Arginase/biossíntese , Arginina/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Animais Lactentes/metabolismo , Arginase/genética , Arginina/genética , Linfócitos B/enzimologia , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Doenças do Cabelo/enzimologia , Doenças do Cabelo/genética , Hipoglicemia/enzimologia , Hipoglicemia/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Doenças Musculares/enzimologia , Doenças Musculares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas , Síndrome , Serina-Treonina Quinases TOR
19.
J Exp Biol ; 213(Pt 22): 3858-65, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21037065

RESUMO

To assess mechanisms relating to food intake and glucosensing in fish, and their interaction with stress, we evaluated changes in the expression of orexigenic (NPY) and anorexigenic (POMC, CART and CRF) peptides in central glucosensing areas (hypothalamus and hindbrain) of rainbow trout subjected to normoglycaemic (control), hypoglycaemic (4 mg insulin kg(-1)) or hyperglycaemic (500 mg glucose kg(-1)) conditions for 6 h under normal stocking density (NSD; 10 kg fish mass m(-3)) or under stress conditions induced by high stocking density (HSD; 70 kg fish mass m(-3)). Hyperglycaemic NSD conditions resulted in decreased mRNA levels of NPY and increased levels of CART and POMC in the hypothalamus as well as increased mRNA levels of CART and CRF in the hindbrain compared with hypo- and normoglycaemic conditions. HSD conditions in normoglycaemic fish induced marked changes in the expression of all peptides assessed: mRNA levels of NPY and CRF increased and mRNA levels of POMC and CART decreased in the hypothalamus, whereas the expression of all four peptides (NPY, POMC, CART and CRF) decreased in the hindbrain. Furthermore, HSD conditions altered the response to changes in glycaemia of NPY and POMC expression in the hypothalamus and CART expression in the hypothalamus and the hindbrain. The results are discussed in the context of food intake regulation by glucosensor systems and their interaction with stress in fish.


Assuntos
Glicemia/metabolismo , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Neuropeptídeos/genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/fisiologia , Animais , Sequência de Bases , Hormônio Liberador da Corticotropina/genética , Aglomeração , Primers do DNA/genética , Proteínas de Peixes/genética , Expressão Gênica , Hiperglicemia/sangue , Hiperglicemia/genética , Hiperglicemia/fisiopatologia , Hipoglicemia/sangue , Hipoglicemia/genética , Hipoglicemia/fisiopatologia , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/genética , Neuropeptídeo Y/genética , Oncorhynchus mykiss/sangue , Pró-Opiomelanocortina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rombencéfalo/metabolismo , Estresse Fisiológico
20.
Diabetes ; 59(12): 3041-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20855545

RESUMO

OBJECTIVE: Toll-like receptor 4 (TLR4) has been reported to induce insulin resistance through inflammation in high-fat-fed mice. However, the physiological role of TLR4 in metabolism is unknown. Here, we investigated the involvement of TLR4 in fasting metabolism. RESEARCH DESIGN AND METHODS: Wild-type and TLR4 deficient (TLR4(-/-)) mice were either fed or fasted for 24 h. Glucose and lipid levels in circulation and tissues were measured. Glucose and lipid metabolism in tissues, as well as the expression of related enzymes, was examined. RESULTS: Mice lacking TLR4 displayed aggravated fasting hypoglycemia, along with normal hepatic gluconeogenesis, but reversed activity of pyruvate dehydrogenase complex (PDC) in skeletal muscle, which might account for the fasting hypoglycemia. TLR4(-/-) mice also exhibited higher lipid levels in circulation and skeletal muscle after fasting and reversed expression of lipogenic enzymes in skeletal muscle but not liver and adipose tissue. Adipose tissue lipolysis is normal and muscle fatty acid oxidation is increased in TLR4(-/-) mice after fasting. Inhibition of fatty acid synthesis in TLR4(-/-) mice abolished hyperlipidemia, hypoglycemia, and PDC activity increase, suggesting that TLR4-dependent inhibition of muscle lipogenesis may contribute to glucose and lipid homeostasis during fasting. Further studies showed that TLR4 deficiency had no effect on insulin signaling and muscle proinflammatory cytokine production in response to fasting. CONCLUSIONS: These data suggest that TLR4 plays a critical role in glucose and lipid metabolism independent of insulin during fasting and identify a novel physiological role for TLR4 in fuel homeostasis.


Assuntos
Jejum/fisiologia , Receptor 4 Toll-Like/fisiologia , Tecido Adiposo/fisiologia , Animais , Dióxido de Carbono/análise , DNA Complementar/genética , Ácidos Graxos/metabolismo , Homeostase , Hipoglicemia/genética , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Consumo de Oxigênio , Reação em Cadeia da Polimerase , RNA/efeitos dos fármacos , RNA/isolamento & purificação , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA