Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Sci ; 112(3): 779-789, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36252652

RESUMO

Polysorbate-80 (PS-80) is a common surfactant used in biologics formulations. However, the tendency of oxidation to PS-80 when exposed to stainless steel surfaces brings various challenges during manufacturing processes, such as inconsistent shelf-life of PS-80 solutions, which can further impact the biologics and vaccines production. In this work, the root causes of PS-80 oxidation when in contact with stainless steel conditions were thoroughly investigated through the use of various complementary analytical techniques including U/HPLC-CAD, LC-MS, ICP-MS, peroxide assay, and EPR spectroscopy. The analytical tool kit used in this work successfully revealed a PS-80 degradation mechanism from the perspective of PS-80 content, PS-80 profile, iron content, peroxide production, and radical species. The combined datasets reveal that PS-80 oxidative degradation occurs in the presence of histidine and iron in addition to being combined with the hydroperoxides in PS-80 material. The oxidative pathway and potential degradants were identified by LC-MS. The PS-80 profile based on the U/HPLC-CAD assay provided an effective way to identify early-signs of PS-80 degradation. The results from a peroxide assay observed increased hydroperoxide along with PS-80 degradation. EPR spectra confirmed the presence of histidine-related radicals during PS-80 oxidation identifying how histidine is involved in the oxidation. All assays and findings introduced in this work will provide insight into how PS-80 oxidative degradation can be avoided, controlled, or detected. It will also provide valuable evaluations on techniques that can be used to identify PS-80 degradation related events that occur during the manufacturing process.


Assuntos
Polissorbatos , Aço Inoxidável , Polissorbatos/química , Aço Inoxidável/química , Histidina/química , Oxirredução , Ferro , Peróxidos , Peróxido de Hidrogênio , Estresse Oxidativo
2.
Nutrients ; 14(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35565743

RESUMO

Cyclo(His-Pro) (CHP) is a cyclic dipeptide which is endowed with favorable pharmacokinetic properties combined with a variety of biological activities. CHP is found in a number of protein-rich foods and dietary supplements. While being stable at physiological pH, CHP can open yielding two symmetric dipeptides (His-Pro, Pro-His), the formation of which might be particularly relevant from dietary CHP due to the gastric acidic environment. The antioxidant and protective CHP properties were repeatedly reported although the non-enzymatic mechanisms were scantly investigated. The CHP detoxifying activity towards α,ß unsaturated carbonyls was never investigated in detail, although its open dipeptides might be effective as already observed for histidine containing dipeptides. Hence, this study investigated the scavenging properties of TRH, CHP and its open derivatives towards 4-hydroxy-2-nonenal. The obtained results revealed that Pro-His possesses a marked activity and is more reactive than l-carnosine. As investigated by DFT calculations, the enhanced reactivity can be ascribed to the greater electrophilicity of the involved iminium intermediate. These findings emphasize that the primary amine (as seen in l-carnosine) can be replaced by secondary amines with beneficial effects on the quenching mechanisms. Serum stability of the tested peptides was also evaluated, showing that Pro-His is characterized by a greater stability than l-carnosine. Docking simulations suggested that its hydrolysis can be catalyzed by serum carnosinase. Altogether, the reported results evidence that the antioxidant CHP properties can be also due to the detoxifying activity of its open dipeptides, which might be thus responsible for the beneficial effects induced by CHP containing food.


Assuntos
Carnosina , Dipeptídeos , Antioxidantes/farmacologia , Dipeptídeos/química , Histidina/química , Peptídeos Cíclicos , Piperazinas
3.
Nucleic Acids Res ; 50(9): 4917-4937, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35390165

RESUMO

As an oncogenic transcription factor, Yin Yang 1 (YY1) regulates enhancer and promoter connection. However, gaps still exist in understanding how YY1 coordinates coactivators and chromatin enhancer elements to assemble enhancers and super-enhancers. Here, we demonstrate that a histidine cluster in YY1's transactivation domain is essential for its formation of phase separation condensates, which can be extended to additional proteins. The histidine cluster is also required for YY1-promoted cell proliferation, migration, clonogenicity and tumor growth. YY1-rich nuclear puncta contain coactivators EP300, BRD4, MED1 and active RNA polymerase II, and colocalize with histone markers of gene activation, but not that of repression. Furthermore, YY1 binds to the consensus motifs in the FOXM1 promoter to activate its expression. Wild-type YY1, but not its phase separation defective mutant, connects multiple enhancer elements and the FOXM1 promoter to form an enhancer cluster. Consistently, fluorescent in situ hybridization (FISH) assays reveal the colocalization of YY1 puncta with both the FOXM1 gene locus and its nascent RNA transcript. Overall, this study demonstrates that YY1 activates target gene expression through forming liquid-liquid phase separation condensates to compartmentalize both coactivators and enhancer elements, and the histidine cluster of YY1 plays a determinant role in this regulatory mechanism.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Fator de Transcrição YY1 , Regulação da Expressão Gênica , Histidina/química , Hibridização in Situ Fluorescente , Proteínas Nucleares/metabolismo , Fator de Transcrição YY1/química , Fator de Transcrição YY1/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547238

RESUMO

In 2015, monoclonal antibodies (mAbs) that selectively recognize the 1-pHis or 3-pHis isoforms of phosphohistidine were developed by immunizing rabbits with degenerate Ala/Gly peptides containing the nonhydrolyzable phosphohistidine (pHis) analog- phosphotriazolylalanine (pTza). Here, we report structures of five rabbit mAbs bound to cognate pTza peptides: SC1-1 and SC50-3 that recognize 1-pHis, and their 3-pHis-specific counterparts, SC39-4, SC44-8, and SC56-2. These cocrystal structures provide insights into the binding modes of the pTza phosphate group that are distinct for the 1- and 3-pHis mAbs with the selectivity arising from specific contacts with the phosphate group and triazolyl ring. The mode of phosphate recognition in the 3-pHis mAbs recapitulates the Walker A motif, as present in kinases. The complementarity-determining regions (CDRs) of four of the Fabs interact with the peptide backbone rather than peptide side chains, thus conferring sequence independence, whereas SC44-8 shows a proclivity for binding a GpHAGA motif mediated by a sterically complementary CDRL3 loop. Specific hydrogen bonding with the triazolyl ring precludes recognition of pTyr and other phosphoamino acids by these mAbs. Kinetic binding experiments reveal that the affinity of pHis mAbs for pHis and pTza peptides is submicromolar. Bound pHis mAbs also shield the pHis peptides from rapid dephosphorylation. The epitope-paratope interactions illustrate how these anti-pHis antibodies are useful for a wide range of research techniques and this structural information can be utilized to improve the specificity and affinity of these antibodies toward a variety of pHis substrates to understand the role of histidine phosphorylation in healthy and diseased states.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Histidina/análogos & derivados , Peptídeos/química , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Reações Cruzadas/imunologia , Histidina/química , Histidina/imunologia , Fragmentos Fab das Imunoglobulinas/química , Isomerismo , Cinética , Fosfatos/metabolismo , Coelhos , Relação Estrutura-Atividade
5.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599753

RESUMO

The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.


Assuntos
Antivirais/farmacologia , Benzopiranos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glucosídeos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/química , Amantadina/farmacologia , Animais , Antivirais/química , Cães , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Histidina/química , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Replicação Viral/efeitos dos fármacos
6.
Nutrients ; 12(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235743

RESUMO

L-histidine (HIS) is an essential amino acid with unique roles in proton buffering, metal ion chelation, scavenging of reactive oxygen and nitrogen species, erythropoiesis, and the histaminergic system. Several HIS-rich proteins (e.g., haemoproteins, HIS-rich glycoproteins, histatins, HIS-rich calcium-binding protein, and filaggrin), HIS-containing dipeptides (particularly carnosine), and methyl- and sulphur-containing derivatives of HIS (3-methylhistidine, 1-methylhistidine, and ergothioneine) have specific functions. The unique chemical properties and physiological functions are the basis of the theoretical rationale to suggest HIS supplementation in a wide range of conditions. Several decades of experience have confirmed the effectiveness of HIS as a component of solutions used for organ preservation and myocardial protection in cardiac surgery. Further studies are needed to elucidate the effects of HIS supplementation on neurological disorders, atopic dermatitis, metabolic syndrome, diabetes, uraemic anaemia, ulcers, inflammatory bowel diseases, malignancies, and muscle performance during strenuous exercise. Signs of toxicity, mutagenic activity, and allergic reactions or peptic ulcers have not been reported, although HIS is a histamine precursor. Of concern should be findings of hepatic enlargement and increases in ammonia and glutamine and of decrease in branched-chain amino acids (valine, leucine, and isoleucine) in blood plasma indicating that HIS supplementation is inappropriate in patients with liver disease.


Assuntos
Suplementos Nutricionais , Histidina , Aminoácidos de Cadeia Ramificada/metabolismo , Amônia/metabolismo , Quelantes , Contraindicações , Dermatite Atópica/terapia , Proteínas Filagrinas , Sequestradores de Radicais Livres , Glutamina/metabolismo , Histamina , Histidina/efeitos adversos , Histidina/química , Histidina/fisiologia , Histidina/uso terapêutico , Humanos , Hipertrofia/etiologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Síndrome Metabólica/terapia , Doenças do Sistema Nervoso/terapia , Soluções para Preservação de Órgãos
7.
Mater Sci Eng C Mater Biol Appl ; 107: 110224, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761194

RESUMO

Multi-drug resistance (MDR) remains the main culprit for the low survival rate of advanced colorectal cancer (CRC). Photothermal-therapy (PPT) is effective to kill MDR tumor cells, but fails to completely eradicate tumors. In this study, we prepared a nanocomposite based on gold nanorod core with triple layer coating (GNRs/mSiO2/PHIS/TPGS/DOX) to combat multidrug resistant (MDR) colorectal cancer via multi-strategies. We first synthesized the mesoporous silica-coated gold nanorods (GNRs/mSiO2), and loaded with antitumor drug doxorubicin (DOX) to realize a combination of chemo- and photothermal-therapy. To reverse DOX resistance, pH responsive poly-histidine (PHIS) was conjugated on GNRs/mSiO2 to increase drug intracellular accumulation via efficient endo/lysosome escape; d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) was then assembled on the surface of the particles to realize drug intracellular retention by inhibition P-glycoprotein. The results showed that the nanocomposite exhibited a highly efficient photothermal conversion in the NIR region, a pH and NIR triggered drug release profile and an increment of DOX intracellular accumulation and cytotoxicity on MDR SW620/Ad300 cells. Most importantly, the nanocomposite showed the most potent antitumor efficacy without obvious systemic toxicity comparing to other control groups with either chemo- or photothermal therapy alone on SW620/Ad300 tumor bearing mice. Altogether, the successful preparation of the nanocomposite and its potent efficacy might provide evidence for the future design and develop of nano-therapeutic system in the treatment of MDR colorectal cancer.


Assuntos
Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos , Ouro/química , Nanocompostos/química , Nanotubos/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Histidina/química , Humanos , Raios Infravermelhos , Masculino , Camundongos , Camundongos Nus , Fototerapia , Dióxido de Silício/química , Vitamina E/química
8.
Theranostics ; 9(23): 6780-6796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660068

RESUMO

Several therapeutic nanosystems have been engineered to remedy the shortcomings of cancer monotherapies, including immunotherapy (stimulating the host immune system to eradicate cancer), to improve therapeutic efficacy with minimizing off-target effects and tumor-induced immunosuppression. Light-activated components in nanosystems confer additional phototherapeutic effects as combinatorial modalities; however, systemic and thermal toxicities with unfavorable accumulation and excretion of nanoystem components now hamper their practical applications. Thus, there remains a need for optimal multifunctional nanosystems to enhance targeted, durable, and mild combination therapies for efficient cancer treatment without notable side effects. Methods: A nanosystem constructed with a base core (poly-L-histidine [H]-grafted black phosphorus [BP]) and a shell (erythrocyte membrane [EM]) is developed to offer a mild photoresponsive (near-infrared) activity with erythrocyte mimicry. In-flight electrostatic tailoring to extract uniform BP nanoparticles maintains a hydrodynamic size of <200 nm (enabling enhanced permeability and retention) after EM cloaking and enhances their biocompatibility. Results: Ephrin-A2 receptor-specific peptide (YSA, targeting cancer cells), interleukin-1α silencing small interfering RNA (ILsi, restricting regulatory T cell trafficking), and paclitaxel (X, inducing durable chemotherapeutics) are incorporated within the base core@shell constructs to create BP-H-ILsi-X@EM-YSA architectures, which provide a more intelligent nanosystem for combination cancer therapies. Conclusion: The in-flight tailoring of BP particles provides a promising base core for fabricating <200 nm EM-mimicking multifunctional nanosystems, which could be beneficial for constructing smarter nanoarchitectures to use in combination cancer therapies.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Nanopartículas/química , Neoplasias Experimentais/terapia , Paclitaxel/administração & dosagem , Fósforo/química , Terapêutica com RNAi/métodos , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Membrana Celular/química , Terapia Combinada/métodos , Eritrócitos/química , Histidina/química , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/efeitos adversos , Neoplasias Experimentais/tratamento farmacológico , Paclitaxel/uso terapêutico
9.
J Am Chem Soc ; 141(25): 9837-9853, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31144503

RESUMO

Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic α-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4, and H11), but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic character associated with histidines affect the permeabilization properties of p1 and p3. First, we show that the permeabilization ability of p3, but not p1, is strongly inhibited at pH 6.0 when the conserved histidines are partially charged and H17 is predominantly neutral. Second, our neutron diffraction measurements performed at low water content and neutral pH indicate that the average conformation of p1 is highly tilted, with its C-terminus extending into the opposite leaflet. In contrast, p3 is surface bound with its N-terminal end tilted toward the bilayer interior. The deeper membrane insertion of p1 correlates with its behavior at full hydration: an enhanced ability to tilt, bury its histidines and C-terminus, induce membrane thinning and defects, and alter membrane conductance and viscoelastic properties. Furthermore, its pH-resiliency relates to the neutral state favored by H17. Overall, these results provide mechanistic insights into how differences in the histidine content and amphipathicity of peptides can elicit different directionality of membrane insertion and pH-dependent permeabilization. This work features complementary methods, including dye leakage assays, NMR-monitored titrations, X-ray and neutron diffraction, oriented CD, molecular dynamics, electrochemical impedance spectroscopy, surface plasmon resonance, and quartz crystal microbalance with dissipation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Histidina/química , Bicamadas Lipídicas/metabolismo , Tensoativos/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Peixes , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Tensoativos/química
10.
Food Chem ; 283: 1-10, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30722847

RESUMO

Bromelain is an important industrial proteolytic enzyme which has great commercial value and is of wide application in food, beverage, tenderization, cosmetic, textile and pharmaceutical industries. In this work, the core-shell-shell magnetic polymeric microspheres (Fe3O4@SiO2@P(NIPAM-co-AIM)/Ni2+) composed of an SiO2-coated Fe3O4 magnetite core and a Ni2+-immobilized cross-linked poly (N-isopropyl acrylamide-co-propylimidazole) (NIPAM-co-AIM) shell were synthesized via distillation-precipitation polymerization. The Ni2+ cations in the magnetic polymeric microspheres shell provided docking sites for histidine and the microspheres exhibited excellent performance in the separation of bromelain with a binding capacity as high as 198 mg/g, and the recovery of enzyme activity could achieve 80%. It was found that the microspheres showed excellent performance for separation and purification of bromelain from the crude extract of pineapple peel, moreover the enzyme structure remained unchanged before and after elution process.


Assuntos
Acrilamidas/química , Ananas/química , Bromelaínas/isolamento & purificação , Imidazóis/química , Microesferas , Polímeros/química , Bromelaínas/metabolismo , Óxido Ferroso-Férrico/química , Histidina/química , Histidina/metabolismo , Microscopia Eletrônica de Transmissão , Níquel/química , Extratos Vegetais/química , Polimerização , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
11.
J Anim Physiol Anim Nutr (Berl) ; 103(1): 331-338, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30467904

RESUMO

In recent years, two meta-analyses of chromium (Cr) supplementation have shown beneficial effects on glucose metabolism. Chromium histidinate (CrHis) reduces serum glucose levels in rats fed a high-fat diet but no study has been conducted on cats until now. The aim of this study was to examine the effects of CrHis on glucose and lipid metabolism in cats. To challenge the glucose metabolism, 16 cats were fed a high-carbohydrate high-fat diet for three months. One group (n = 8) received 800 ug CrHis per day for two months, while the other group (n = 8) served as control group. An oral glucose tolerance test was conducted, blood samples were taken, and biochemical parameters and oxidative stress were measured. CrHis serum levels were significantly increased (p = 0.027) in the treatment group, while fructosamine levels were significantly lower (p = 0.029) in the control group. In both groups, glucose (p < 0.01), b-hydroxy-butyrate (p = 0.024) and 8-hydroxy-deoxyguanosine (p = 0.028) levels decreased significantly and cholesterol levels increased significantly (p < 0.01). In conclusion, CrHis did not improve glucose or lipid metabolism and did not affect oxidative stress in healthy cats.


Assuntos
Glicemia , Gatos , Histidina/análogos & derivados , Metabolismo dos Lipídeos/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Feminino , Teste de Tolerância a Glucose , Histidina/química , Histidina/farmacologia , Masculino , Compostos Organometálicos/química
12.
Biochemistry ; 57(40): 5785-5796, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30213188

RESUMO

Heme ligation in hemoglobin is typically assumed by the "proximal" histidine. Hydrophobic contacts, ionic interactions, and the ligation bond secure the heme between two α-helices denoted E and F. Across the hemoglobin superfamily, several proteins also use a "distal" histidine, making the native state a bis-histidine complex. The group 1 truncated hemoglobin from Synechocystis sp. PCC 6803, GlbN, is one such bis-histidine protein. Ferric GlbN, in which the distal histidine (His46 or E10) has been replaced with a leucine, though expected to bind a water molecule and yield a high-spin iron complex at neutral pH, has low-spin spectral properties. Here, we applied nuclear magnetic resonance and electronic absorption spectroscopic methods to GlbN modified with heme and amino acid replacements to identify the distal ligand in H46L GlbN. We found that His117, a residue located in the C-terminal portion of the protein and on the proximal side of the heme, is responsible for the formation of an alternative bis-histidine complex. Simultaneous coordination by His70 and His117 situates the heme in a binding site different from the canonical site. This new holoprotein form is achieved with only local conformational changes. Heme affinity in the alternative site is weaker than in the normal site, likely because of strained coordination and a reduced number of specific heme-protein interactions. The observation of an unconventional heme binding site has important implications for the interpretation of mutagenesis results and globin homology modeling.


Assuntos
Proteínas de Bactérias/química , Heme/química , Hemoglobinas/química , Synechocystis/química , Hemoglobinas Truncadas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Heme/genética , Heme/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo
13.
Biomaterials ; 144: 73-83, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28823845

RESUMO

Similar to many other anticancer therapies, photodynamic therapy (PDT) also suffers from the intrinsic cancer resistance mediated by cell survival pathways. These survival pathways are regulated by various proteins, among which anti-apoptotic protein Bcl-2 plays an important role in regulation of programmed cell death and has been proved to involve in protecting against oxidative stimuli. Confronted by this challenge, we propose and validate here a novel upconversion photosensitizing nanoplatform which enables significant reduction of cancer resistance and improve PDT efficacy. The upconversion nanophotosensitizer contains the photosensitizing molecules - Zinc phthalocyanine (ZnPc) and Bcl-2 inhibitor - ABT737 small molecules, denoted as ABT737@ZnPc-UCNPs. ABT737 molecules were encapsulated, in a pH sensitive way, into the nanoplatform through Poly (ethylene glycol)-Poly (l-histidine) diblock copolymers (PEG-b-PHis). This nanosystem exhibits the superiority of sensitizing tumor cells for PDT through adjuvant intervention strategy. Upon reaching to lysosomes, the acidic environment changes the solubility of PEG-b-PHis, resulting in the burst-release of ABT737 molecules which deplete the Bcl-2 level in tumor cells and leave the tumor cells out from the protection of anti-apoptotic survival pathway in advance. Owing to the sensitization effect of ABT737@ZnPc-UCNPs, the PDT therapeutic efficiency of cancer cells can be significantly potentiated in vitro and in vivo.


Assuntos
Preparações de Ação Retardada/química , Indóis/uso terapêutico , Nanopartículas/química , Neoplasias/tratamento farmacológico , Compostos Organometálicos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Histidina/química , Humanos , Concentração de Íons de Hidrogênio , Indóis/administração & dosagem , Isoindóis , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organometálicos/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Compostos de Zinco
14.
J Pharm Sci ; 106(10): 2979-2987, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28624420

RESUMO

The pneumococcal histidine triad protein D (PhtD) is believed to play a central role in pneumococcal metal ion homeostasis and has been proposed as a promising vaccine candidate against pneumococcal disease. To investigate for potential stabilizers, a panel of physiologically relevant metals was screened using the thermal shift assay and it was found that only Zn2+ and Mn2+ were able to increase PhtD melting temperature. Differential scanning calorimetry analysis revealed a sequential unfolding of PhtD and the presence of at least 3 independent folding domains that can be stabilized by Zn2+ and Mn2+. UV spectroscopy and fluorescence quenching studies showed significant Zn2+-induced tertiary structure changes in PhtD characterized by decreased accessibility of inner tryptophan residues to the aqueous solvent. Isothermal titration calorimetry data show no apparent binding to Mn2+ but revealed a Zn2+:PhtD exothermic interaction stoichiometry of 3:1 with strong enthalpic contribution, suggesting that 3 of the 5 histidine triads are accessible binding sites for Zn2+. Only Zn+2, but not Mn+2, was able to increase the thermal stability of PhtD in the presence of aluminum hydroxide adjuvant, making it a promising stabilizer excipient candidate in vaccine products containing PhtD.


Assuntos
Proteínas de Bactérias/química , Hidrolases/química , Manganês/química , Streptococcus pneumoniae/metabolismo , Zinco/química , Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Anticorpos Antibacterianos/química , Proteínas de Transporte/química , Histidina/química , Vacinas Pneumocócicas/química , Triptofano/química
15.
J Am Chem Soc ; 139(16): 5680-5683, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28383907

RESUMO

S-Adenosylmethionine (SAM) has a sulfonium ion with three distinct C-S bonds. Conventional radical SAM enzymes use a [4Fe-4S] cluster to cleave homolytically the C5',adenosine-S bond of SAM to generate a 5'-deoxyadenosyl radical, which catalyzes various downstream chemical reactions. Radical SAM enzymes involved in diphthamide biosynthesis, such as Pyrococcus horikoshii Dph2 (PhDph2) and yeast Dph1-Dph2 instead cleave the Cγ,Met-S bond of methionine to generate a 3-amino-3-carboxylpropyl radical. We here show radical SAM enzymes can be tuned to cleave the third C-S bond to the sulfonium sulfur by changing the structure of SAM. With a decarboxyl SAM analogue (dc-SAM), PhDph2 cleaves the Cmethyl-S bond, forming 5'-deoxy-5'-(3-aminopropylthio) adenosine (dAPTA, 1). The methyl cleavage activity, like the cleavage of the other two C-S bonds, is dependent on the presence of a [4Fe-4S]+ cluster. Electron-nuclear double resonance and mass spectroscopy data suggests that mechanistically one of the S atoms in the [4Fe-4S] cluster captures the methyl group from dc-SAM, forming a distinct EPR-active intermediate, which can transfer the methyl group to nucleophiles such as dithiothreitol. This reveals the [4Fe-4S] cluster in a radical SAM enzyme can be tuned to cleave any one of the three bonds to the sulfonium sulfur of SAM or analogues, and is the first demonstration a radical SAM enzyme could switch from an Fe-based one electron transfer reaction to a S-based two electron transfer reaction in a substrate-dependent manner. This study provides an illustration of the versatile reactivity of Fe-S clusters.


Assuntos
Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Histidina/biossíntese , Histidina/química , Proteínas Ferro-Enxofre/química , Estrutura Molecular , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/química , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato
16.
Appl Biochem Biotechnol ; 182(1): 1-15, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27826808

RESUMO

Aspergillus niger PA2, a novel strain isolated from waste effluents of food industry, is a potential extracellular tyrosinase producer. Enzyme activity and L-DOPA production were maximum when glucose and peptone were employed as C source and nitrogen source respectively in the medium and enhanced notably when the copper was supplemented, thus depicting the significance of copper in tyrosinase activity. Tyrosinase-encoding gene from the fungus was cloned, and amplification of the tyrosinase gene yielded a 1127-bp DNA fragment and 374 amino acid residue long product that encoded for a predicted protein of 42.3 kDa with an isoelectric point of 4.8. Primary sequence analysis of A. niger PA2 tyrosinase had shown that it had approximately 99% identity with that of A. niger CBS 513.88, which was further confirmed by phylogenetic analysis. The inferred amino acid sequence of A. niger tyrosinase contained two putative copper-binding sites comprising of six histidines, a characteristic feature for type-3 copper proteins, which were highly conserved in all tyrosinases throughout the Aspergillus species. When superimposed onto the tertiary structure of A. oryzae tyrosinase, the conserved residues from both the organisms occupied same spatial positions to provide a di-copper-binding peptide groove.


Assuntos
Aspergillus niger/enzimologia , Cobre/química , Proteínas Fúngicas/química , Histidina/química , Levodopa/biossíntese , Monofenol Mono-Oxigenase/química , Sequência de Aminoácidos , Aspergillus niger/química , Aspergillus niger/classificação , Sítios de Ligação , Clonagem Molecular , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Glucose/metabolismo , Histidina/metabolismo , Ponto Isoelétrico , Cinética , Modelos Moleculares , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Peptonas/metabolismo , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
17.
J Am Chem Soc ; 138(31): 9755-8, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27465315

RESUMO

Pyrococcus horikoshii Dph2 (PhDph2) is an unusual radical S-adenosylmethionine (SAM) enzyme involved in the first step of diphthamide biosynthesis. It catalyzes the reaction by cleaving SAM to generate a 3-amino-3-carboxypropyl (ACP) radical. To probe the reaction mechanism, we synthesized a SAM analogue (SAMCA), in which the ACP group of SAM is replaced with a 3-carboxyallyl group. SAMCA is cleaved by PhDph2, yielding a paramagnetic (S = 1/2) species, which is assigned to a complex formed between the reaction product, α-sulfinyl-3-butenoic acid, and the [4Fe-4S] cluster. Electron-nuclear double resonance (ENDOR) measurements with (13)C and (2)H isotopically labeled SAMCA support a π-complex between the C═C double bond of α-sulfinyl-3-butenoic acid and the unique iron of the [4Fe-4S] cluster. This is the first example of a radical SAM-related [4Fe-4S](+) cluster forming an organometallic complex with an alkene, shedding additional light on the mechanism of PhDph2 and expanding our current notions for the reactivity of [4Fe-4S] clusters in radical SAM enzymes.


Assuntos
Enzimas/química , Proteínas Ferro-Enxofre/química , Compostos Organometálicos/química , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/química , Alcenos/química , Anisotropia , Butiratos/química , Carbono/química , Catálise , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Histidina/análogos & derivados , Histidina/química , Ferro/química
18.
Dalton Trans ; 45(4): 1582-92, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26688000

RESUMO

Magnetic Ni(2+)-zeolite/ferrosphere and Ni(2+)-silica/ferrosphere beads (Ni-ferrosphere beads - NFB) of a core-shell structure were synthesized starting from coal fly ash ferrospheres having diameters in the range of 0.063-0.050 mm. The strategy of NFB fabrication is an oriented chemical modification of the outer surface preserving the magnetic core of parent beads with the formation of micro-mesoporous coverings. Two routes of ferrosphere modification were realized, such as (i) hydrothermal treatment in an alkaline medium resulting in a NaP zeolite layer and (ii) synthesis of micro-mesoporous silica on the glass surface using conventional methods. Immobilization of Ni(2+) ions in the siliceous porous shell of the magnetic beads was carried out via (i) the ion exchange of Na(+) for Ni(2+) in the zeolite layer or (ii) deposition of NiO clusters in the zeolite and silica pores. The final NFB were tested for affinity in magnetic separation of the histidine-tagged green fluorescent protein (GFP) directly from a cell lysate. Results pointed to the high affinity of the magnetic beads towards the protein in the presence of 10 mM EDTA. The sorption capacity of the ferrosphere-based Ni-beads with respect to GFP was in the range 1.5-5.7 mg cm(-3).


Assuntos
Proteínas de Fluorescência Verde/isolamento & purificação , Histidina/química , Compostos de Ferro/química , Níquel/química , Compostos Organometálicos/química , Dióxido de Silício/química , Zeolitas/química , Animais , Escherichia coli/química , Escherichia coli/citologia , Proteínas de Fluorescência Verde/química , Fenômenos Magnéticos , Compostos Organometálicos/síntese química , Tamanho da Partícula , Porosidade , Cifozoários , Propriedades de Superfície
19.
J Phys Chem A ; 119(38): 9901-9, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26325483

RESUMO

Conformational preferences have been surveyed for divalent metal cation complexes with the dipeptide ligands AlaPhe, PheAla, GlyHis, and HisGly. Density functional theory results for a full set of complexes are presented, and previous experimental infrared spectra, supplemented by a number of newly recorded spectra obtained with infrared multiple photon dissociation spectroscopy, provide experimental verification of the preferred conformations in most cases. The overall structural features of these complexes are shown, and attention is given to comparisons involving peptide sequence, nature of the metal ion, and nature of the side-chain anchor. A regular progression is observed as a function of binding strength, whereby the weakly binding metal ions (Ba(2+) to Ca(2+)) transition from carboxylate zwitterion (ZW) binding to charge-solvated (CS) binding, while the stronger binding metal ions (Ca(2+) to Mg(2+) to Ni(2+)) transition from CS binding to metal-ion-backbone binding (Iminol) by direct metal-nitrogen bonds to the deprotonated amide nitrogens. Two new sequence-dependent reversals are found between ZW and CS binding modes, such that Ba(2+) and Ca(2+) prefer ZW binding in the GlyHis case but prefer CS binding in the HisGly case. The overall binding strength for a given metal ion is not strongly dependent on the sequence, but the histidine peptides are significantly more strongly bound (by 50-100 kJ mol(-1)) than the phenylalanine peptides.


Assuntos
Cátions Bivalentes/química , Cátions Monovalentes/química , Complexos de Coordenação/química , Dipeptídeos/química , Histidina/química , Fenilalanina/química , Teoria Quântica , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Cátions Bivalentes/metabolismo , Cátions Monovalentes/metabolismo , Complexos de Coordenação/metabolismo , Dipeptídeos/metabolismo , Histidina/metabolismo , Modelos Moleculares , Fenilalanina/metabolismo , Termodinâmica
20.
Proc Natl Acad Sci U S A ; 112(37): 11449-54, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26261346

RESUMO

The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.


Assuntos
Histidina/química , Poríferos/química , Proteínas/química , Dióxido de Silício/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Ácido Aspártico/química , Sítios de Ligação , Clonagem Molecular , DNA Complementar/química , Eletroforese em Gel de Poliacrilamida , Epitopos/química , Geografia , Concentração de Íons de Hidrogênio , Hidrólise , Dados de Sequência Molecular , Peptídeos/química , Prolina/química , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Solubilidade , Temperatura , Treonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA