Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Food ; 27(4): 279-286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603555

RESUMO

Amaranth is a pseudocereal rich in macronutrients and micronutrients, with about 60 species cultivated worldwide. It is a high nutritional value food because of its many essential amino acids. Recent investigations demonstrate that the phytochemicals and extracts of amaranth have beneficial effects on health, including antidiabetic potential, a decrease in plasmatic cholesterol and blood pressure, and protection from oxidative stress and inflammation. Nowadays, type 2 diabetes has increased worldwide, becoming a problem of public health that makes it necessary to look for alternative strategies for its prevention and treatment. This review aims to summarize the antidiabetic potential of diverse species of the Amaranth genus. A bibliographical review was updated on the plant's therapeutic potential, including stem, leaves, and seeds, to know the benefits and potential as an adjuvant in treating and managing diabetes and associated pathologies (hypertension, dyslipidemia, and heart disease). This analysis contributes to the generation of knowledge about the therapeutic effects of amaranth, promoting the creation of new products, and the opportunity to conduct clinical trials to assess their safety and efficacy.


Assuntos
Amaranthus , Diabetes Mellitus Tipo 2 , Humanos , Hipoglicemiantes/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sementes/química , Amaranthus/química , Micronutrientes
2.
Biomed Pharmacother ; 168: 115669, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820568

RESUMO

Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/metabolismo , Mitocôndrias , Miocárdio/patologia , Miócitos Cardíacos , Diabetes Mellitus/tratamento farmacológico
3.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298165

RESUMO

Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.


Assuntos
Crocus , Diabetes Mellitus , Humanos , Polifenóis/farmacologia , Polifenóis/metabolismo , Crocus/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , alfa-Amilases Pancreáticas/metabolismo , Células CACO-2 , Simulação de Acoplamento Molecular , Glucose/metabolismo , Extratos Vegetais/química
4.
Molecules ; 28(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110524

RESUMO

Solanum betaceum Cav., commonly known as tamarillo or Brazilian tomato, belongs to the Solanaceae family. Its fruit is used in traditional medicine and food crops due to its health benefits. Despite the numerous studies involving the fruit, there is no scientific knowledge about the tamarillo tree leaves. In this work, the phenolic profile of aqueous extract obtained from S. betaceum leaves was unveiled for the first time. Five hydroxycinnamic phenolic acids were identified and quantified, including 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, chlorogenic acid, caffeic acid and rosmarinic acid. While the extract displayed no effect on α-amylase, the extract inhibited the activity of α-glucosidase (IC50 = 1617 mg/mL), and it was particularly effective for human aldose reductase (IC50 = 0.236 mg/mL): a key enzyme in glucose metabolism. Moreover, the extract exhibited interesting antioxidant properties, such as a potent capacity to intercept the in vitro-generated reactive species O2•- (IC50 = 0.119 mg/mL) and •NO (IC50 = 0.299 mg/mL), as well as to inhibit the first stages of lipid peroxidation (IC50 = 0.080 mg/mL). This study highlights the biological potential of S. betaceum leaves. The scarcity of research on this natural resource underscores the need for additional studies in order to fully explore its antidiabetic properties and to promote the value of a species currently at risk of extinction.


Assuntos
Solanum , Humanos , Solanum/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Frutas , Fenóis/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
5.
Food Res Int ; 167: 112615, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087203

RESUMO

Kitul (Caryota urens L.) inflorescences are broadly used for sweet sap production in Asian countries and Kitul food products are known as being suitable for diabetic patients. Considering the strong ability to inhibit α-glucosidase, we hypothesize that kitul antidiabetic properties might also involve the modulation of inflammatory pathways and hyperglycaemia-induced oxidative damage. Hence, the effects of an inflorescence's methanol extract were investigated in glucose-stimulated pancreatic cells (RIN-5F) and LPS-stimulated RAW 264.7 macrophages. The extract reduced the overproduction of intracellular reactive species in pancreatic cells and also NO, L-citrulline and IL-6 levels in LPS-stimulated RAW 264.7 macrophages. Inhibition of 5-lipoxygenase (IC50 = 166.1 µg/mL) through an uncompetitive manner was also recorded upon treatment with C. urens inflorescences extract. The phenolic profile of the inflorescences was characterized by HPLC-DAD, six hydroxycinnamic acids being identified and quantified. Overall, our data provide additional evidence on the pleiotropic mechanisms of Kitul inflorescences as an antidiabetic agent.


Assuntos
Glucose , Extratos Vegetais , Humanos , Camundongos , Animais , Células RAW 264.7 , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Macrófagos , Plantas Comestíveis/metabolismo
6.
J Bioenerg Biomembr ; 55(2): 123-135, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36988777

RESUMO

Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia that affects practically all tissues and organs, being the brain one of most susceptible, due to overproduction of reactive oxygen species induced by diabetes. Eryngium carlinae is a plant used in traditional Mexican medicine to treat diabetes, which has already been experimentally shown have hypoglycemic, antioxidant and hypolipidemic properties. The green synthesis of nanoparticles is a technique that combines plant extracts with metallic nanoparticles, so that the nanoparticles reduce the absorption and distribution time of drugs or compounds, increasing their effectiveness. In this work, the antioxidant effects and mitochondrial function in the brain were evaluated, as well as the hypoglycemic and hypolipidemic effect in serum of both the aqueous extract of the aerial part of E. carlinae, as well as its combination with silver nanoparticles of green synthesis. Administration with both, extract and the combination significantly decreased the production of reactive oxygen species, lipid peroxidation, and restored the activity of superoxide dismutase 2, glutathione peroxidase, and electron transport chain complexes in brain, while that the extract-nanoparticle combination decreased blood glucose and triglyceride levels. The results obtained suggest that both treatments have oxidative activity and restore mitochondrial function in the brain of diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Eryngium , Nanopartículas Metálicas , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Eryngium/metabolismo , Prata/farmacologia , Prata/metabolismo , Prata/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Ratos Wistar , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Peroxidação de Lipídeos , Encéfalo/metabolismo , Mitocôndrias/metabolismo
7.
J Nutr Biochem ; 111: 109173, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228975

RESUMO

The antidiabetic effects of green tea have been demonstrated in clinical trials and epidemiological studies. This study investigated the antidiabetic effects of green tea extract (GTE) and its underlying molecular mechanisms using a leptin receptor-deficient db/db mouse model (Leprdb/db). Treatment with GTE for 2 weeks improved glucose tolerance and insulin sensitivity in Leprdb/db mice. In addition, GTE treatment reduced the body weight and adiposity of Leprdb/db mice. Furthermore, GTE treatment reduced pro-inflammatory gene expression, including nuclear factor kappa B (NF-κB) in white adipose tissue (WAT), and also reduced dipeptidyl peptidase-4 (DPP4) expression levels in WAT as well as in the serum. The promoter region of Dpp4 contains the NF-κB binding site, and DPP4 was found to be a direct target of NF-κB. Consistently, in vitro treatment of cells with GTE or its main constituent epigallocatechin gallate reduced lipopolysaccharide-induced NF-κB/DPP4 expression in 3T3-L1 adipocytes and RAW264.7 cells. Overall, our data demonstrated that GTE exerts an anti-diabetic effect by regulating the expression levels of NF-κB and DPP4 in WAT.


Assuntos
Dipeptidil Peptidase 4 , Hipoglicemiantes , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/metabolismo , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Tecido Adiposo/metabolismo , Chá/química
8.
Food Chem ; 404(Pt B): 134650, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283320

RESUMO

Hylocereus spp. known as dragon fruit is an exotic fruit that belongs to the Cactaceae family. LC-QTOF-MS and multivariate statistical tools were established to analyze differences in the composition of dragon fruit peel and pulp from Egypt, Germany, Philippines, and China. The α-glucosidase inhibitory effects of different extracts were carried out along with the anti-glycation end products (AGE) using BSA-fructose, BSA-methylglyoxal, and arginine-methylglyoxal assays. In addition, the total antioxidant capacity was investigated as a complementary mechanism to AGE formation. Principal component analysis revealed that dragon fruits from China and Egypt were the most distinct among all samples due to betalains content. Orthogonal projection to latent structures-discriminant analysis identified 16 compounds highly correlated to the antiglycation activity such as betanin, γ-aminobutyric acid, neobetanin, and portulacaxanthin II. Pulp extracts were more active than peels as inhibitors of α-glucosidase. While peels were more active as AGE formation inhibitors and as antioxidants.


Assuntos
Cactaceae , Hipoglicemiantes , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , alfa-Glucosidases/metabolismo , Aldeído Pirúvico/metabolismo , Quimiometria , Cactaceae/metabolismo , Frutas/química , Antioxidantes/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
9.
Sci Rep ; 12(1): 13534, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941189

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a self-pollinated leguminous crop belonging to the Fabaceae family. It is a multipurpose crop used as herb, spice, vegetable and forage. It is a traditional medicinal plant in India attributed with several nutritional and medicinal properties including antidiabetic and anticancer. We have performed a combined transcriptome assembly from RNA sequencing data derived from leaf, stem and root tissues. Around 209,831 transcripts were deciphered from the assembly of 92% completeness and an N50 of 1382 bases. Whilst secondary metabolites of medicinal value, such as trigonelline, diosgenin, 4-hydroxyisoleucine and quercetin, are distributed in several tissues, we report transcripts that bear sequence signatures of enzymes involved in the biosynthesis of such metabolites and are highly expressed in leaves, stem and roots. One of the antidiabetic alkaloid, trigonelline and its biosynthesising enzyme, is highly abundant in leaves. These findings are of value to nutritional and the pharmaceutical industry.


Assuntos
Diosgenina , Plantas Medicinais , Trigonella , Diosgenina/metabolismo , Hipoglicemiantes/metabolismo , Extratos Vegetais/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Transcriptoma , Trigonella/genética , Trigonella/metabolismo
10.
Int J Biol Macromol ; 216: 14-23, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35780917

RESUMO

In addition to its high nutritious value, sea cucumber has been recognized by folk medicine for a long time. This study investigated the structure and hyperglycemic activity of a neutral polysaccharide (NPsj) from sea cucumber Stichopus japonicus, whose molecular weight was determined as 301.75 kDa by HPGPC method. Monosaccharide composition analysis indicated that NPsj is a glucan. The structure of NPsj was obtained by combining the analysis of methylation analysis, FTIR, NMR, periodate oxidation, Smith degradation and ESI-MS, which is mainly composed of (1 â†’ 4)-α-d-glucoses with ß-d-glucose(1→) branches substituted at O-6 every 7-9 of 1,4 linked glucoses. An in vitro insulin resistance Hep G2 cells model and a 3 T3-L1 cells model were established, and the NPsj has significant effect to increase glucose consumption with no toxicity at 10-100 µg/mL. Furthermore, NPsj upregulates the phosphorylation of Akt1 and down-regulated GSK3ß, and then reduces the phosphorylation of GS, indicating its mechanism of ameliorating insulin resistance via Akt/GSK3ß/GS signaling pathway.


Assuntos
Resistência à Insulina , Pepinos-do-Mar , Stichopus , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Pepinos-do-Mar/química , Stichopus/metabolismo
11.
Int J Biol Macromol ; 210: 518-529, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35523361

RESUMO

In this study, Moringa oleifera leaf (MOL) flavonoids (MOLF) with strong α-glucosidase inhibitory activity and MOL polysaccharides (MOLP) with strong cholic acid-binding capacity were efficiently prepared by two-stage extraction method and mixed in a certain proportion for development of MOL highly-processed products with hypoglycemic and hypolipemic potentials. Quercetin-3-O-glucoside (6.86%) and kaempferol-3-O-glucoside (4.02%) were identified as the main components of MOLF. MOLP constructed by galactose, arabinose, rhamnose and galacturonic acid possessed the strongest effects on delaying glucose diffusion and dialysis, delaying starch digestion, binding bile acids and inhibiting cholesterol micelle solubility, being the best MOL highly-processed products for regulating carbohydrate and lipid digestion and absorption. MOLF and MOLP had synergistic effect on delaying glucose diffusion and dialysis, delaying starch digestion and binding bile acids, while MOLF impaired the inhibitory effect of MOLP on cholesterol micelle solubility. Compared with MOL primary-processed products including MOL powder and de-phenolic MOL powder, MOL highly-processed products including MOLP and MOLF-MOLP complex possessed stronger hypoglycemic/hypolipemic potentials.


Assuntos
Moringa oleifera , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacologia , Glucose/metabolismo , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Micelas , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Pós/metabolismo , Diálise Renal , Amido/metabolismo
12.
Biol Pharm Bull ; 45(5): 659-663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491170

RESUMO

Previously we showed that the water-soluble fraction of sorghum extract (SE) improves adipogenesis in 3-isobutyl-1-methylxanthine (IBMX)/dexamethasone/insulin (MDI)/thiazolidinedione (TZD)-induced 3T3-L1 preadipocytes but downregulates genes related to peroxisome proliferator-activated receptor γ (PPARγ) and adipogenesis in both MDI- and MDI/TZD-induced 3T3-L1 adipocytes. In this study, we showed that SE treatment altered the accumulation of stained lipids in 3T3-L1 adipocytes induced by MDI/troglitazone (Tro). Immunoblot analyses indicated that SE treatment reduced adipocyte protein 2 (aP2) expression and induced peroxisome proliferator-activated receptor α (PPARα) protein expression in the presence of Tro in 3T3-L1 adipocytes. MDI/Tro treatment, but not MDI treatment, of 3T3-L1 cells induced PPARγ phosphorylation at Ser273. SE downregulated PPARγ expression in MDI-induced 3T3-L1 adipocytes and did not affect its phosphorylation at Ser273 in MDI- and MDI/Tro-induced 3T3-L1 adipocytes. Therefore, SE likely promotes adipogenesis and lipid metabolism in 3T3-L1 preadipocytes by cooperating with Tro independent of PPARγ Ser273 phosphorylation.


Assuntos
PPAR gama , Sorghum , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia , Animais , Hipoglicemiantes/metabolismo , Camundongos , PPAR gama/metabolismo , Fosforilação , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Sorghum/metabolismo , Troglitazona
13.
Biomed Pharmacother ; 149: 112891, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367768

RESUMO

Dendrobium mixture (DM) is a patent Chinese herbal formulation consisting of Dendrobii Caulis, Astragali Radix, Rehmanniae Radix as the main ingredients. DM has been shown to alleviate diabetic related symptoms attributed to its anti-hyperglycaemic and anti-inflammatory activities. However, the effect on diabetic induced cognitive dysfunction has not been investigated. This study aims to investigate the effect of DM in improving diabetic cognitive impairment and associated mechanisms. Our study confirmed the anti-hyperglycaemic effect of DM and showed its capacity to restore the cognitive and memory function in high fat/high glucose and streptozotocin-induced diabetic rats. The neuroprotective effect was manifested as improved learning and memory behaviours, restored blood-brain barrier tight junction, and enhanced expressions of neuronal survival related biomarkers. DM protected the colon tight junction, and effectively lowered the circulated proinflammatory mediators including tumour necrosis factor-α, interleukin-6 and lipopolysaccharides. In the gut microbiota, DM corrected the increase in the abundance of Firmicutes, the increase in the ratio of Firmicutes/Bacteroidetes, and the decrease in the abundance of Bacteroidetes in diabetic rats. It also reversed the abundance of Lactobacillus, Ruminococcus and Allobaculum genera. Short chain fatty acids, isobutyric acid and ethylmethylacetic acid, were negatively and significantly correlated to Ruminococcus and Allobaculum. Isovaleric acid was positively and significantly correlated with Lactobacillus, which all contributing to the improvement in glucose level, systemic inflammation and cognitive function in diabetic rats. Our results demonstrated the potential of DM as a promising therapeutic agent in treating diabetic cognitive impairment and the underlying mechanism may be associated with regulating gut microbiota.


Assuntos
Disfunção Cognitiva , Dendrobium , Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Animais , Disfunção Cognitiva/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Lactobacillus , Ratos
14.
Oxid Med Cell Longev ; 2022: 3848084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237379

RESUMO

Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.


Assuntos
Antialérgicos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Ácido Elágico/farmacologia , Taninos Hidrolisáveis/farmacologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antialérgicos/metabolismo , Anti-Inflamatórios/metabolismo , Antineoplásicos/metabolismo , Ácido Elágico/metabolismo , Frutas/química , Frutas/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/metabolismo , Hipoglicemiantes/metabolismo , Fitoterapia/métodos , Extratos Vegetais/metabolismo , Plantas/química , Plantas/metabolismo , Polifenóis/metabolismo , Substâncias Protetoras/metabolismo
15.
Biomed Pharmacother ; 149: 112838, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35344738

RESUMO

Diabetes is a metabolic disease that is mainly characterized by hyperglycemia. The present work investigated the efficacy of the flavanones hesperetin (HES) and quercetin (Q) extracted from Trifolium alexandrinum (TA) to treat type 2 diabetic rats. Wistar albino rats were supplemented with a high fat diet (HFD) for 2 weeks and then administered streptozotocin to induce diabetes. Diabetic rats were orally treated with Q, HES, and TA extract at concentrations of 40, 50, and 200 mg/kg BW, respectively, for 4 weeks. Various biochemical, molecular, and histological analysis were performed to evaluate the antidiabetic effects of these treatments. Q, HES, and TA extract treatments all significantly improved diabetic rats' levels of serum glucose, insulin, glucagon, liver function enzymes, hepatic glycogen, α-amylase, lipase enzymes, lipid profiles, oxidative stress indicators, and antioxidant enzymes as compared with control diabetic untreated rats. In addition, supplementation with Q, HES, and TA extract attenuated the activities of glucose-6-phosphate; fructose-1,6-bisphospahate; 6-phosphogluconate dehydrogenase; glucose-6-phosphate dehydrogenase; glucokinase; and hexokinase in pancreatic tissue, and they improved the levels of glucose transporter 2 and glucose transporter 4. Furthermore, these treatments modulated the expressions levels of insulin receptor (IR), phosphoinositide 3-kinase (PI3K), AMP-activated protein kinase (AMPK), caspase-3, and interleukin-1ß (IL-1ß). Enhancement of the histological alterations in pancreatic tissues provided further evidence of the ability of Q, HES, and TA extract to exert antidiabetic effects. Q, HES, and TA extract remedied insulin resistance by altering the IR/PI3K and AMPK signaling pathways, and they attenuated type 2 diabetes by improving the antioxidant defense system.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Trifolium , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Metabolismo dos Carboidratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hesperidina , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina , Fígado , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Quercetina/farmacologia , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Estreptozocina/farmacologia , Trifolium/química , Trifolium/metabolismo
16.
J Med Food ; 25(4): 418-425, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35333623

RESUMO

Acetic acid has been proposed to improve lifestyle-related diseases, including hyperlipidemia and hyperglycemia. This study compared the hypoglycemic and hypolipogenic effects of acetic acid vinegar (AV, contains only 4% acetic acid) and Monascus-fermented grain vinegar (MV) containing various bioactive compounds in 3T3L1 cells and C57BL/KsJ-db/db mice (DB). The DB were divided randomly into three treatment groups containing nine mice each; DB-, AV-, and MV-groups were orally administered 1 mL/kg/day of distilled water, acetic acid vinegar, and Monascus vinegar, respectively, for 8 weeks. Exposure to AV and MV inhibited the adipogenic differentiation of 3T3L1 preadipocytes and lipid accumulation during differentiation. Oral administration of AV or MV to the mice resulted in a marked reduction in the body weight, liver weight, and hepatic triglyceride content compared to the control DB-group. Moreover, treatment with AV and MV clearly increased the expression of cyclic adenosine monophosphate (cAMP) and AMP-activated protein kinase (AMPK) and suppressed the expression of fatty acid synthetase in liver tissues of DB. Significantly, lower levels of fasting blood glucose, insulin, leptin, and the glycosylated hemoglobin (HbA1c) as well as higher levels of the skeletal muscle GLUT4 expression were obtained in the AV- or MV-groups than levels determined in the control DB-group (P < .05). Although MV has the potential to be a natural alternative treatment for obesity-associated type 2 diabetes, this study suggests that acetic acid is the central ingredient in MV responsible for the hypoglycemic and hypolipogenic effects in the DB mice.


Assuntos
Diabetes Mellitus Tipo 2 , Monascus , Ácido Acético/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Insulina , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monascus/metabolismo
17.
Sci Rep ; 12(1): 4966, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322072

RESUMO

Seven avocado "Persea americana" seeds belonging to 4 varieties, collected from different localities across the world, were profiled using HPLC-MS/MS and GC/MS to explore the metabolic makeup variabilities and antidiabetic potential. For the first time, 51 metabolites were tentatively-identified via HPLC-MS/MS, belonging to different classes including flavonoids, biflavonoids, naphthodianthrones, dihydrochalcones, phloroglucinols and phenolic acids while 68 un-saponified and 26 saponified compounds were identified by GC/MS analysis. The primary metabolic variabilities existing among the different varieties were revealed via GC/MS-based metabolomics assisted by unsupervised pattern recognition methods. Fatty acid accumulations were proved as competent, and varietal-discriminatory metabolites. The antidiabetic potential of the different samples was explored using in-vitro amylase and glucosidase inhibition assays, which pointed out to Gwen (KG) as the most potent antidiabetic sample. This could be attributed to its enriched content of poly-unsaturated fatty acids and polyphenolics. Molecular docking was then performed to predict the most promising phytoligands in KG variety to be posed as antidiabetic drug leads. The highest in-silico α-amylase inhibition was observed with chrysoeriol-4'-O-pentoside-7-O-rutinoside, apigenin-7-glucuronide and neoeriocitrin which might serve as potential drug leads for the discovery of new antidiabetic remedies.


Assuntos
Persea , Cromatografia Líquida de Alta Pressão/métodos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Metabolômica/métodos , Simulação de Acoplamento Molecular , Persea/metabolismo , Extratos Vegetais/metabolismo , Espectrometria de Massas em Tandem/métodos
18.
Anal Biochem ; 638: 114482, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856185

RESUMO

In this work, extract from leaves of Couroupita guianensis (C.guianensis) abul was used as a potential reducing agent for the synthesis of lanthanum oxide (La2O3) nanoparticles (NPs). In addition, the morphology and several physicochemical properties of the La2O3 NPs were improved by introducing the ionic liquid of 1-butyl 3-methyl imidazolium tetra fluoroborate (BMIM BF4) as a stabilizing agent. The structure of the La2O3 (without ionic liquid) and IL-La2O3 (with ionic liquid) NPs were analyzed by X-ray diffraction (XRD). The chemical composition of the synthesized NPs was analyzed using the energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) studies. Optical and morphological studies were also performed. The antibacterial, antioxidant, anti-inflammatory, anti-diabetic and anticancer properties of the La2O3 and IL-La2O3 NPs were evaluated.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Química Verde , Hipoglicemiantes/farmacologia , Lantânio/farmacologia , Óxidos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Lantânio/química , Lantânio/metabolismo , Lecythidaceae/química , Nanopartículas/química , Nanopartículas/metabolismo , Óxidos/química , Óxidos/metabolismo , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Propriedades de Superfície
19.
Molecules ; 26(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771066

RESUMO

Panax ginseng was employed in the treatment of "Xiao-Ke" symptom, which nowadays known as diabetes mellitus, in traditional Chinese medicine for more than a thousand years. Ginsenoside Re was the major pharmacologic ingredient found abundantly in ginseng. However, the anti-diabetic of Ginsenoside Re and its underlying mechanism in metabolic level are still unclear. Serum and urine metabolomic method was carried out to investigate the anti-diabetic pharmacological effects and the potential mechanism of Ginsenoside Re on high-fat diet combined streptozotocin-induced type 2 diabetes mellitus (T2DM) rats based on ultra-high-performance liquid chromatography coupled with quadrupole exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS). Serum and urine samples were collected from the control group (CON), T2DM group, metformin (MET) treatment group, and ginsenoside Re treatment group after intervention. The biochemical parameters of serum were firstly analyzed. The endogenous metabolites in serum and urine were detected by UHPLC-MS. The potential metabolites were screened by multivariate statistical analysis and identified by accurate mass measurement, MS/MS, and metabolite databases. The anti-diabetic-related metabolites were analyzed by KEGG metabolic pathway, and its potential mechanism was discussed. The treatment of ginsenoside Re significantly reduced the blood glucose and serum lipid level improved the oxidative stress caused by T2DM. Biochemical parameters (urea nitrogen, uric acid) showed that ginsenoside Re could improve renal function in T2DM rats. Respective 2 and 6 differential metabolites were found and identified in serum and urine of ginsenoside Re compared with T2DM group and enriched in KEGG pathway. Metabolic pathways analysis indicated that the differential metabolites related to T2DM were mainly involved in arachidonic acid metabolism, Vitamin B6, steroid hormone biosynthesis, and bile secretion metabolic pathways. This study verified the anti-diabetic and anti-oxidation effects of ginsenoside Re, elaborated that ginsenoside Re has a good regulation of the metabolic disorder in T2DM rats, which could promote insulin secretion, stimulated cannabinoid type 1 receptor (CB1), and CaMKK ß to activate AMPK signaling pathway, inhibited insulin resistance, and improved blood glucose uptake and diabetic nephropathy, so as to play the role of anti-diabetic.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ginsenosídeos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Metabolômica , Animais , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Ginsenosídeos/análise , Ginsenosídeos/metabolismo , Hipoglicemiantes/análise , Hipoglicemiantes/metabolismo , Masculino , Espectrometria de Massas , Panax/química , Ratos , Ratos Wistar , Estreptozocina
20.
Molecules ; 26(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500753

RESUMO

Oxidative stress is one of the significant precursors of various metabolic diseases such as diabetes, Parkinson's disease, cardiovascular diseases, cancer, etc. Various scientific reports have indicated that secondary plant metabolites play an important role in preventing oxidative stress and its harmful effects. In this respect, this study was planned to investigate the phenolic profile and antioxidant and antidiabetic potentials of the aqueous extracts from Turkish Cistus species by employing in vitro methods. In vitro digestion simulation procedure was applied to all extracts to estimate the bioavailability of their phenolic contents. Total phenolic, flavonoid, phenolic acid and proanthocyanidin contents were determined for all phases of digestion. In addition, changes in the quantity of the assigned marker flavonoids (tiliroside, hyperoside and quercitrin) were monitored by High-Performance Thin Layer Chromatography (HPTLC) analysis. The antioxidant activity potentials of the extracts were studied by various methods to reveal their detailed activity profiles. On the other hand, in vitro α-amylase and α-glucosidase enzymes and advanced-glycation end product (AGE) inhibitory activities of the extracts were determined to evaluate the antidiabetic potentials of extracts. The results showed that aqueous extracts obtained from the aerial parts of Turkish Cistus species have rich phenolic contents and potential antioxidant and antidiabetic activities; however, their bioactivity profiles and marker flavonoid concentrations might significantly be affected by human digestion. The results exhibited that total phenolic contents, antioxidant activities and diabetes-related enzyme inhibitions of the bioavailable samples were lower than non-digested samples in all extracts.


Assuntos
Antioxidantes/farmacologia , Cistus/química , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Compostos de Bifenilo/antagonistas & inibidores , Cistus/metabolismo , Diabetes Mellitus/metabolismo , Relação Dose-Resposta a Droga , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Fenóis/metabolismo , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Relação Estrutura-Atividade , Turquia , Água/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA