Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.084
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Pan Afr Med J ; 47: 37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586073

RESUMO

Introduction: type 2 Diabetes mellitus is a chronic metabolic disease with devastating effects on patients and results in numerous healthcare challenges in terms of its management and the cost burden among the affected. Successful management involves maintaining optimal glycemic control to prevent complications, with adherence to antidiabetic medications playing a crucial role in achieving this objective. Additionally, maintaining a healthy electrolyte balance is key for overall well-being and physiological function. However, the correlation between glycated hemoglobin and electrolyte balance remains under investigated, particularly in patients with suboptimal adherence. The aim of this research was to study the relationship between glycated hemoglobin and electrolytes among diabetic patients with poor adherence to antidiabetic medications. Methods: this study was conducted at Samburu County Referral Hospital in Samburu County, Kenya. We employed a descriptive cross-sectional design focusing on adult diabetic patients aged 18 years and above who had visited the diabetic clinic over a three-month period. To evaluate their adherence levels, we employed a Morisky Medication Adherence Scale-8. Seventy-two diabetic patients who got adherence level scores of < 6 were categorized as having low adherence and their blood samples were collected for measuring glycated hemoglobin levels and electrolytes levels particularly potassium, sodium, calcium, magnesium, phosphorus and chloride. Relationship between electrolytes and glycated hemoglobin among diabetic patients with poor adherence to antidiabetics was determined using Karl Pearson correlation. Results: among the study participants, the lowest hemoglobin A1C (HbA1c) level recorded was 5.1% while the highest was 15.0% and the majority (41.7%) fell within the HbA1c range of 5-7%. A high proportion of individuals (58.3%) with poor adherence to antidiabetics had elevated HbA1c levels, indicating poor glycemic control. The correlations observed between glycated hemoglobin and electrolytes which included magnesium, sodium, chloride, calcium and phosphorus was r= -0.07, -0.32, -0.05 -0.24 and -0.04 respectively. Conclusion: this study concluded that there is a relationship between electrolytes and glycated hemoglobin among diabetic patients with poor adherence to antidiabetics. A statistically significant negative correlation was observed between glycated hemoglobin and calcium level (r=-0.2398 P ≤0.05) and also sodium (r=-0.31369 P≤0.05). A negative correlation (P≥0.05) was observed between phosphorus, magnesium, chloride and potassium with HbA1c levels though not statistically significant.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Humanos , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Transversais , Cálcio , Magnésio , Cloretos/uso terapêutico , Glicemia/metabolismo , Hipoglicemiantes/uso terapêutico , Eletrólitos , Sódio , Potássio , Fósforo
2.
PLoS One ; 19(4): e0301454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603728

RESUMO

Testicular dysfunction is a prevalent health problem frequently reported in individuals with diabetes mellitus (DM). Oxidative-inflammatory reactions, hormonal and spermatic abnormalities often accompany this illness. Herbal remedies "particularly wild plants" including chicory (Chicorium Intybus) and purslane (Portulaca Oleracea) are emerging as popular agents for people dealing with these issues due to their ability to act as antioxidants, reduce inflammation, and exhibit antidiabetic effects. According to the collected data, the daily administration of chicory (Ch) seed-extract (250 mg/kg) or purslane (Pu) seed-extract (200 mg/kg) to streptozotocin (STZ)-induced diabetic rats (50 mg/kg) for 30 days resulted in the normalization of fasting blood glucose (FBG), serum fructosamine, insulin levels, and insulin resistance (HOMA-IR), as well as reducing lipid peroxidation end-product malondialdehyde (MDA) level, aldehyde oxidase (AO) and xanthene oxidase (XO) activities. While caused a considerable improvement in glutathione (GSH) content, superoxide dismutase (SOD), catalase (CAT) activity, and total antioxidant capacity (TAC) when compared to diabetic rats. Ch and Pu extracts had a substantial impact on testicular parameters including sperm characterization, testosterone level, vimentin expression along with improvements in body and testis weight. They also mitigated hyperlipidemia by reducing total lipids (TL), total cholesterol (TC) levels, and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C). Furthermore, oral administration of either Ch or Pu notably attuned the elevated proinflammatory cytokines as tumor necrotic factor (TNF-α), C-reactive protein (CRP), and Interleukin-6 (IL-6) together with reducing apoptosis and DNA damage. This was achieved through the suppression of DNA-fragmentation marker 8OHdG, triggering of caspase-3 immuno-expression, and elevation of Bcl-2 protein. The histological studies provided evidence supporting the preventive effects of Ch and Pu against DM-induced testicular dysfunction. In conclusion, Ch and Pu seed-extracts mitigate testicular impairment during DM due to their antihyperglycemic, antilipidemic, antioxidant, anti-inflammatory, and antiapoptotic properties.


Assuntos
Cichorium intybus , Diabetes Mellitus Experimental , Resistência à Insulina , Portulaca , Doenças Testiculares , Humanos , Ratos , Masculino , Animais , Portulaca/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Plantas Comestíveis/metabolismo , Glicemia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Estresse Oxidativo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Inflamação , Doenças Testiculares/tratamento farmacológico , Glutationa/metabolismo , Colesterol/farmacologia
3.
J Ethnopharmacol ; 330: 118239, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38657877

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes mellitus, a widespread chronic illness, affects millions worldwide, and its incidence is increasing alarmingly, especially in developing nations. Current pharmacological treatments can be costly and have undesirable side effects. To address this, medicinal plants with antidiabetic effects, particularly targeting α-glucosidase for controlling hyperglycaemia in type-2 diabetes mellitus (T2DM), hold promise for drug development with reduced toxicity and adverse reactions. AIM OF THIS REVIEW: This review aims to succinctly collect information about medicinal plant extracts that exhibit antidiabetic potential through α-glucosidase inhibition using acarbose as a standard reference in Southeast Asia. The characteristics of this inhibition are based on in vitro studies. MATERIALS AND METHODS: Relevant information on medicinal plants in Southeast Asia, along with α-glucosidase inhibition studies using acarbose as a positive control, was gathered from various scientific databases, including Scopus, PubMed, Web of Science, and Google Scholar. RESULTS: About 49 papers were found from specific counties in Southeast Asia demonstrated notable α-glucosidase inhibitory potential of their medicinal plants, with several plant extracts showcasing activity comparable to or surpassing that of acarbose. Notably, 19 active constituents were identified for their α-glucosidase inhibitory effects. CONCLUSIONS: The findings underscore the antidiabetic potential of the tested medicinal plant extracts, indicating their promise as alternative treatments for T2DM. This review can aid in the development of potent therapeutic medicines with increased effectiveness and safety for the treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Extratos Vegetais , Plantas Medicinais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Plantas Medicinais/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Sudeste Asiático , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , alfa-Glucosidases/metabolismo , Fitoterapia
4.
BMC Complement Med Ther ; 24(1): 173, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658923

RESUMO

BACKGROUND: Diabetes is a leading health disorder and is responsible for high mortality rates across the globe. Multiple treatment protocols are being applied to overcome this morbidity and mortality including plant-based traditional medicines. This study was designed to investigate the ethnomedicinal status of plant species used to treat diabetes in District Karak, Pakistan. MATERIALS AND METHODS: A semi-structured survey was created to collect data about traditionally used medicinal plants for diabetes and other ailments. The convenience sampling method was applied for the selection of informants. The collected data was evaluated through quantitative tools like frequency of citation (FC), relative frequency of citation (RFC), informant consensus factor (FIC), fidelity level (FL), and use value (UV). RESULTS: A total of 346 local informants were selected for this research. Out of them, 135 participants were men and 211 participants were women. Overall 38 plant species belonging to 29 plant families were used to treat diabetes. The most dominant plant family was Oleaceae having 11 species. Powder form (19%) was the most recommended mode of preparation for plant-based ethnomedicines. Leaves (68%) were the most frequently used parts followed by fruit (47%). The highest RFC was recorded for Apteranthes tuberculata (0.147). The maximum FL was reported for Apteranthes tuberculata (94.4) and Zygophyllum indicum (94.11) for diabetes, skin, and wounds. Similarly, the highest UV of (1) each was found for Brassica rapa, Melia azedarach, and Calotropis procera. Based on documented data, the reported ailments were grouped into 7 categories. The ICF values range between 0.89 (diabetes) to 0.33 (Cardiovascular disorders). CONCLUSION: The study includes a variety of antidiabetic medicinal plants, which are used by the locals in various herbal preparations. The species Apteranthes tuberculata has been reported to be the most frequently used medicinal plant against diabetes. Therefore, it is recommended that such plants be further investigated in-vitro and in-vivo to determine their anti-diabetic effects.


Assuntos
Diabetes Mellitus , Etnobotânica , Hipoglicemiantes , Fitoterapia , Plantas Medicinais , Humanos , Paquistão , Plantas Medicinais/química , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Diabetes Mellitus/tratamento farmacológico , Medicina Tradicional , Idoso , Adulto Jovem , Inquéritos e Questionários
5.
Mar Drugs ; 22(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667785

RESUMO

Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.


Assuntos
Diabetes Mellitus , Suplementos Nutricionais , Hipoglicemiantes , Alga Marinha , Alga Marinha/química , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Organismos Aquáticos
6.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38541120

RESUMO

Background and Objectives: Diabetes mellitus is a chronic metabolic disease associated with several complications, including that of kidney disease. Plant-based dietary products have shown promise in mitigating these effects to improve kidney function and prevent tissue damage. This study assessed the possible favorable effects of beetroot extract (BE) in improving kidney function and preventing tissue damage in diabetic rats. Materials and Methods: Type 2 diabetes mellitus (T2DM) was induced using a low dose of streptozotocin (STZ). Both control and rats with pre-established T2DM were divided into six groups (each consisting of eight rats). All treatments were given by gavage and continued for 12 weeks. Fasting blood glucose levels, serum fasting insulin levels, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum triglycerides, cholesterol, low-density lipoprotein-cholesterol, serum and urinary albumin, and creatinine and urea levels were measured. Apart from this, glutathione, malondialdehyde, superoxide dismutase, tumor necrosis factor-α, and interleukine-6 in the kidney homogenates of all groups of rats were measured, and the histopathological evaluation of the kidney was also performed. Results: It was observed that treatment with BE increased body weight significantly (p ≤ 0.05) to be similar to that of control groups. Fasting glucose, insulin, HOMA-IR levels, and lipid profile in the plasma of the pre-established T2DM rats groups decreased to p ≤ 0.05 in the BE-treated rats as the BE concentration increased. Treatment with BE also improved the renal levels of oxidative stress and inflammatory markers, urinary albumin, and serum creatinine and urea levels. Unlike all other groups, only the kidney tissues of the T2DM + BE (500 mg/kg) rats group showed normal kidney tissue structure, which appears to be similar to those found in the kidney tissues of the control rats groups. Conclusion: we found that streptozotocin administration disturbed markers of kidney dysfunction. However, Beta vulgaris L. root extract reversed these changes through antioxidant, anti-inflammatory, and antiapoptotic mechanisms.


Assuntos
Beta vulgaris , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Beta vulgaris/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metanol/farmacologia , Metanol/uso terapêutico , Estreptozocina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicemia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Insulina , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Colesterol , Albuminas
7.
J Ethnopharmacol ; 328: 118065, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38508432

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cornel iridoid glycosides (CIG) are extracted from Corni fructus, a herbal medicine used in traditional Chinese medicine to treat diabetes. However, the antidiabetic effects of CIG and the underlying metabolic mechanisms require further exploration. AIM OF THE STUDY: This study aimed to assess the antidiabetic effects and metabolic mechanism of CIG by performing metabolomic analyses of serum and urine samples of rats. MATERIALS AND METHODS: A rat model of type 2 diabetes mellitus (T2DM) was established by administering a low dose of streptozotocin (30 mg/kg) intraperitoneally after 4 weeks of feeding a high-fat diet. The model was evaluated based on several parameters, including fasting blood glucose (FBG), random blood glucose (RBG), urine volume, liver index, body weight, histopathological sections, and serum biochemical parameters. Subsequently, serum and urine metabolomics were analyzed using ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS). Data were analyzed using unsupervised principal component analysis (PCA) and supervised orthogonal partial least squares discriminant analysis (OPLS-DA). Differential metabolites were examined by the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways to explore the underlying mechanisms. RESULTS: After 4 weeks of treatment with different doses of CIG, varying degrees of antidiabetic effects were observed, along with reduced liver and pancreatic injury, and improved oxidative stress levels. Compared with the T2DM group, 19 and 23 differential metabolites were detected in the serum and urine of the CIG treatment group, respectively. The key metabolites involved in pathway regulation include taurine, chenodeoxycholic acid, glycocholic acid, and L-tyrosine in the serum and glycine, hippuric acid, phenylacetylglycine, citric acid, and D-glucuronic acid in the urine, which are related to lipid, amino acid, energy, and carbohydrate metabolism. CONCLUSIONS: This study confirmed the antidiabetic effects of CIG and revealed that CIG effectively controlled metabolic disorders in T2DM rats. This seems to be meaningful for the clinical application of CIG, and can benefit further studies on CIG mechanism.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicosídeos Iridoides/farmacologia , Glicosídeos Iridoides/uso terapêutico , Glicemia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica/métodos
8.
J Ethnopharmacol ; 328: 118094, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521433

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hodgsonia heteroclita has been known as an important traditionally consumed medicinal plant of North-East India known to have antidiabetic properties. This study aims to investigate the effects of the ethanolic fruit extract of Hodgsonia heteroclita against hyperglycemia and hyperlipidemia by using streptozotocin (STZ) treated diabetic mice. MATERIALS AND METHODS: The fruits of H. heteroclita were collected from the various parts of Kokrajhar district, Assam India (Geographic coordinates: 26°24'3.85″ N 90°16'22.30″ E). Basic morphological evaluations were carried out by the Botanical Survey of India, Eastern circle, Shillong, who also certified and identified the plant. Hexane, chloroform, and ethanolic extracts of the fruit of H. heteroclita were investigated for α-amylase inhibition assay as a rapid screening tool for examining anti-diabetic activity. The efficacy of ethanolic extract at a dose of 100, 200, and 300 mg/kg body weight was tested for 21 days in STZ-induced diabetic mice. The body weight, fasting plasma glucose and serum lipids, and hepatic glycogen levels were measured in experimental animals to examine the antihyperglycemic and antihyperlipidemic efficacy of the extract. Both HPTLC and LC-MS analysis was performed to examine the phyotochemicals present in the ethanolic extract of H. heteroclita. RESULTS: It has been observed that treatment with the ethanolic extract dose-dependently reduced the plasma glucose levels, total cholesterol, low density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol, triglyceride, and increased the body weight, liver glycogens and high-density lipoprotein-cholesterol in STZ treated diabetic mice. HPTLC demonstrated the presence of triterpene compounds and LC-MS analysis revealed the presence Cucurbitacin I, Cucurbitacin E, and Kuguacin G as the triterpene phytoconstituents. CONCLUSION: The present study demonstrated that ethanolic fruit extract of H. heteroclita improved both glycemic and lipid parameters in mice model of diabetes.


Assuntos
Cucurbitaceae , Diabetes Mellitus Experimental , Triterpenos , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/análise , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Hipolipemiantes/análise , Glicemia , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Diabetes Mellitus Experimental/tratamento farmacológico , Etanol/química , Glicogênio Hepático , Colesterol/farmacologia , Peso Corporal , Triterpenos/farmacologia , Estreptozocina/farmacologia
9.
J Ethnopharmacol ; 327: 118045, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479546

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yunvjian (YNJ), a traditional Chinese herbal formula first reported in Jing Yue Quan Shu, is commonly used in the clinical treatment of type 2 diabetes mellitus (T2DM). However, the mechanism by which YNJ affects T2DM remains unclear. AIM OF THE STUDY: This study aimed to assess the therapeutic effects of YNJ on T2DM and explore the potential mechanism involved. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the chemical compounds of YNJ. The anti-T2DM effects of YNJ were observed in a high-fat diet/streptozotocin induced rat model. The type 2 diabetic rats were prepared as follows: rats were fed a high-fat diet for four weeks and then intraperitoneally injected with a low dose (30 mg/kg) of streptozotocin. YNJ and the positive control metformin were used in these experiments. Biochemical assays were implemented to determine the fasting blood glucose, glucose tolerance, insulin sensitivity, serum lipid levels, and oxidative stress index of the pancreas. Hematoxylin-eosin (H&E) staining was used to assess histopathological alterations in the pancreas. The mechanism by which YNJ affects T2DM was evaluated in INS-1 cells treated with glucose and high sodium palmitate. YNJ-supplemented serum was used in these experiments. Methyl thiazolyl tetrazolium assays, enzyme-linked immunosorbent assays, Nile red staining, flow cytometric analysis, and Western blotting were used to assess apoptosis, insulin secretion, lipid accumulation, reactive oxygen species production, and protein levels. RESULTS: Five major compounds were identified in YNJ. In high-fat diet/streptozotocin-induced diabetic rats, YNJ-M notably decreased fasting blood glucose and lipid levels; ameliorated glucose tolerance, insulin sensitivity, and islet morphology; reduced Malondialdehyde levels; and restored superoxide dismutase activity in the pancreatic islets. Furthermore, the effect of YNJ-M was significantly greater than that of YNJ-L, and YNJ-H had little effect on diabetic rats. In vitro experiments revealed that YNJ-supplemented serum (10%, 15%, and 20%) dramatically suppressed apoptosis, mitigated intracellular lipid accumulation and reduced intracellular oxidative stress levels in a dose-dependent manner. Additionally, YNJ-supplemented serum increased the protein expression of Nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, and superoxide dismutase 1 and inhibited the protein expression of Kelch-like ECH-associated protein 1. CONCLUSION: YNJ ameliorates high-fat diet/streptozotocin induced experimental T2DM. The underlying mechanism involves reducing oxidative stress in pancreatic beta cells. The findings of this study provide scientific justification for the application of the traditional medicine YNJ in treating T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Células Secretoras de Insulina , Ratos , Animais , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Estreptozocina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Glicemia , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Hiperglicemia/tratamento farmacológico , Glucose/metabolismo , Lipídeos
10.
PLoS One ; 19(3): e0300009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451994

RESUMO

The aim of this study was to investigate the effect of common antidiabetic drugs on BMD by two-sample Mendelian randomization (MR). The single nucleotide polymorphisms that were strongly associated with insulin, metformin, rosiglitazone and gliclazide were extracted as instrumental variables (IVs) for MR analysis. The inverse variance weighted (IVW) method was used as the primary MR method to assess the causal effect of antidiabetic drugs on BMD, and other MR methods, including Weighted median, MR Egger and Weighted mode, were used for complementary analysis. Reliability and stability were assessed by the leave-one-out test. In the present work, IVW estimation of the causal effect of insulin on heel BMD demonstrated that there was a null effect of insulin on heel BMD (ß = 0.765; se = 0.971; P = 0.430), while metformin treatment had a positive effect on heel BMD (ß = 1.414; se = 0.460; P = 2.118*10-3). The causal relationship between rosiglitazone and heel BMD analysed by IVW suggested that there was a null effect of rosiglitazone on heel BMD (ß = -0.526; se = 1.744; P = 0.763), but the causal effect of gliclazide on heel BMD evaluated by IVW demonstrated that there was a positive effect of gliclazide on heel BMD (ß = 2.671; se = 1.340; P = 0.046). In summary, the present work showed that metformin and gliclazide have a role in reducing BMD loss in patients with diabetes and are recommended for BMD loss prevention in diabetes.


Assuntos
Diabetes Mellitus , Gliclazida , Metformina , Humanos , Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Gliclazida/farmacologia , Gliclazida/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina , Insulina Regular Humana , Análise da Randomização Mendeliana , Metformina/farmacologia , Metformina/uso terapêutico , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Rosiglitazona
11.
J Ethnopharmacol ; 326: 117911, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38355028

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dolomiaea costus (Falc.), formerly Saussurea costus (Falc.) Lipsch., an ayurvedic medicinal plant, has long been recognized and utilized in diverse indigenous systems of medicine for its multifaceted therapeutic properties, including anti-inflammatory, carminative, expectorant, antiarthritic, antiseptic, aphrodisiac, anodyne, and antidiabetic effects. AIM OF THE STUDY: The potential and underlying mechanisms of D. costus root as an antidiabetic agent were investigated in this study. Additionally, the quantification of phenolic and flavonoid compounds, which dominate the extracts, was of particular interest in order to elucidate their contribution to the observed effects. MATERIALS AND METHODS: High-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was employed to analyze the chemical constituents in D. costus root aqueous extract (DCA) and D. costus root ethanolic extract (DCE). Furthermore, the inhibitory potentials of DCE and its respective fractions as well as DCA against α-amylase, α-glucosidase, and lipase enzymes were assessed. Subsequently, the efficacy of DCA and DCE extracts was evaluated using an established streptozotocin (STZ)-induced diabetic animal model; this involved administering the extracts at doses of 200 and 400 mg/kg bwt. and comparing them with a positive control (glibenclamide (Glib.) at 0.6 mg/kg bwt.). After induction of diabetes (except for negative control), all animals received the treatments orally for 21 days consecutively, followed by the collection of rat serum to assess various parameters including, glycemic and lipid profiles, liver and kidney functions, antioxidant activity, glycolysis, and gluconeogenesis pathways. RESULTS: The results of HPLC-ESI-MS/MS revealed that isochlorogenic acid A (8393.64 µg/g) and chlorogenic acid (6532.65 µg/g) were the predominant compounds in DCE and DCA, respectively. Both extracts exhibited notable antidiabetic properties, as evidenced by their ability to regulate blood glycemic and lipid profiles (glucose, insulin, HBA1C; HDL, TC, TGs), liver enzymes (ALT, ALP, AST), kidney function (urea, creatinine, uric acid), oxidative stress biomarkers (MDA), antioxidant enzymes (CAT, GSH, SOD), as well as glycolysis (glucokinase) and gluconeogenesis (G-6-P, FBP1) pathways. CONCLUSIONS: Furthermore, the administration of D. costus extracts significantly mitigated STZ-induced diabetic hyperglycemia. These results can be attributed, at least partially, to the presence of several polyphenolic compounds with potent antioxidant and anti-inflammatory activities.


Assuntos
Costus , Diabetes Mellitus Experimental , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estreptozocina , Costus/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Metabolismo dos Carboidratos , Anti-Inflamatórios/farmacologia , Lipídeos/uso terapêutico , Glicemia
12.
Drug Des Devel Ther ; 18: 513-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415194

RESUMO

The relationship between the immune system and metabolic diseases is complex and increasingly recognized as critical to understanding conditions like obesity, diabetes, and cardiovascular diseases. Modulation of the immune system in patients with metabolic disorders can offer several potential benefits. While the salutary impact of plant-derived bioactive compounds on metabolic and immune functions is acknowledged, there is a paucity of comprehensive reviews on the multifaceted and synergistic mechanisms through which these effects are mediated. This review elucidates the therapeutic potential of phytochemical formulations in ameliorating metabolic disorders and delineates their mechanistic implications on relevant biomarkers and immune modulation. Our analysis reveals a predominance of plant species, including Boswellia serrata, Cinnamomum cassia, Citrus bergamia, Coffea arabica, Ficus racemosa, Momordica charantia, Morus Alba, and Trigonella foenum-graecum, that have undergone clinical evaluation and have been substantiated to confer both metabolic and immunological benefits. The phytoconstituents contained in these plants exert their effects through a range of mechanisms, such as improving glucose regulation, reducing inflammatory responses, and modulating immune system. As such, these findings hold considerable promise for clinical and therapeutic translation and necessitate further empirical validation through randomized controlled trials and mechanistic elucidations to affirm the safety and efficacy of herbal formulations.


Assuntos
Diabetes Mellitus , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Glucose
13.
J Ethnopharmacol ; 326: 117924, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38369067

RESUMO

ETHNOPHARMACOLOGICAL IMPORTANCE: Cucurbita ficifolia Bouché fruit is widely used in Mexican traditional medicine to treat type 2 diabetes (T2D) because it has been attributed with antioxidant and hypoglycemic properties in different experimental models and T2D patients. An imbalance in physiological glutathione (GSH) concentrations increases the susceptibility to developing complications associated with oxidative stress in T2D patients. AIM OF THE STUDY: To investigate the effect of C. ficifolia on the antioxidant properties of GSH, general health measurements, and biochemical parameters in a Mexican rural population, and to evaluate the changes in socio-affective scores of patients due to improvement in T2D. MATERIALS AND METHODS: Twenty-seven women diagnosed with T2D with poor glycemic control volunteered and were divided into two groups: C. ficifolia (0.5 g/kg of fresh pulp weight) with hypoglycemic pharmacotherapy, and another group with only hypoglycemic pharmacotherapy, for 12 weeks. We evaluated the effect of the fresh pulp of C. ficifolia on body mass index, blood pressure, glucose, glycosylated hemoglobin, cholesterol, triglycerides, and GSH. Expanding the study, we evaluated the quality of life, anxiety, and depression scores before and after the intervention. RESULTS: Treatment with the fresh pulp of C. ficifolia for 12 weeks reduced glycosylated hemoglobin, similar to the hypoglycemic pharmacotherapy group, and significantly increased GSH concentrations. The patients' moods did not change despite increased GSH concentrations and improved T2D control. CONCLUSIONS: The increased GSH concentrations due to the consumption of fresh pulp of C. ficifolia could help to protect against oxidative stress and extend therapeutic benefits in addition to the usual hypoglycemic drugs in patients with T2D.


Assuntos
Cucurbita , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Cucurbita/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Extratos Vegetais/farmacologia , Fitoterapia , Qualidade de Vida , População Rural , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glutationa , Glicemia
14.
J Pharm Pharmacol ; 76(3): 201-212, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38243397

RESUMO

OBJECTIVES: Phloretin is ubiquitous in apples (Malus domestica) and other fruits and has potential antidiabetic properties. Considering the preclinical potential of phloretin, its transition to clinical observations has unintentionally been neglected, particularly within the diabetic population. Furthermore, a comprehensive understanding of its pharmacokinetics remains elusive. This review seeks to offer valuable insights into phloretin's physical properties, pharmacokinetics, and pharmacodynamics, aiming to unveil opportunities for additional research on its therapeutic potential in the context of diabetes. KEY FINDINGS: All pharmacokinetic reports of phloretin confirm that the utilization of phloretin gets enhanced during diabetic conditions. Phloretin targets pathomechanisms such as glucose transporter 4 (GLUT4) and peroxisome proliferator's activity-activated receptor-γ (PPAR-γ) to decrease insulin resistance in diabetic conditions. Moreover, phloretin targets inflammatory, oxidative, and apoptotic signaling to minimize the progression of diabetes-associated macro- and microvascular complications. SUMMARY: The pleiotropic antidiabetic action of phloretin is mainly dependent on its pharmacokinetics. Nevertheless, further investigation into the altered pharmacokinetics of phloretin during diabetic conditions is essential. Additionally, the results derived from clinical studies utilized apples, apple extract, and supplements containing phloretin. Greater emphasis should be placed on future clinical studies to assess the potential of phloretin as a standalone compound.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Humanos , Floretina/farmacologia , Floretina/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Transdução de Sinais
15.
Diabetes Metab Syndr ; 18(1): 102936, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171152

RESUMO

OBJECTIVE: To incorporate new clusters in the MARCH (Metformin and AcaRbose in Chinese patients as the initial Hypoglycemic treatment) cohort of newly diagnosed type 2 diabetes (T2D) patients and compare the anti-glycemic effects of metformin and acarbose across different clusters. METHODS: K-means cluster analysis was performed based on six clinical indicators. The diabetic clusters in the MARCH cohort were retrospectively associated with the response to metformin and acarbose. RESULTS: A total of 590 newly diagnosed T2D patients were classified by data-driven clusters into the MARD (mild obesity-related diabetes) (34.1 %), MOD (mild obesity-related diabetes) (34.1 %), SIDD (severe insulin-deficient diabetes) (20.3 %) and SIRD (severe insulin-resistant diabetes) (11.5 %) subgroups at baseline. At 24 and 48 weeks, 346 participants had finished the follow-up. After the adjustment of age, gender, weight, baseline HbA1c, baseline fasting glucose and 2-h postprandial blood glucose (2hPG), metformin mainly decreased the fasting glucose (0.07 ± 0.89 vs -0.26 ± 0.83, P = 0.043) in the MARD subgroup presented with OGTT (oral glucose tolerance test) results compared with acarbose group at 24 weeks. Acarbose led to a greater decrease in 2hPG in the MOD subgroup compared with metformin group (0.08 ± 0.86 vs -0.24 ± 0.92, P = 0.037) at 24 weeks. There was a also significant interaction between cluster and treatment efficacy in HbA1c (glycated hemoglobin) reduction in metformin and acarbose groups at 24 and 48 weeks (pinteraction<0.001). CONCLUSIONS: Metformin and acarbose affected different metabolic variables depending on the diabetes subtype.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Acarbose/uso terapêutico , Hemoglobinas Glicadas , Estudos Retrospectivos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Glicemia/metabolismo , Insulina , Obesidade/tratamento farmacológico
16.
Med J Malaysia ; 79(1): 68-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287760

RESUMO

INTRODUCTION: Studies showed that vildagliptin can lower HbA1c levels by 0.8%-1%. However, there is limited data looking at vildagliptin use among suburban populations. The efficacy of vildagliptin use may differ among different populations, especially those with low socio-economic status. Thus, this study aimed to assess the HbA1c reduction after vildagliptin initiation, treatment patterns and the reason for its initiation among patients with type 2 diabetes mellitus attending outpatient clinics in Kuala Selangor District, Selangor. MATERIALS AND METHODS: This is a cross-sectional, retrospective study design. All patients who received vildagliptin in the Pharmacy Integrated Health System (PHIS) registry database from 2016 to 2021 were included as study samples. The exclusion criteria were being less than 18 years old and having type 1 diabetes mellitus. Patients' medical records were retrieved after sampling, and data were collected. One medical record was missing, thus SPSS analysis were performed on 144 vildagliptin users. RESULTS: In total, 84 females (58.3%) and 60 males (41.7%) with a mean age of 62.1 (±10.1) years were analysed in this study. Mean HbA1c pre-therapy was 8.5 ± 2.1%; while posttherapy 6 months demonstrated a mean HbA1c of 7.9 ± 1.8%. Use of vildagliptin alone or as an adjunct was associated with a mean reduction of 0.6% in HbA1c (p = 0.01). Factors influencing this HbA1c reduction were advancing age, specifically individuals aged 62 years and older (p = 0.02), patients who are already receiving insulin therapy (p=0.00) and those who express a willingness to commence insulin treatment during the counselling session prior to initiating the treatment plan (p = 0.00). Reasons for vildagliptin initiation documented by prescribers were non-insulin acceptance (n = 59, 40.97%), frequent hypoglycaemia (n = 6, 4.1%) and non-compliance with medications (n = 23, 15.9%). There was no association between demographic, medical background and reason for starting vildagliptin variables and HbA1c reduction (p < 0.001). CONCLUSION: This study showed that initiating vildagliptin alone or as an adjunct therapy significantly reduced HbA1c and is beneficial for uncontrolled diabetes patients. While advancing age, concurrent administration of insulin and the patients' willingness to accept insulin treatment prior to the commencement of therapy were the factors that influenced HbA1c reduction among patients receiving vildagliptin therapy, we recommend primary care providers prioritise all of the significant variables discovered before initiating vildagliptin for their patients.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Adolescente , Vildagliptina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hemoglobinas Glicadas , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Estudos Retrospectivos , Estudos Transversais , Nitrilas/uso terapêutico , Nitrilas/efeitos adversos , Pirrolidinas/uso terapêutico , Pirrolidinas/efeitos adversos , Quimioterapia Combinada , Insulina/uso terapêutico , Atenção Primária à Saúde , Glicemia
17.
Bioorg Chem ; 143: 107100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211550

RESUMO

The use of acetylation followed by silica gel column purification allowed the isolation of eight fructooligosaccharides (FOS) from the ethanol extract of Cynoglossum tubiflorus roots. Each FOS was identified by analyzing its FT-IR, HRMS/MS and NMR data, including 1H, 13C and 2D NMR HH COSY, HMBC and NOESY. In diabetic rats treated with a series of FOS from Glc-(Fru)3 to Glc-(Fru)7, a significant inhibition of intestinal α-amylase was observed. This activity increases proportionally with the FOS molecular size. It was found that they delay the absorption of total cholesterol (TC), ldl-cholesterol (LDL-C) and increase HDL-cholesterol (HDL-C) in a molecular size-dependent manner. This inhibitory effect on the activity of the digestive enzyme causes a significant (p < 0.05) reduction in the level of glucose in the blood as an anti-diabetic action. The ethanolic extract (E.E) exerts a significant effect against α-amylase as well as antihyperglycemic and antihyperlipidemic actions, while its acetylation suppresses these effects. Therefore, this study demonstrates for the first time that pure FOS act as an efficient agent in preventing hyperglycemia and hyperlipidemia and that this action evolves in the same manner with their molecular size.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Oligossacarídeos , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Aloxano/farmacologia , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química , Glicemia , Colesterol , alfa-Amilases
18.
Chem Biodivers ; 21(1): e202301397, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38078801

RESUMO

The consumption of probiotics protects pancreatic ß-cells from oxidative damage, delaying the onset of type 2 diabetes mellitus (T2DM) and preventing microvascular and macrovascular complications. This study aimed to evaluate the antidiabetic activity of CDE fermented by Lactobacillus casei (ATCC 39539) (LC) in alloxan-induced diabetic rats. The oxidative stress identified by catalase (CAT), serum AST, ALT, ALP, creatinine, urea, and uric acid were measured. The chemical profiles of the plant extract and the fermented extract were studied using HPLC/MS. The potential of the compounds towards the binding pockets of aldose reductase and PPAR was discovered by molecular docking. A significant reduction in fasting blood glucose in alloxan-treated rats. The CAT showed a significant decrease in diabetic rats. Also, serum AST, ALT, ALP, creatinine, urea, and uric acid were significantly decreased in the mixture group. Mild histological changes of pancreatic and kidney tissues suggested that the mixture of probiotics and cleome possesses a marked anti-diabetic effect. Overall, the study suggests that the combination of Cleome droserifolia fermented by Lactobacillus casei exhibits significant antidiabetic activity (p-value=0.05), reduces oxidative stress, improves lipid profiles, and shows potential for the treatment of diabetes.


Assuntos
Cleome , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Lacticaseibacillus casei , Camundongos , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Aloxano , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ácido Úrico/efeitos adversos , Creatinina , Simulação de Acoplamento Molecular , Ratos Wistar , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Ureia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
19.
J Ethnopharmacol ; 321: 117562, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081399

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: West African Albizia (Albizia zygia DC J. F. Macbr) leaves are a tropical plant that are frequently used in folkloric medicine to treat a number of illnesses, including type 2 diabetes (TY2D) and erectile dysfunction (ED), without having a complete scientific foundation. AIM OF THE STUDY: This investigation examined the effect of action of dietary augmentation of Albizia zygia leaves (AZL) on rat sexual functioning and important enzymes related to TY2D and ED. MATERIALS AND METHODS: Thirty matured adult Wistar rats of the weight 180-200 g were acclimatized in a lab environmental condition for two weeks prior to experiment given food and water to acclimate. Twenty-four of the rats got high fat diet (HFD) for periods of two weeks before receiving streptozotocin (STZ) intraperitoneally (i.p.), 35 mg/kg body weight single dose. Six rats got basal diets. Type 2 diabetes was identified in rats 72 h after STZ treatment. Rats were then used to evaluate the mounting number, mount delay, intromission number, and intromission latency. RESULTS: Following that, meals supplemented with AZL (5% or 10% inclusion) were given to diabetic-ED rats for 14 days. AZL was added. Therefore, in diabetic-ED rats, AZL supplementation could significantly (p0.05) lower blood glucose levels and the activities of alpha amylase, alpha glucosidase, phosphodiesterase-5, and arginase. In the case of diabetic-ED treated rats in consideration with diabetic-ED control group, nitric oxide levels were increased along with sexual function. CONCLUSION: Thus, experimental results of this study demonstrated rats that consumed AZL in their diets had less erectile dysfunction. In order to address ED caused by diabetes, AZL could be suggested as functional meals.


Assuntos
Albizzia , Afrodisíacos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Disfunção Erétil , Masculino , Humanos , Ratos , Animais , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Afrodisíacos/farmacologia , Ereção Peniana , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ratos Wistar , Diabetes Mellitus Experimental/complicações , Dieta
20.
Phytother Res ; 38(2): 662-693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966040

RESUMO

Diabetes mellitus is a globally metabolic endocrine syndrome marked by a deficiency of insulin secretion (type-1 DM) or glucose intolerance arising from insulin response impairment (type-2 DM) leading to abnormal glucose metabolism. With an increasing interest in natural dietary components for diabetes management, the identification of novel agents witnessed major discoveries. Plant-derived mucilage, pectin, and inulin are important non-starch polysaccharides that exhibit effective antidiabetic properties often termed soluble dietary fiber (SDF). SDF affects sugar metabolism through multiple mechanisms affecting glucose absorption and diffusion, modulation of carbohydrate metabolizing enzymes (α-amylase and α-glucosidase), ameliorating ß-pancreatic cell dysfunction, and improving insulin release or sensitivity. Certain SDFs inhibit dipeptidyl peptidase-4 and influence the expression levels of genes related to glucose metabolism. This review is designed to discuss holistically and critically the antidiabetic effects of major SDF and their underlying mechanisms of action. This review should aid drug discovery approaches in developing novel natural antidiabetic drugs from SDF.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Inulina , Pectinas/farmacologia , Pectinas/uso terapêutico , Frutanos , Polissacarídeos , Insulina , Glucose , Diabetes Mellitus Tipo 2/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA