Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 610(7930): 199-204, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071162

RESUMO

Selenium is an essential micronutrient in diverse organisms. Two routes are known for its insertion into proteins and nucleic acids, via selenocysteine and 2-selenouridine, respectively1. However, despite its importance, pathways for specific incorporation of selenium into small molecules have remained elusive. Here we use a genome-mining strategy in various microorganisms to uncover a widespread three-gene cluster that encodes a dedicated pathway for producing selenoneine, the selenium analogue of the multifunctional molecule ergothioneine2,3. We elucidate the reactions of all three proteins and uncover two novel selenium-carbon bond-forming enzymes and the biosynthetic pathway for production of a selenosugar, which is an unexpected intermediate en route to the final product. Our findings expand the scope of biological selenium utilization, suggest that the selenometabolome is more diverse than previously thought, and set the stage for the discovery of other selenium-containing natural products.


Assuntos
Vias Biossintéticas , Genes Microbianos , Histidina/análogos & derivados , Compostos Organosselênicos , Selênio , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Carbono/metabolismo , Enzimas , Ergotioneína , Genes Microbianos/genética , Histidina/biossíntese , Metaboloma/genética , Micronutrientes/biossíntese , Família Multigênica/genética , Proteínas , Selênio/metabolismo
2.
J Am Chem Soc ; 139(16): 5680-5683, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28383907

RESUMO

S-Adenosylmethionine (SAM) has a sulfonium ion with three distinct C-S bonds. Conventional radical SAM enzymes use a [4Fe-4S] cluster to cleave homolytically the C5',adenosine-S bond of SAM to generate a 5'-deoxyadenosyl radical, which catalyzes various downstream chemical reactions. Radical SAM enzymes involved in diphthamide biosynthesis, such as Pyrococcus horikoshii Dph2 (PhDph2) and yeast Dph1-Dph2 instead cleave the Cγ,Met-S bond of methionine to generate a 3-amino-3-carboxylpropyl radical. We here show radical SAM enzymes can be tuned to cleave the third C-S bond to the sulfonium sulfur by changing the structure of SAM. With a decarboxyl SAM analogue (dc-SAM), PhDph2 cleaves the Cmethyl-S bond, forming 5'-deoxy-5'-(3-aminopropylthio) adenosine (dAPTA, 1). The methyl cleavage activity, like the cleavage of the other two C-S bonds, is dependent on the presence of a [4Fe-4S]+ cluster. Electron-nuclear double resonance and mass spectroscopy data suggests that mechanistically one of the S atoms in the [4Fe-4S] cluster captures the methyl group from dc-SAM, forming a distinct EPR-active intermediate, which can transfer the methyl group to nucleophiles such as dithiothreitol. This reveals the [4Fe-4S] cluster in a radical SAM enzyme can be tuned to cleave any one of the three bonds to the sulfonium sulfur of SAM or analogues, and is the first demonstration a radical SAM enzyme could switch from an Fe-based one electron transfer reaction to a S-based two electron transfer reaction in a substrate-dependent manner. This study provides an illustration of the versatile reactivity of Fe-S clusters.


Assuntos
Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Histidina/biossíntese , Histidina/química , Proteínas Ferro-Enxofre/química , Estrutura Molecular , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/química , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato
3.
Toxins (Basel) ; 9(3)2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28245596

RESUMO

The diphthamide on eukaryotic translation elongation factor 2 (eEF2) is the target of ADPribosylating toxins and -derivatives that serve as payloads in targeted tumor therapy. Diphthamide is generated by seven DPH proteins; cells deficient in these (DPHko) lack diphthamide and are toxin-resistant. We have established assays to address the functionality of DPH1 (OVCA1) and DPH5 variants listed in dbSNP and cosmic databases: plasmids encoding wildtype and mutant DPHs were transfected into DPHko cells. Supplementation of DPH1 and DPH5 restores diphthamide synthesis and toxin sensitivity in DPH1ko and DPH5ko cells, respectively. Consequently, the determination of the diphthamide status of cells expressing DPH variants differentiates active and compromised proteins. The DPH1 frameshift variant L96fs* (with Nterminal 96 amino acids, truncated thereafter) and two splice isoforms lacking 80 or 140 amino acids at their N-termini failed to restore DPH1ko deficiency. The DPH1 frameshift variant R312fs* retained some residual activity even though it lacks a large C-terminal portion. DPH1 missense variants R27W and S56F retained activity while S221P had reduced activity, indicated by a decreased capability to restore diphthamide synthesis. The DPH5 nonsense or frameshift variants E60*, W136fs* and R207* (containing intact N-termini with truncations after 60, 136 or 207 amino acids, respectively) were inactive: none compensated the deficiency of DPH5ko cells. In contrast, missense variants D57G, G87R, S123C and Q170H as well as the frequently occurring DPH5 isoform delA212 retained activity. Sensitivity to ADP-ribosylating toxins and tumor-targeted immunotoxins depends on diphthamide which, in turn, requires DPH functionality. Because of that, DPH variants (in particular those that are functionally compromised) may serve as a biomarker and correlate with the efficacy of immunotoxin-based therapies.


Assuntos
Histidina/análogos & derivados , Antígenos de Histocompatibilidade Menor/genética , Proteínas Supressoras de Tumor/genética , ADP Ribose Transferases/toxicidade , Adenosina Difosfato Ribose/metabolismo , Toxinas Bacterianas/toxicidade , Toxina Diftérica/toxicidade , Exotoxinas/toxicidade , Histidina/biossíntese , Humanos , Imunotoxinas/toxicidade , Células MCF-7 , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fatores de Virulência/toxicidade , Exotoxina A de Pseudomonas aeruginosa
4.
Virulence ; 7(4): 465-76, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-26854126

RESUMO

Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing invasive fungal infections in immunosuppressed individuals. The histidine biosynthetic pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants, but is absent in mammals. Here we demonstrate that deletion of the gene encoding imidazoleglycerol-phosphate dehydratase (HisB) in A. fumigatus causes (i) histidine auxotrophy, (ii) decreased resistance to both starvation and excess of various heavy metals, including iron, copper and zinc, which play a pivotal role in antimicrobial host defense, (iii) attenuation of pathogenicity in 4 virulence models: murine pulmonary infection, murine systemic infection, murine corneal infection, and wax moth larvae. In agreement with the in vivo importance of histidine biosynthesis, the HisB inhibitor 3-amino-1,2,4-triazole reduced the virulence of the A. fumigatus wild type and histidine supplementation partially rescued virulence of the histidine-auxotrophic mutant in the wax moth model. Taken together, this study reveals limited histidine availability in diverse A. fumigatus host niches, a crucial role for histidine in metal homeostasis, and the histidine biosynthetic pathway as being an attractive target for development of novel antifungal therapy approaches.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Histidina/biossíntese , Homeostase , Metais Pesados/metabolismo , Amitrol (Herbicida)/farmacologia , Animais , Aspergilose/sangue , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Cobre/metabolismo , Córnea/microbiologia , Modelos Animais de Doenças , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Histidina/farmacologia , Humanos , Hidroliases/genética , Ferro/metabolismo , Pulmão/microbiologia , Camundongos , Mariposas/microbiologia , Virulência/genética , Zinco/metabolismo
5.
PLoS One ; 9(5): e97774, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24828577

RESUMO

Ergothioneine is a small, sulfur-containing metabolite (229 Da) synthesized by various species of bacteria and fungi, which can accumulate to millimolar levels in tissues or cells (e.g. erythrocytes) of higher eukaryotes. It is commonly marketed as a dietary supplement due to its proposed protective and antioxidative functions. In this study we report the genes forming the two-step ergothioneine biosynthetic pathway in the fission yeast, Schizosaccharomyces pombe. We identified the first gene, egt1+ (SPBC1604.01), by sequence homology to previously published genes from Neurospora crassa and Mycobacterium smegmatis. We showed, using metabolomic analysis, that the Δegt1 deletion mutant completely lacked ergothioneine and its precursors (trimethyl histidine/hercynine and hercynylcysteine sulfoxide). Since the second step of ergothioneine biosynthesis has not been characterized in eukaryotes, we examined four putative homologs (Nfs1/SPBC21D10.11c, SPAC11D3.10, SPCC777.03c, and SPBC660.12c) of the corresponding mycobacterial enzyme EgtE. Among deletion mutants of these genes, only one (ΔSPBC660.12c, designated Δegt2) showed a substantial decrease in ergothioneine, accompanied by accumulation of its immediate precursor, hercynylcysteine sulfoxide. Ergothioneine-deficient strains exhibited no phenotypic defects during vegetative growth or quiescence. To effectively study the role of ergothioneine, we constructed an egt1+ overexpression system by replacing its native promoter with the nmt1+ promoter, which is inducible in the absence of thiamine. We employed three versions of the nmt1 promoter with increasing strength of expression and confirmed corresponding accumulations of ergothioneine. We quantified the intracellular concentration of ergothioneine in S. pombe (0.3, 157.4, 41.6, and up to 1606.3 µM in vegetative, nitrogen-starved, glucose-starved, and egt1+-overexpressing cells, respectively) and described its gradual accumulation under long-term quiescence. Finally, we demonstrated that the ergothioneine pathway can also synthesize selenoneine, a selenium-containing derivative of ergothioneine, when the culture medium is supplemented with selenium. We further found that selenoneine biosynthesis involves a novel intermediate compound, hercynylselenocysteine.


Assuntos
Vias Biossintéticas/genética , Ergotioneína/biossíntese , Regulação Fúngica da Expressão Gênica , Histidina/análogos & derivados , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Meios de Cultura/química , Histidina/biossíntese , Metaboloma/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Compostos Organosselênicos , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
6.
Plant Biotechnol J ; 7(6): 499-511, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19486323

RESUMO

Despite the functional importance of histidine (His) as an essential amino acid in proteins and as a metal-coordinating ligand, comparatively little is known about the regulation of its biosynthesis in plants and the potential for metabolic engineering of this pathway. To investigate the contribution of different steps in the pathway to overall control of His biosynthesis, nine His biosynthetic genes were individually over-expressed in Arabidopsis thaliana to determine their effects on free amino acid pools. Constitutive, CaMV 35S-driven over-expression of the cDNAs encoding either isoform of ATP-phosphoribosyltransferase (ATP-PRT), the first enzyme in the pathway, was sufficient to increase the pool of free His by up to 42-fold in shoot tissue of Arabidopsis, with negligible effect on any other amino acid. In contrast, over-expression of cDNAs for seven other enzymes in the biosynthetic pathway had no effect on His content, suggesting that control of the pool of free His resides largely with ATP-PRT activity. Over-expression of ATP-PRT and increased His content had a negative pleiotropic effect on plant biomass production in 35S:PRT1 lines, but this effect was not observed in 35S:PRT2 lines. In the presence of 100 microM Ni, which was inhibitory to wild-type plants, a strong positive correlation was observed between free His content and biomass production, indicating that the metabolic cost of His overproduction was outweighed by the benefit of increased tolerance to Ni. His-overproducing plants also displayed somewhat elevated tolerance to Co and Zn, but not to Cd or Cu, indicating chemical selectivity in intracellular metal binding by His.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Histidina/biossíntese , ATP Fosforribosiltransferase/genética , Aminoácidos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , DNA Complementar/genética , Genes de Plantas , Metais/farmacologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética
7.
BMC Genomics ; 7: 205, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16901339

RESUMO

BACKGROUND: Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. RESULTS: A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4)-monophosphatases (EC 3.1.3.25). Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown essential L-histidinol-phosphate phosphatase (EC 3.1.3.15) in C. glutamicum. The cg0910 gene, renamed hisN, and its encoded enzyme have putative orthologs in almost all Actinobacteria, including mycobacteria and streptomycetes. CONCLUSION: The absence of regional and sequence preferences of IS6100-transposition demonstrate that the established system is suitable for efficient genome-scale random mutagenesis in the sequenced type strain C.glutamicum ATCC 13032. The identification of the hisN gene encoding histidinol-phosphate phosphatase in C. glutamicum closed the last gap in histidine synthesis in the Actinobacteria. The system might be a valuable genetic tool also in other bacteria due to the broad host-spectrum of IS6100.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Genes Bacterianos , Histidina/biossíntese , Histidinol-Fosfatase/genética , Mutagênese Insercional , Actinobacteria/classificação , Actinobacteria/genética , Corynebacterium glutamicum/classificação , Corynebacterium glutamicum/enzimologia , Deleção de Genes , Biblioteca Gênica , Teste de Complementação Genética , Genética Microbiana/métodos , Fenótipo , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/genética , Filogenia , Homologia de Sequência , Especificidade da Espécie
8.
J Bacteriol ; 130(1): 4-10, 1977 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-323237

RESUMO

Escherichia coli K-12 hisT mutants were isolated, and their properties were studied. These mutants are derepressed for the histidine operon, map close to the purF locus at about 49.5 min on the E. coli linkage map, and lack pseudouridylate synthetase activity. The defect in this enzyme leads to the absence of pseudouridines in the anticodon loop of several transfer ribonucleic acid species, as evidenced by the altered elution profile on reversed-phase chromatography and resistance to amino acid analogues. Finally, the hisT mutants studied have a reduced growth rate that appears to be linked to hisT, although it is not known whether it is due to the same mutation. The normal generation time can be restored by supplementing the medium with adenine, uracil, and isoleucine.


Assuntos
Escherichia coli/metabolismo , Genes Reguladores , Histidina/biossíntese , Óperon , Adenina/metabolismo , Anticódon , Mapeamento Cromossômico , Cromossomos Bacterianos , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Hidroliases , Isoleucina/metabolismo , Mutação , Pentosiltransferases/metabolismo , Pseudouridina , Uracila/metabolismo , Uridina Monofosfato
9.
J Bacteriol ; 121(2): 485-90, 1975 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-803481

RESUMO

The first enzyme of histidine biosynthesis in Salmonella typhimurium, adenosine triphosphate phosphoribosyltransferase (EC 2.4.2.17), has been purified from two bacterial strains containing histidine operator deletions and compared to the eenzyme from a strain that has a normal operator. The enzymes isolated in different ways also are compared. Evidence as to the separateness of the operator and first structural gene or covalent modification of the first enzyme was sought. Specific activity, histidine feedback inhibition, amino acid analysis, discontinuous-gel electrophoresis, and gel filtration of the native enzyme, and Ouchterlony double-immunodiffusion tests were carried out. The purified enzyme contains little phosphorous and has five cysteine residues per subunit, which all are readily titratable. No evidence for differences in the enzyme preparations was obtained. Thus, no evidence for overlap of the histidine operator with the first structural gene was obtained.


Assuntos
Histidina/biossíntese , Mutação , Óperon , Pentosiltransferases , Salmonella typhimurium/enzimologia , Aminoácidos/análise , Autoanálise , Cromatografia DEAE-Celulose , Cromatografia em Gel , Mapeamento Cromossômico , Eletroforese Descontínua , Genes , Temperatura Alta , Imunodifusão , Pentosiltransferases/análise , Pentosiltransferases/imunologia , Fósforo/análise , Salmonella typhimurium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA