Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 857
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 33(9): e13020, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34423876

RESUMO

The arcuate nucleus of the hypothalamus is central in the regulation of body weight homeostasis through its ability to sense peripheral metabolic signals and relay them, through neural circuits, to other brain areas, ultimately affecting physiological and behavioural changes. The early postnatal development of these neural circuits is critical for normal body weight homeostasis, such that perturbations during this critical period can lead to obesity. The role for peripheral regulators of body weight homeostasis, including leptin, insulin and ghrelin, in this postnatal development is well described, yet some of the fundamental processes underpinning axonal and dendritic growth remain unclear. Here, we hypothesised that molecules known to regulate axonal and dendritic growth processes in other areas of the developing brain would be expressed in the postnatal arcuate nucleus and/or target nuclei where they would function to mediate the development of this circuitry. Using state-of-the-art RNAscope® technology, we have revealed the expression patterns of genes encoding Dcc/Netrin-1, Robo1/Slit1 and Fzd5/Wnt5a receptor/ligand pairs in the early postnatal mouse hypothalamus. We found that individual genes had unique expression patterns across developmental time in the arcuate nucleus, paraventricular nucleus of the hypothalamus, ventromedial nucleus of the hypothalamus, dorsomedial nucleus of the hypothalamus, median eminence and, somewhat unexpectedly, the third ventricle epithelium. These observations indicate a number of new molecular players in the development of neural circuits regulating body weight homeostasis, as well as novel molecular markers of tanycyte heterogeneity.


Assuntos
Genes Controladores do Desenvolvimento/fisiologia , Hipotálamo/metabolismo , Rede Nervosa/embriologia , Terceiro Ventrículo/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos/genética , Gravidez , Terceiro Ventrículo/citologia , Terceiro Ventrículo/crescimento & desenvolvimento
2.
Reprod Sci ; 28(12): 3380-3389, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34268716

RESUMO

Kisspeptin and gonadotropin-releasing hormone (GnRH) are central regulators of the hypothalamic-pituitary-gonadal axis and control female reproductive functions. Recently established mHypoA-50 and mHypoA-55 cells are immortalized hypothalamic neuronal cell models that originated from the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) regions of the mouse hypothalamus, respectively. mHypoA-50 or mHypoA-55 cells were stimulated with kisspeptin-10 (KP10) and GnRH, after which the expression of kisspeptin and GnRH was determined. Primary cultures of fetal rat brain cells were also examined. mHypoA-50 and mHypoA-55 cells expressed mRNA for Kiss-1 (which encodes kisspeptin) and GnRH as well as receptors for kisspeptin and GnRH. We found that Kiss-1 mRNA expression was significantly increased in mHypoA-50 AVPV cells by KP10 and GnRH stimulation. Kisspeptin protein expression was also increased by KP10 and GnRH stimulation in these cells. In contrast, GnRH expression was unchanged in mHypoA-50 AVPV cells by KP10 and GnRH stimulation. In mHypoA-55 ARC cells, kisspeptin expression was also significantly increased at the mRNA and protein levels by KP10 and GnRH stimulation; however, GnRH expression was also upregulated by KP10 and GnRH stimulation in these cells. KP10 and estradiol (E2) both increased Kiss-1 gene expression in mHypoA-50 AVPV cells, but combined stimulation with KP10 and E2 did not potentiate their individual effects on Kiss-1 gene expression. On the other hand, E2 did not increase Kiss-1 gene expression in mHypoA-55 ARC cells, and the KP10-induced increase of Kiss-1 gene expression was inhibited in the presence of E2 in these cells. KP10 and GnRH significantly increased c-Fos protein expression in the mHypoA-50 AVPV and mHypoA-55 ARC cell lines. In primary cultures of fetal rat neuronal cells, KP10 significantly increased Kiss-1 gene expression, whereas GnRH significantly increased GnRH gene expression. We found that kisspeptin and GnRH affected Kiss-1- and GnRH-expressing hypothalamic cells and modulated Kiss-1 and/or GnRH gene expression with a concomitant increase in c-Fos protein expression. A mutual- or self-regulatory system might be present in Kiss-1 and/or GnRH neurons in the hypothalamus.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Animais , Linhagem Celular Transformada , Células Cultivadas , Feminino , Feto , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Ligação Proteica/fisiologia , Ratos
3.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072957

RESUMO

Recently, it has been shown in adult mammals that the hypothalamus can generate new cells in response to metabolic changes, and tanycytes, putative descendants of radial glia, can give rise to neurons. Previously we have shown in vitro that neurospheres generated from the hypothalamus of adult zebrafish show increased neurogenesis in response to exogenously applied hormones. To determine whether adult zebrafish have a hormone-responsive tanycyte-like population in the hypothalamus, we characterized proliferative domains within this region. Here we show that the parvocellular nucleus of the preoptic region (POA) labels with neurogenic/tanycyte markers vimentin, GFAP/Zrf1, and Sox2, but these cells are generally non-proliferative. In contrast, Sox2+ proliferative cells in the ventral POA did not express vimentin and GFAP/Zrf1. A subset of the Sox2+ cells co-localized with Fezf2:GFP, a transcription factor important for neuroendocrine cell specification. Exogenous treatments of GnRH and testosterone were assayed in vivo. While the testosterone-treated animals showed no significant changes in proliferation, the GnRH-treated animals showed significant increases in the number of BrdU-labeled cells and Sox2+ cells. Thus, cells in the proliferative domains of the zebrafish POA do not express radial glia (tanycyte) markers vimentin and GFAP/Zrf1, and yet, are responsive to exogenously applied GnRH treatment.


Assuntos
Hormônio Liberador de Gonadotropina/genética , Hipotálamo/metabolismo , Neurogênese/genética , Peixe-Zebra/genética , Animais , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Glial Fibrilar Ácida/genética , Hipotálamo/crescimento & desenvolvimento , Neurônios/metabolismo , Fatores de Transcrição SOX/genética , Vimentina/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
4.
PLoS One ; 16(4): e0249482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33882080

RESUMO

The effects of hormonal contraceptives on structural features of the hypothalamus and pituitary are incompletely understood. One prior study reported microstructural changes in the hypothalamus with oral contraceptive pill (OCP) use. However, effects on hypothalamic volume have not been reported. One prior study reported volumetric changes in the pituitary. However, this study was limited by including participants evaluated for neurological symptoms. We sought to determine if OCP use is associated with alteration of hypothalamic or pituitary volume. High-resolution 3T MRI was performed for a prospective cohort of 50 healthy women from 2016 to 2018, which comprised 21 OCP users (age, 19-29) and 29 naturally cycling women (age, 18-36). Participants were excluded if they were pregnant or had significant medical conditions including neurological, psychiatric, and endocrine disorders. After confirming reliability of the image analysis techniques, 5 raters independently performed manual segmentation of the hypothalamus and semi-automated intensity threshold-based segmentation of the pituitary using ITK-SNAP. Total intracranial volume was estimated using FreeSurfer. A general linear model tested the association of OCP use with hypothalamic and pituitary volumes. Hypothalamic (B = -81.2 ± 24.9, p = 0.002) and pituitary (B = -81.2 ± 38.7, p = 0.04) volumes in OCP users were smaller than in naturally cycling women. These findings may be related to interference with known trophic effects of sex hormones and suggest a structural correlate of central OCP effects.


Assuntos
Anticoncepcionais Orais Combinados/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Hipófise/efeitos dos fármacos , Hipófise/crescimento & desenvolvimento , Adolescente , Adulto , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tamanho do Órgão/efeitos dos fármacos , Hipófise/diagnóstico por imagem , Gravidez , Adulto Jovem
5.
Neuron ; 109(7): 1150-1167.e6, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33600763

RESUMO

The hypothalamus plays crucial roles in regulating endocrine, autonomic, and behavioral functions via its diverse nuclei and neuronal subtypes. The developmental mechanisms underlying ontogenetic establishment of different hypothalamic nuclei and generation of neuronal diversity remain largely unknown. Here, we show that combinatorial T-box 3 (TBX3), orthopedia homeobox (OTP), and distal-less homeobox (DLX) expression delineates all arcuate nucleus (Arc) neurons and defines four distinct subpopulations, whereas combinatorial NKX2.1/SF1 and OTP/DLX expression identifies ventromedial hypothalamus (VMH) and tuberal nucleus (TuN) neuronal subpopulations, respectively. Developmental analysis indicates that all four Arc subpopulations are mosaically and simultaneously generated from embryonic Arc progenitors, whereas glutamatergic VMH neurons and GABAergic TuN neurons are sequentially generated from common embryonic VMH progenitors. Moreover, clonal lineage-tracing analysis reveals that diverse lineages from multipotent radial glia progenitors orchestrate Arc and VMH-TuN establishment. Together, our study reveals cellular mechanisms underlying generation and organization of diverse neuronal subtypes and ontogenetic establishment of individual nuclei in the mammalian hypothalamus.


Assuntos
Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/embriologia , Linhagem da Célula , Ácido Glutâmico/fisiologia , Proteínas de Homeodomínio/metabolismo , Hipotálamo/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/fisiologia , Células-Tronco/fisiologia , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/embriologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Ácido gama-Aminobutírico/fisiologia
6.
Sci Rep ; 11(1): 1996, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479437

RESUMO

Female puberty is subject to Polycomb Group (PcG)-dependent transcriptional repression. Kiss1, a puberty-activating gene, is a key target of this silencing mechanism. Using a gain-of-function approach and a systems biology strategy we now show that EED, an essential PcG component, acts in the arcuate nucleus of the hypothalamus to alter the functional organization of a gene network involved in the stimulatory control of puberty. A central node of this network is Kdm6b, which encodes an enzyme that erases the PcG-dependent histone modification H3K27me3. Kiss1 is a first neighbor in the network; genes encoding glutamatergic receptors and potassium channels are second neighbors. By repressing Kdm6b expression, EED increases H3K27me3 abundance at these gene promoters, reducing gene expression throughout a gene network controlling puberty activation. These results indicate that Kdm6b repression is a basic mechanism used by PcG to modulate the biological output of puberty-activating gene networks.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Kisspeptinas/genética , Complexo Repressor Polycomb 2/genética , Puberdade/genética , Animais , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Neurônios/metabolismo , Sistemas Neurossecretores/crescimento & desenvolvimento , Sistemas Neurossecretores/metabolismo , Proteínas do Grupo Polycomb/genética , Regiões Promotoras Genéticas/genética , Puberdade/fisiologia , Ratos , Biologia de Sistemas
7.
Genes (Basel) ; 13(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35052428

RESUMO

Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.


Assuntos
Proteínas Aviárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios/sangue , Hipotálamo/metabolismo , Muda/fisiologia , Ovário/metabolismo , Transcriptoma , Envelhecimento , Animais , Proteínas Aviárias/genética , Galinhas , Plumas/crescimento & desenvolvimento , Plumas/metabolismo , Feminino , Perfilação da Expressão Gênica , Hipotálamo/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento
8.
Neuroimage ; 225: 117463, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33075559

RESUMO

The brain undergoes a protracted, metabolically expensive maturation process from childhood to adulthood. Therefore, it is crucial to understand how network cost is distributed among different brain systems as the brain matures. To address this issue, here we examined developmental changes in wiring cost and brain network topology using resting-state functional magnetic resonance imaging (rsfMRI) data longitudinally collected in awake rats from the juvenile age to adulthood. We found that the wiring cost increased in the vast majority of cortical connections but decreased in most subcortico-subcortical connections. Importantly, the developmental increase in wiring cost was dominantly driven by long-range cortical, but not subcortical connections, which was consistent with more pronounced increase in network integration in the cortical network. These results collectively indicate that there is a non-uniform distribution of network cost as the brain matures, and network resource is dominantly consumed for the development of the cortex, but not subcortex from the juvenile age to adulthood.


Assuntos
Encéfalo/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/crescimento & desenvolvimento , Animais , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/crescimento & desenvolvimento , Neuroimagem Funcional , Globo Pálido/diagnóstico por imagem , Globo Pálido/crescimento & desenvolvimento , Hipocampo/diagnóstico por imagem , Hipocampo/crescimento & desenvolvimento , Hipotálamo/diagnóstico por imagem , Hipotálamo/crescimento & desenvolvimento , Estudos Longitudinais , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Ratos , Descanso , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/crescimento & desenvolvimento , Tálamo/diagnóstico por imagem , Tálamo/crescimento & desenvolvimento
9.
Int J Dev Biol ; 65(4-5-6): 195-205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930382

RESUMO

Rax (Rx) genes encode paired-type homeodomain-containing transcription factors present in virtually all metazoan groups. In vertebrates, studies in fish, amphibian, chick and mouse models have revealed that these genes play important roles in the development of structures located at the anterior portion of the central nervous system, in particular the eyes, the hypothalamus and the pituitary gland. In addition, human patients with eye and brain defects carry mutations in the two human Rax paralogues, RAX and RAX2. Here, we review work done in the last years on Rax genes, focusing especially on the function that mouse Rax and its zebrafish homologue, rx3, play in hypothalamic and pituitary development. Work on both of these model organisms indicate that Rax genes are necessary for the patterning, growth and differentiation of the hypothalamus, in particular the ventro-tuberal and dorso-anterior hypothalamus, where they effect their action by controlling expression of the secreted signalling protein, Sonic hedgehog (Shh). In addition, Rax/rx3 mutations disturb the development of the pituitary gland, mimicking phenotypes observed in human subjects carrying mutations in the RAX gene. Thus, along with their crucial role in eye morphogenesis, Rax genes play a conserved role in the development of the hypothalamus and adjacent structures in the vertebrate clade.


Assuntos
Proteínas do Olho , Proteínas de Homeodomínio , Hipotálamo/crescimento & desenvolvimento , Hipófise/crescimento & desenvolvimento , Fatores de Transcrição , Peixe-Zebra , Animais , Proteínas do Olho/fisiologia , Proteínas Hedgehog/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Camundongos , Fatores de Transcrição/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
10.
Nat Rev Endocrinol ; 17(2): 83-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288917

RESUMO

The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.


Assuntos
Disruptores Endócrinos/farmacologia , Exposição Ambiental , Epigênese Genética/efeitos dos fármacos , Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Movimento Celular , Metilação de DNA/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , GABAérgicos/metabolismo , Células Germinativas/metabolismo , Ácido Glutâmico/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Código das Histonas/efeitos dos fármacos , Humanos , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Masculino , Neurônios/metabolismo , Ovulação/efeitos dos fármacos , Ovulação/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal
11.
Brain Struct Funct ; 225(9): 2857-2869, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33145610

RESUMO

During the development of the central nervous system, the immature neurons suffer different migration processes. It is well known that Nkx2.1-positive ventricular layer give rise to critical tangential migrations into different regions of the developing forebrain. Our aim was to study this phenomenon in the hypothalamic region. With this purpose, we used a transgenic mouse line that expresses the tdTomato reporter driven by the promotor of Nkx2.1. Analysing the Nkx2.1-positive derivatives at E18.5, we found neural contributions to the prethalamic region, mainly in the zona incerta and in the mes-diencephalic tegmental region. We studied the developing hypothalamus along the embryonic period. From E10.5 we detected that the Nkx2.1 expression domain was narrower than the reporter distribution. Therefore, the Nkx2.1 expression fades in a great number of the early-born neurons from the Nkx2.1-positive territory. At the most caudal positive part, we detected a thin stream of positive neurons migrating caudally into the mes-diencephalic tegmental region using time-lapse experiments on open neural tube explants. Late in development, we found a second migratory stream into the prethalamic territory. All these tangentially migrated neurons developed a gabaergic phenotype. In summary, we have described the contribution of interneurons from the Nkx2.1-positive hypothalamic territory into two different rostrocaudal territories: the mes-diencephalic reticular formation through a caudal tangential migration and the prethalamic zona incerta complex through a dorsocaudal tangential migration.


Assuntos
Movimento Celular , Hipotálamo/crescimento & desenvolvimento , Neurônios/fisiologia , Fator Nuclear 1 de Tireoide/fisiologia , Animais , Feminino , Interneurônios/fisiologia , Masculino , Camundongos Transgênicos , Vias Neurais/fisiologia , Neurogênese , Zona Incerta/crescimento & desenvolvimento
12.
JCI Insight ; 5(23)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108146

RESUMO

Pituitary developmental defects lead to partial or complete hormone deficiency and significant health problems. The majority of cases are sporadic and of unknown cause. We screened 28 patients with pituitary stalk interruption syndrome (PSIS) for mutations in the FAT/DCHS family of protocadherins that have high functional redundancy. We identified seven variants, four of which putatively damaging, in FAT2 and DCHS2 in six patients with pituitary developmental defects recruited through a cohort of patients with mostly ectopic posterior pituitary gland and/or pituitary stalk interruption. All patients had growth hormone deficiency and two presented with multiple hormone deficiencies and small glands. FAT2 and DCHS2 were strongly expressed in the mesenchyme surrounding the normal developing human pituitary. We analyzed Dchs2-/- mouse mutants and identified anterior pituitary hypoplasia and partially penetrant infundibular defects. Overlapping infundibular abnormalities and distinct anterior pituitary morphogenesis defects were observed in Fat4-/- and Dchs1-/- mouse mutants but all animal models displayed normal commitment to the anterior pituitary cell type. Together our data implicate FAT/DCHS protocadherins in normal hypothalamic-pituitary development and identify FAT2 and DCHS2 as candidates underlying pituitary gland developmental defects such as ectopic pituitary gland and/or pituitary stalk interruption.


Assuntos
Proteínas Relacionadas a Caderinas/genética , Caderinas/genética , Doenças da Hipófise/genética , Adolescente , Animais , Proteínas Relacionadas a Caderinas/metabolismo , Caderinas/metabolismo , Feminino , Humanos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Adulto Jovem
13.
Nat Commun ; 11(1): 4360, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868762

RESUMO

The hypothalamus is a central regulator of many innate behaviors essential for survival, but the molecular mechanisms controlling hypothalamic patterning and cell fate specification are poorly understood. To identify genes that control hypothalamic development, we have used single-cell RNA sequencing (scRNA-Seq) to profile mouse hypothalamic gene expression across 12 developmental time points between embryonic day 10 and postnatal day 45. This identified genes that delineated clear developmental trajectories for all major hypothalamic cell types, and readily distinguished major regional subdivisions of the developing hypothalamus. By using our developmental dataset, we were able to rapidly annotate previously unidentified clusters from existing scRNA-Seq datasets collected during development and to identify the developmental origins of major neuronal populations of the ventromedial hypothalamus. We further show that our approach can rapidly and comprehensively characterize mutants that have altered hypothalamic patterning, identifying Nkx2.1 as a negative regulator of prethalamic identity. These data serve as a resource for further studies of hypothalamic development, physiology, and dysfunction.


Assuntos
Diferenciação Celular , Hipotálamo , Neurônios/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Animais , Sequência de Bases , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/citologia , Hipotálamo/embriologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Camundongos , Mutação , Análise de Célula Única , Fator Nuclear 1 de Tireoide/genética
14.
J Nutr Biochem ; 85: 108468, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32750410

RESUMO

The mismatch between maternal undernutrition and adequate nutrition after birth increases the risk of developing metabolic diseases. We aimed to investigate whether the hyperghrelinemia during maternal undernourishment rewires the hypothalamic development of the offspring and contributes to the conversion to an obese phenotype when fed a high-fat diet (HFD). Pregnant C57BL/6 J, wild type (WT) and ghrelin receptor (GHSR)-/- mice were assigned to either a normal nourished (NN) group, or an undernutrition (UN) (30% food restricted) group. All pups were fostered by NN Swiss mice. After weaning, pups were fed a normal diet, followed by a HFD from week 9. Plasma ghrelin levels peaked at postnatal day 15 (P15) in both C57BL/6 J UN and NN pups. Hypothalamic Ghsr mRNA expression was upregulated at P15 in UN pups compared to NN pups and inhibited agouti-related peptide (AgRP) projections. Adequate lactation increased body weight of UN WT but not of GHSR-/- pups compared to NN littermates. After weaning with a HFD, body weight and food intake was higher in WT UN pups but lower in GHSR-/- UN pups than in NN controls. The GHSR prevented a decrease in ambulatory activity and oxygen consumption in UN offspring during ad libitum feeding. Maternal undernutrition triggers developmental changes in the hypothalamus in utero which were further affected by adequate feeding after birth during the postnatal period by affecting GHSR signaling. The GHSR contributes to the hyperphagia and the increase in body weight when maternal undernutrition is followed by an obesity prone life environment.


Assuntos
Hipotálamo/metabolismo , Desnutrição/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/metabolismo , Receptores de Grelina/metabolismo , Animais , Animais Recém-Nascidos , Dieta Hiperlipídica/efeitos adversos , Feminino , Deleção de Genes , Hipotálamo/crescimento & desenvolvimento , Masculino , Desnutrição/complicações , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Gravidez , Receptores de Grelina/genética
15.
Brain Struct Funct ; 225(6): 1777-1803, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32556476

RESUMO

The prosomeric model explains the embryological development of the central nervous system (CNS) shared by all vertebrates as a Bauplan. As a primary event, the early neural plate is patterned by intersecting longitudinal plates and transverse segments, forming a mosaic of progenitor units. The hypothalamus is specified by three prosomeres (hp1, hp2, and the acroterminal domain) of the secondary prosencephalon with corresponding alar and basal plate parts, which develop apart from the diencephalon. Mounting evidence suggests that progenitor units within alar and basal plate parts of hp1 and hp2 give rise to distinct hypothalamic nuclei, which preserve their relative invariant positioning (topology) in the adult brain. Nonetheless, the principles of the prosomeric model have not been applied so far to the hypothalamus of adult primates. We parcellated hypothalamic nuclei in adult rhesus monkeys (Macaca mulatta) using various stains to view architectonic boundaries. We then analyzed the topological relations of hypothalamic nuclei and adjacent hypothalamic landmarks with homology across rodent and primate species to trace the origin of adult hypothalamic nuclei to the alar or basal plate components of hp1 and hp2. We generated a novel atlas of the hypothalamus of the adult rhesus monkey with developmental ontologies for each hypothalamic nucleus. The result is a systematic reinterpretation of the adult hypothalamus whose prosomeric ontology can be used to study relationships between the hypothalamus and other regions of the CNS. Further, our atlas may serve as a tool to predict causal patterns in physiological and pathological pathways involving the hypothalamus.


Assuntos
Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Animais , Atlas como Assunto , Macaca mulatta , Modelos Neurológicos , Neurônios/citologia , Neurônios/fisiologia
16.
Hum Mol Genet ; 29(10): 1648-1657, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32277752

RESUMO

Combined pituitary hormone deficiency (CPHD) is a genetically heterogeneous disorder caused by mutations in over 30 genes. The loss-of-function mutations in many of these genes, including orthodenticle homeobox 2 (OTX2), can present with a broad range of clinical symptoms, which provides a challenge for predicting phenotype from genotype. Another challenge in human genetics is functional evaluation of rare genetic variants that are predicted to be deleterious. Zebrafish are an excellent vertebrate model for evaluating gene function and disease pathogenesis, especially because large numbers of progeny can be obtained, overcoming the challenge of individual variation. To clarify the utility of zebrafish for the analysis of CPHD-related genes, we analyzed the effect of OTX2 loss of function in zebrafish. The otx2b gene is expressed in the developing hypothalamus, and otx2bhu3625/hu3625 fish exhibit multiple defects in the development of head structures and are not viable past 10 days post fertilization (dpf). Otx2bhu3625/hu3625 fish have a small hypothalamus and low expression of pituitary growth hormone and prolactin (prl). The gills of otx2bhu3625/hu3625 fish have weak sodium influx, consistent with the role of prolactin in osmoregulation. The otx2bhu3625/hu3625 eyes are microphthalmic with colobomas, which may underlie the inability of the mutant fish to find food. The small pituitary and eyes are associated with reduced cell proliferation and increased apoptosis evident at 3 and 5 dpf, respectively. These observations establish the zebrafish as a useful tool for the analysis of CPHD genes with variable and complex phenotypes.


Assuntos
Hormônio do Crescimento/genética , Hipopituitarismo/genética , Fatores de Transcrição Otx/genética , Proteínas de Peixe-Zebra/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Brânquias/metabolismo , Brânquias/patologia , Humanos , Hipopituitarismo/patologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/patologia , Mutação com Perda de Função/genética , Mandíbula/patologia , Prolactina/genética , Peixe-Zebra/genética
17.
Physiol Rep ; 8(5): e14399, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32170819

RESUMO

Expression of particular genes in hypothami of ewes was measured across the natural pubertal transition by in situ hybridization. The ewes were allocated to three groups (n = 4); prepubertal, postpubertal and postpubertally gonadectomized (GDX). Prepubertal sheep were euthanized at 20 weeks of age and postpubertal animals at 32 weeks. GDX sheep were also euthanized at 32 weeks, 1 week after surgery. Expression of KISS1, TAC3, PDYN in the arcuate nucleus (ARC), RFRP in the dorsomedial hypothalamus and GNRH1 in the preoptic area was quantified on a cellular basis. KISS1R expression by GNRH1 cells was quantified by double-label in situ hybridization. Across puberty, detectable KISS1 cell number increased in the caudal ARC and whilst PDYN cell numbers were low, numbers increased in the rostral ARC. TAC3 expression did not change but RFRP expression/cell was reduced across puberty. There was no change across puberty in the number of GNRH1 cells that expressed the kisspeptin receptor (KISS1R). GDX shortly after puberty did not increase expression of any of the genes of interest. We conclude that KISS1 expression in the ARC increases during puberty in ewes and this may be a causative factor in the pubertal activation of the reproductive axis. A reduction in expression of RFRP may be a factor in the onset of puberty, removing negative tone on GNRH1 cells. The lack of changes in expression of genes following GDX suggest that the effects of gonadal hormones may differ in young and mature animals.


Assuntos
Encefalinas/genética , Expressão Gênica , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Kisspeptinas/genética , Neurocinina B/genética , Neuropeptídeos/genética , Precursores de Proteínas/genética , Animais , Feminino , Receptores de Kisspeptina-1/genética , Carneiro Doméstico/genética , Carneiro Doméstico/crescimento & desenvolvimento
18.
PLoS Biol ; 18(3): e3000296, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163401

RESUMO

The steady increase in the prevalence of obesity and associated type II diabetes mellitus is a major health concern, particularly among children. Maternal obesity represents a risk factor that contributes to metabolic perturbations in the offspring. Endoplasmic reticulum (ER) stress has emerged as a critical mechanism involved in leptin resistance and type 2 diabetes in adult individuals. Here, we used a mouse model of maternal obesity to investigate the importance of early life ER stress in the nutritional programming of this metabolic disease. Offspring of obese dams developed glucose intolerance and displayed increased body weight, adiposity, and food intake. Moreover, maternal obesity disrupted the development of melanocortin circuits associated with neonatal hyperleptinemia and leptin resistance. ER stress-related genes were up-regulated in the hypothalamus of neonates born to obese mothers. Neonatal treatment with the ER stress-relieving drug tauroursodeoxycholic acid improved metabolic and neurodevelopmental deficits and reversed leptin resistance in the offspring of obese dams.


Assuntos
Estresse do Retículo Endoplasmático , Hipotálamo/crescimento & desenvolvimento , Obesidade Materna/metabolismo , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Composição Corporal , Peso Corporal , Dieta/efeitos adversos , Estresse do Retículo Endoplasmático/genética , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/embriologia , Hipotálamo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pâncreas/crescimento & desenvolvimento , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Pró-Opiomelanocortina/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , alfa-MSH/metabolismo
19.
Gene ; 741: 144541, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32165303

RESUMO

Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor with multiple functions in mammals. However, the functions of MC4R in fish have not been investigated extensively. The purpose of this study was to determine potential regulation of reproduction by the MC4R. We cloned the black rockfish MC4R and analyzed its tissue distribution and function. The results showed that black rockfish mc4r cDNA consisted of 981 nucleotides encoding a protein of 326 amino acids. The quantitative PCR data showed that mc4r mRNA was primarily expressed in the brain, gonad, stomach and intestine. In the brain, mc4r was found to be primarily located in the hypothalamus. Both α-MSH and ß-MSH increased gnih expression and decreased sgnrh and cgnrh expression (P < 0.05). α-MSH and ß-MSH had opposite effects on kisspeptin expression. In contrast, α-MSH and ß-MSH increased the expression of cyp11, cyp19, 3ß-hsd and star. In summary, our study shows that MC4R in black rockfish might regulate reproductive function and that the effects of α-MSH and ß-MSH might differ.


Assuntos
Peixes/genética , Perciformes/genética , Receptor Tipo 4 de Melanocortina/genética , Reprodução/genética , Sequência de Aminoácidos/genética , Animais , Clonagem Molecular , Peixes/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Gônadas/crescimento & desenvolvimento , Hipotálamo/crescimento & desenvolvimento , Perciformes/crescimento & desenvolvimento , Filogenia , RNA Mensageiro/genética , alfa-MSH/genética , beta-MSH/genética
20.
Sci Rep ; 10(1): 2826, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071335

RESUMO

Tanycyte is a subtype of ependymal cells which extend long radial processes to brain parenchyma. The present study showed that tanycyte-like ependymal cells in the organum vasculosum of the lamina terminalis, subfornical organ and central canal (CC) expressed neural stem cell (NSC) marker nestin, glial fibrillar acidic protein and sex determining region Y. Proliferation of these tanycyte-like ependymal cells was promoted by continuous intracerebroventricular infusion of fibroblast growth factor-2 and epidermal growth factor. Tanycytes-like ependymal cells in the CC are able to form self-renewing neurospheres and give rise mostly to new astrocytes and oligodendrocytes. Collagenase-induced small medullary hemorrhage increased proliferation of tanycyte-like ependymal cells in the CC. These results demonstrate that these tanycyte-like ependymal cells of the adult mouse brain are NSCs and suggest that they serve as a source for providing new neuronal lineage cells upon brain damage in the medulla oblongata.


Assuntos
Órgãos Circunventriculares/metabolismo , Células Ependimogliais/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Linhagem da Célula/genética , Proliferação de Células/genética , Órgãos Circunventriculares/crescimento & desenvolvimento , Epêndima/crescimento & desenvolvimento , Epêndima/metabolismo , Células Ependimogliais/citologia , Fator de Crescimento Epidérmico/genética , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/genética , Humanos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Camundongos , Nestina/genética , Células-Tronco Neurais/citologia , Organum Vasculosum/crescimento & desenvolvimento , Organum Vasculosum/metabolismo , Órgão Subfornical/crescimento & desenvolvimento , Órgão Subfornical/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA