Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 993
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Med Oncol ; 41(5): 115, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622289

RESUMO

Bacopa monnieri (L) Wettst, commonly known as Brahmi, stands as a medicinal plant integral to India's traditional medical system, Ayurveda, where it is recognized as a "medhya rasayana"-a botanical entity believed to enhance intellect and mental clarity. Its significant role in numerous Ayurvedic formulations designed to address conditions such as anxiety, memory loss, impaired cognition, and diminished concentration underscores its prominence. Beyond its application in cognitive health, Brahmi has historically been employed in Ayurvedic practices for the treatment of inflammatory diseases, including arthritis. In contemporary biomedical research, Bacopa monnieri can attenuate the release of pro-inflammatory cytokines TNF-α and IL-6 in animal models. However, there remains a paucity of information regarding Bacopa's potential as an anticancer agent, warranting further investigation in this domain. Based on previous findings with Brahmi (Bacopa monnieri), the current study aims to find out the role of Brahmi plant preparation (BPP) in immunomodulatory actions on IDC. Employing a specific BPP concentration, we conducted a comprehensive study using MTT assay, ELISA, DNA methylation analysis, Western blotting, ChIP, and mRNA profiling to assess BPP's immunomodulatory properties. Our research finding showed the role of BPP in augmenting the action of T helper 1 (TH1) cells which secreted interferon-γ (IFN-γ) which in turn activated cytotoxic T-lymphocytes (CTL) to kill the cells of IDC (*p < 0.05). Moreover, we found out that treatment with BPP not only increased the activities of tumor-suppressor genes (p53 and BRCA1) but also decreased the activities of oncogenes (Notch1 and DNAPKcs) in IDC (*p < 0.05). BPP had an immense significance in controlling the epigenetic dysregulation in IDC through the downregulation of Histone demethylation & Histone deacetylation and upregulation of Histone methylation and Histone acetylation (*p < 0.05). Our Chromatin immunoprecipitation (ChIP)-qPCR data showed BPP treatment increased percentage enrichment of STAT1 & BRCA1 (*p < 0.05) and decreased percentage enrichment of STAT3, STAT5 & NF ΚB (*p < 0.05) on both TBX21 and BRCA1 gene loci in IDC. In addition, BPP treatment reduced the hypermethylation of the BRCA1-associated-DNA, which is believed to be a major factor in IDC (*p < 0.05). BPP not only escalates the secretion of type 1 specific cytokines but also escalates tumor suppression and harmonizes various epigenetic regulators and transcription factors associated with Signal Transducer and Activator of Transcription (STAT) to evoke tumor protective immunity in IDC.


Assuntos
Bacopa , Carcinoma Ductal , Neoplasias , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Histonas , Citocinas
2.
Phytomedicine ; 128: 155477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489890

RESUMO

BACKGROUND: The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE: This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS: The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor ß1 (TGF-ß1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS: Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION: This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Proteína Potenciadora do Homólogo 2 de Zeste , Glucosídeos , Células Estreladas do Fígado , Histonas , Cirrose Hepática , Monoterpenos , PPAR gama , Animais , Glucosídeos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , PPAR gama/metabolismo , Monoterpenos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Histonas/metabolismo , Camundongos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Masculino , Humanos , Camundongos Endogâmicos C57BL , Metilação , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Simulação de Acoplamento Molecular
3.
Int Immunopharmacol ; 132: 111870, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547771

RESUMO

Extracellular histones have been determined as important mediators of sepsis, which induce excessive inflammatory responses in macrophages and impair innate immunity. Magnesium (Mg2+), one of the essential nutrients of the human body, contributes to the proper regulation of immune function. However, no reports indicate whether extracellular histones affect survival and bacterial phagocytosis in macrophages and whether Mg2+ is protective against histone-induced macrophage damage. Our clinical data revealed a negative correlation between circulating histone and monocyte levels in septic patients, and in vitro experiments confirmed that histones induced mitochondria-associated apoptosis and defective bacterial phagocytosis in macrophages. Interestingly, our clinical data also indicated an association between lower serum Mg2+ levels and reduced monocyte levels in septic patients. Moreover, in vitro experiments demonstrated that Mg2+ attenuated histone-induced apoptosis and defective bacterial phagocytosis in macrophages through the PLC/IP3R/STIM-mediated calcium signaling pathway. Importantly, further animal experiments proved that Mg2+ significantly improved survival and attenuated histone-mediated lung injury and macrophage damage in histone-stimulated mice. Additionally, in a cecal ligation and puncture (CLP) + histone-induced injury mouse model, Mg2+ inhibited histone-mediated apoptosis and defective phagocytosis in macrophages and further reduced bacterial load. Overall, these results suggest that Mg2+ supplementation may be a promising treatment for extracellular histone-mediated macrophage damage in sepsis.


Assuntos
Apoptose , Sinalização do Cálcio , Histonas , Macrófagos , Magnésio , Camundongos Endogâmicos C57BL , Fagocitose , Sepse , Animais , Fagocitose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Magnésio/metabolismo , Histonas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Sepse/imunologia , Sepse/tratamento farmacológico , Sepse/metabolismo , Camundongos , Masculino , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Células RAW 264.7
4.
Methods Mol Biol ; 2791: 23-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532089

RESUMO

Epigenetic programming plays a vital role in regulating pluripotency genes, which become activated or inactivated during the processes of dedifferentiation and differentiation during an organism's development. The analysis of epigenetic modifications has become possible through the technique of immunostaining, where specific antibodies allow the identification of a single target protein. This chapter describes a detailed protocol for the analysis of the epigenetic modifications with the use of confocal microscopy, subsequent image, and statistical analysis on the example of Fagopyrum calli with the use of nine antibodies raised against histone H3 and H4 methylation and acetylation on several lysines as well as DNA methylation.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Histonas/metabolismo , Núcleo Celular/metabolismo , Metilação de DNA , Anticorpos/metabolismo , Epigênese Genética , Acetilação
5.
Methods Mol Biol ; 2791: 15-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532088

RESUMO

Immunostaining is a well-established technique for identifying specific proteins in tissue samples with specific antibodies to identify a single target protein. It is commonly used in research and provides information about cellular localization and protein expression levels. This chapter describes a detailed protocol for immunostaining fixed Fagopyrum calli embedded in Steedman's wax using nine antibodies raised against histone H3 and H4 methylation and acetylation on several lysines and DNA methylation.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Histonas/metabolismo , Epigênese Genética , Metilação de DNA , Lisina/metabolismo , Anticorpos/metabolismo , Acetilação
6.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526189

RESUMO

CENP-A determines the identity of the centromere. Because the position and size of the centromere and its number per chromosome must be maintained, the distribution of CENP-A is strictly regulated. In this study, we have aimed to understand mechanisms to regulate the distribution of CENP-A (Cnp1SP) in fission yeast. A mutant of the ufd1+ gene (ufd1-73) encoding a cofactor of Cdc48 ATPase is sensitive to Cnp1 expressed at a high level and allows mislocalization of Cnp1. The level of Cnp1 in centromeric chromatin is increased in the ufd1-73 mutant even when Cnp1 is expressed at a normal level. A preexisting mutant of the cdc48+ gene (cdc48-353) phenocopies the ufd1-73 mutant. We have also shown that Cdc48 and Ufd1 proteins interact physically with centromeric chromatin. Finally, Cdc48 ATPase with Ufd1 artificially recruited to the centromere of a mini-chromosome (Ch16) induce a loss of Cnp1 from Ch16, leading to an increased rate of chromosome loss. It appears that Cdc48 ATPase, together with its cofactor Ufd1 remove excess Cnp1 from chromatin, likely in a direct manner. This mechanism may play a role in centromere disassembly, a process to eliminate Cnp1 to inactivate the kinetochore function during development, differentiation, and stress response.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cromatina/genética , Cromatina/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/genética , Centrômero/metabolismo , Adenosina Trifosfatases/metabolismo , Extratos Vegetais/metabolismo
7.
J Nutr Biochem ; 127: 109590, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311045

RESUMO

The role of the muscle circadian clock in regulating oxidative metabolism exerts a significant influence on whole-body energy metabolism; however, research on the connection between the muscle circadian clock and obesity is limited. Moreover, there is a lack of studies demonstrating the regulatory effects of dietary butyrate on muscle circadian clock and the resulting antiobesity effects. This study aimed to investigate the impacts of dietary butyrate on metabolic and microbiome alterations and muscle circadian clock in a diet-induced obesity model. Male Sprague-Dawley rats were fed a high-fat diet with or without butyrate. Gut microbiota and serum metabolome were analyzed, and molecular changes were examined using tissues and a cell line. Further correlation analysis was performed on butyrate-induced results. Butyrate supplementation reduced weight gain, even with increased food intake. Gut microbiome analysis revealed an increased abundance of Firmicutes in butyrate group. Serum metabolite profile in butyrate group exhibited reduced amino acid and increased fatty acid content. Muscle circadian clock genes were upregulated, resulting in increased transcription of fatty acid oxidation-related genes. In myoblast cells, butyrate also enhanced pan-histone acetylation via histone deacetylase inhibition, particularly modulating acetylation at the promoter of circadian clock genes. Correlation analysis revealed potential links between Firmicutes phylum, including certain genera within it, and butyrate-induced molecular changes in muscle as well as phenotypic alterations. The butyrate-driven effects on diet-induced obesity were associated with alterations in gut microbiota and a muscle-specific increase in histone acetylation, leading to the transcriptional activation of circadian clock genes and their controlled genes.


Assuntos
Relógios Circadianos , Microbioma Gastrointestinal , Animais , Ratos , Masculino , Relógios Circadianos/genética , Butiratos/farmacologia , Butiratos/metabolismo , Histonas/metabolismo , Epigênese Genética , Ratos Sprague-Dawley , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo
8.
Adv Sci (Weinh) ; 11(14): e2307526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38298064

RESUMO

Arginine and lysine, frequently appearing as a pair on histones, have been proven to carry diverse modifications and execute various epigenetic regulatory functions. However, the most context-specific and transient effectors of these marks, while significant, have evaded study as detection methods have thus far not reached a standard to capture these ephemeral events. Herein, a pair of complementary photo-arginine/δ-photo-lysine (R-dz/K-dz) probes is developed and involve these into histone peptide, nucleosome, and chromatin substrates to capture and explore the interactomes of Arg and Lys hPTMs. By means of these developed tools, this study identifies that H3R2me2a can recruit MutS protein homolog 6 (MSH6), otherwise repelDouble PHD fingers 2 (DPF2), Retinoblastoma binding protein 4/7 (RBBP4/7). And it is disclosed that H3R2me2a inhibits the chromatin remodeling activity of the cBAF complex by blocking the interaction between DPF2 (one component of cBAF) and the nucleosome. In addition, the novel pairs of H4K5 PTMs and respective readers are highlighted, namely H4K5me-Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2), H4K5me2-L3MBTL2, and H4K5acK8ac-YEATS domain-containing protein 4 (YEATS4). These powerful tools pave the way for future investigation of related epigenetic mechanisms including but not limited to hPTMs.


Assuntos
Lisina , Nucleossomos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Cromatina , Arginina/metabolismo
9.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339001

RESUMO

UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.


Assuntos
Desoxirribonuclease I , Medicamentos de Ervas Chinesas , Armadilhas Extracelulares , Raios Ultravioleta , Animais , Masculino , Camundongos , Calcimicina/farmacologia , Desoxirribonuclease I/farmacologia , Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/efeitos da radiação , Histonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos ICR , Neutrófilos/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos
10.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38329268

RESUMO

Nucleosomes represent hubs in chromatin organization and gene regulation and interact with a plethora of chromatin factors through different modes. In addition, alterations in histone proteins such as cancer mutations and post-translational modifications have profound effects on histone/nucleosome interactions. To elucidate the principles of histone interactions and the effects of those alterations, we developed histone interactomes for comprehensive mapping of histone-histone interactions (HHIs), histone-DNA interactions (HDIs), histone-partner interactions (HPIs) and DNA-partner interactions (DPIs) of 37 organisms, which contains a total of 3808 HPIs from 2544 binding proteins and 339 HHIs, 100 HDIs and 142 DPIs across 110 histone variants. With the developed networks, we explored histone interactions at different levels of granularities (protein-, domain- and residue-level) and performed systematic analysis on histone interactions at a large scale. Our analyses have characterized the preferred binding hotspots on both nucleosomal/linker DNA and histone octamer and unraveled diverse binding modes between nucleosome and different classes of binding partners. Last, to understand the impact of histone cancer-associated mutations on histone/nucleosome interactions, we complied one comprehensive cancer mutation dataset including 7940 cancer-associated histone mutations and further mapped those mutations onto 419,125 histone interactions at the residue level. Our quantitative analyses point to histone cancer-associated mutations' strongly disruptive effects on HHIs, HDIs and HPIs. We have further predicted 57 recurrent histone cancer mutations that have large effects on histone/nucleosome interactions and may have driver status in oncogenesis.


Assuntos
Neoplasias , Nucleossomos , Humanos , Nucleossomos/genética , Histonas/genética , Histonas/metabolismo , DNA/química , Mutação , Neoplasias/genética
11.
Bioorg Chem ; 144: 107174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320369

RESUMO

Ursonic acid (UNA) is a natural pentacyclic triterpene found in some medicinal plants and foods. The reproductive protective effect of UNA was evaluated in a mouse model of oligozoospermia induced by busulfan (BUS) at 30 mg/kg b.w.. The mice were initially divided into groups with UNA concentrations of 10, 30, 50, 100 mg/kg. Subsequently, based on sperm parameters, the optimal concentration of 50 mg/kg was identified. As a control, an additional group was supplemented with ursolic acid at a concentration of 50 mg/kg. The results indicated that BUS caused the loss of spermatogenic cells in testis, the decrease of sperm in epididymis, the disorder of testicular cytoskeleton, the decrease of serum sex hormones such as testosterone which induced an increase in feedback of androgen receptor and other testosterone-related proteins, the increase of malondialdehyde and reactive oxygen species levels and the increase of ferroptosis in testis while UNA successfully reversed these injuries. High-throughput sequencing revealed that UNA administration significantly upregulated the expression of genes associated with spermatogenesis, such as Tnp1, Tnp2, Prm1, among others. These proteins are crucial in the histone to protamine transition during sperm chromatin remodeling. Network pharmacology analysis reveals a close association between UNA and proteins related to the transformation of histones to protamine. Molecular docking studies reveal that UNA can interact with the ferroptosis-inhibiting gene SLC7A11, thereby modulating ferroptosis. Taken together, UNA alleviated BUS-induced oligozoospermia by regulating hormone secretion, mitigating oxidative stress and promoting recovery of spermatogenesis by inhibiting the ferroptosis.


Assuntos
Ferroptose , Oligospermia , Triterpenos , Humanos , Masculino , Camundongos , Animais , Oligospermia/induzido quimicamente , Oligospermia/tratamento farmacológico , Simulação de Acoplamento Molecular , Sêmen/metabolismo , Espermatogênese/fisiologia , Testosterona/farmacologia , Histonas/farmacologia , Protaminas/genética , Protaminas/metabolismo , Protaminas/farmacologia
12.
Proc Natl Acad Sci U S A ; 121(3): e2318455121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38198529

RESUMO

Mechanisms enabling genetically identical cells to differentially regulate gene expression are complex and central to organismal development and evolution. While gene silencing pathways involving DNA sequence-specific recruitment of histone-modifying enzymes are prevalent in nature, examples of sequence-independent heritable gene silencing are scarce. Studies of the fission yeast Schizosaccharomyces pombe indicate that sequence-independent propagation of heterochromatin can occur but requires numerous multisubunit protein complexes and their diverse activities. Such complexity has so far precluded a coherent articulation of the minimal requirements for heritable gene silencing by conventional in vitro reconstitution approaches. Here, we take an unconventional approach to defining these requirements by engineering sequence-independent silent chromatin inheritance in budding yeast Saccharomyces cerevisiae cells. The mechanism conferring memory upon these cells is remarkably simple and requires only two proteins, one that recognizes histone H3 lysine 9 methylation (H3K9me) and catalyzes the deacetylation of histone H4 lysine 16 (H4K16), and another that recognizes deacetylated H4K16 and catalyzes H3K9me. Together, these bilingual "read-write" proteins form an interdependent positive feedback loop that is sufficient for the transmission of DNA sequence-independent silent information over multiple generations.


Assuntos
Cromatina , Lisina , Cromatina/genética , Histonas/genética , Heterocromatina/genética , Inativação Gênica
13.
Eur J Med Chem ; 266: 116116, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215590

RESUMO

Adenoviral E1A binding protein p300 (EP300 or p300) and its similar paralog, cyclic-AMP response element binding protein (CBP), are important histone acetyltransferases (HAT) and transcriptional co-activators in epigenetics, participating in numerous cellular pathways including proliferation, differentiation and apoptosis. The overexpression or dysregulation of p300/CBP is closely related to oncology-relevant disease. The inhibition of p300 HAT has been found to be a potential drug target. Berberine has been reported to show anticancer activity and synergistic effect in combination with some of the clinical anticancer drugs via modulation of various pathways. Here, the present study sought to discover more chemotypes of berberine derivatives as p300 HAT inhibitors and to examine the combination of these novel analogues with doxorubicin for the treatment of breast cancer. A series of novel berberine derivatives with modifications of A/B/D rings of berberine have been designed, synthesized and screened. Compound 7b was found to exhibit inhibitory potency against p300 HAT with IC50 values of 1.51 µM. Western blotting proved that 7b decreased H3K27Ac and interfered with the expression of oncology-relevant protein in MCF-7 cells. Further bioactive evaluation showed that combination of compound 7b with doxorubicin could significantly inhibit tumor growth and invasion in vitro and in vivo.


Assuntos
Berberina , Neoplasias da Mama , Humanos , Feminino , Histona Acetiltransferases/metabolismo , Histonas , Berberina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fatores de Transcrição/metabolismo , Doxorrubicina/farmacologia
14.
Proc Natl Acad Sci U S A ; 121(2): e2219352120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165927

RESUMO

High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , Transformação Celular Neoplásica , Neoplasias Pulmonares/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
15.
Autophagy ; 20(1): 114-130, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37615625

RESUMO

Bevacizumab plays an important role in the first and second line treatment for metastatic colorectal cancer (CRC). And induction of hypoxia and the tumors response to it plays an important role in determining the efficacy of antiangiogenic therapy while the connection between them remains unclear. Here, we found that lactate accumulated in the tumor environment of CRC and acted as substrates for histone lactylation, and this process was further induced by cellular enhanced glycolysis in hypoxia. We determined that CRC patients resistant to bevacizumab treatment presented with elevated levels of histone lactylation and inhibition of histone lactylation efficiently suppressed CRC tumorigenesis, progression and survival in hypoxia. Histone lactylation promoted the transcription of RUBCNL/Pacer, facilitating autophagosome maturation through interacting with BECN1 (beclin 1) and mediating the recruitment and function of the class III phosphatidylinositol 3-kinase complex, which had a crucial role in hypoxic cancer cells proliferation and survival. Moreover, combining inhibition of histone lactylation and macroautophagy/autophagy with bevacizumab treatment demonstrated remarkable treatment efficacy in bevacizumab-resistance patients-derived pre-clinical models. These findings delivered a new exploration and important supplement of metabolic reprogramming-epigenetic regulation, and provided a new strategy for improving clinical efficacy of bevacizumab in CRC by inhibition of histone lactylation.Abbreviations: 2-DG: 2-deoxy-D-glucose; BECN1: beclin 1; CQ: chloroquine; CRC: colorectal cancer; DMOG: dimethyloxalylglycine; H3K18la: histone H3 lysine 18 lactylation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nala: sodium lactate; PDO: patient-derived orgnoid; PDX: patient-derived xenograft; RUBCNL/Pacer: rubicon like autophagy enhancer; SQSTM1/p62: sequestosome 1.


Assuntos
Neoplasias Colorretais , Histonas , Humanos , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Epigênese Genética , Histonas/metabolismo , Hipóxia , Ácido Láctico , Lisina/metabolismo
16.
Int J Biol Sci ; 19(16): 5218-5232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928273

RESUMO

The centromere proteins (CENPs), a critical mitosis-related protein complexes, are involved in the kinetochore assembly and chromosome segregation. In this study, we identified that CENPA was significantly up-regulated in HCC and highly expressed CENPA correlated with poor prognosis for HCC patients. Knockdown of CENPA inhibited HCC cell proliferation and tumor growth in vitro and in vivo. Mechanistically, CENPA transcriptionally activated and cooperated with YY1 to drive the expression of cyclin D1 (CCND1) and neuropilin 2 (NRP2). Moreover, we identified that CENPA can be lactylated at lysine 124 (K124). The lactylation of CENPA at K124 promotes CENPA activation, leading to enhanced expression of its target genes. In summary, CENPA function as a transcriptional regulator to promote HCC via cooperating with YY1. Targeting the CENPA-YY1-CCND1/NRP2 axis may provide candidate therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Proteína Centromérica A , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Histonas , Neoplasias Hepáticas/metabolismo , Fator de Transcrição YY1/genética , Proteína Centromérica A/metabolismo
17.
Clin Epigenetics ; 15(1): 175, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919786

RESUMO

BACKGROUND: Huazhuo Tiaozhi granule (HTG) is a herbal medicine formula widely used in clinical practice for hypolipidaemic effects. However, the molecular mechanisms underlying dyslipidaemia treatment have not been well elucidated. RESULTS: A significant reduction in the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) was observed in the serum of patients with dyslipidaemia after HTG treatment, without disruption in the levels of aspartate transaminase (AST), alanine transaminase (ALT), urea nitrogen (BUN), and creatinine (Cr). The dyslipidaemia rat model was induced by a high-fat diet and treated with Xuezhikang (0.14 g/kg/d) or HTG (9.33 g crude herb/kg/day) by gavage for 8 weeks. Body weight and liver index were markedly decreased in dyslipidaemic rats after treatment with Xuezhikang or HTG. HTG administration markedly ameliorated hyperlipidaemia by decreasing the levels of TC and LDL-C in serum and hepatic lipid accumulation. In vitro, lipid accumulation in LO2 and HepG2 cells was alleviated by serum treatment with HTG. High lactylation was observed in 198 proteins, including lactylation of histone H2B (K6), H4 (K80). Deep sequencing of microRNAs showed that miR-155-5p was significantly downregulated. CONCLUSIONS: This study demonstrates that HTG is an effective and safe formula for treating dyslipidaemia, which promotes lactylation in hepatocytes, and the retardation of miR-155-5p biogenesis.


Assuntos
Hiperlipidemias , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Animais , Histonas/metabolismo , LDL-Colesterol/metabolismo , Ratos Sprague-Dawley , Metilação de DNA , Fígado , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Dieta Hiperlipídica/efeitos adversos
18.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003630

RESUMO

GNAQ, a member of the alpha subunit encoding the q-like G protein, is a critical gene in cell signaling, and multiple studies have shown that upregulation of GNAQ gene expression ultimately inhibits the proliferation of gonadotropin-releasing hormone (GnRH) neurons and GnRH secretion, and ultimately affects mammalian reproduction. Photoperiod is a key inducer which plays an important role in gene expression regulation by affecting epigenetic modification. However, fewer studies have confirmed how photoperiod induces epigenetic modifications of the GNAQ gene. In this study, we examined the expression and epigenetic changes of GNAQ in the hypothalamus in ovariectomized and estradiol-treated (OVX+E2) sheep under three photoperiod treatments (short photoperiod treatment for 42 days, SP42; long photoperiod treatment for 42 days, LP42; 42 days of short photoperiod followed by 42 days of long photoperiod, SP-LP42). The results showed that the expression of GNAQ was significantly higher in SP-LP42 than in SP42 and LP42 (p < 0.05). Whole genome methylation sequencing (WGBS) results showed that there are multiple differentially methylated regions (DMRs) and loci between different groups of GNAQ. Among them, the DNA methylation level of DMRs at the CpG1 locus in SP42 was significantly higher than that of SP-LP42 (p < 0.01). Subsequently, we confirmed that the core promoter region of the GNAQ gene was located with 1100 to 1500 bp upstream, and the DNA methylation level of all eight CpG sites in SP42 was significantly higher than those in LP42 (p < 0.01), and significantly higher than those in SP-LP42 (p < 0.01), except site 2 and site 4 in the first sequencing fragment (p < 0.05) in the core promoter region. The expression of acetylated GNAQ histone H3 was significantly higher than that of the control group under three different photoperiods (p < 0.01); the acetylation level of sheep hypothalamic GNAQ genomic protein H3 was significantly lower under SP42 than under SP-LP42 (p < 0.05). This suggests that acetylated histone H3 binds to the core promoter region of the GNAQ gene, implying that GNAQ is epigenetically regulated by photoperiod through histone acetylation. In summary, the results suggest that photoperiod can induce DNA methylation in the core promoter region and histone acetylation in the promoter region of the GNAQ gene, and hypothesize that the two may be key factors in regulating the differential expression of GNAQ under different photoperiods, thus regulating the hypothalamus-pituitary-gonadal axis (HPGA) through the seasonal estrus in sheep. The results of this study will provide some new information to understand the function of epigenetic modifications in reproduction in sheep.


Assuntos
Epigênese Genética , Fotoperíodo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Histonas/genética , Histonas/metabolismo , Hipotálamo/metabolismo , Mamíferos/metabolismo , Ovinos/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP
19.
Pathol Res Pract ; 251: 154885, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37862922

RESUMO

In accordance with the World Health Organization, cancer is the second leading cause of death in patients. In recent years, the number of cancer patients has been growing, and the occurrence of cancer in people is becoming more common, primarily due to lifestyle factors. Yin Yang 1 (YY1) is a transcription factor that is widespread throughout. It is a zinc finger protein, falling under the GLI-Kruppel class. YY1 is known to regulate transcriptional activation and repression of various genes associated with different cellular processes such as DNA repair, autophagy, cell survival and apoptosis, and cell division. Meanwhile, EZH2 is a histone-lysine N-methyltransferase enzyme encoded by gene 7 in humans. Its main function involves catalyzing the addition of methyl groups to histone H3 at lysine 27 (H3K27me3), and it is involved in regulating CD8 + T cell fate and function. It is a subunit of a Polycomb repressor complex 2 (PRC2). The EZH2 gene encodes for an enzyme that is involved in histone methylation and transcriptional repression. It adds methyl groups to lysine 27 on histone H3 (H3K27me3) with the help of the cofactor S-adenosyl-L-methionine. In addition to its role in epigenetic regulation, EZH2 also acts as a regulator of CD8+ T cell fate and function. EZH2 has been implicated in T Cell Receptor (TCR) signaling via the regulation of actin polymerization. In fact, EZH2 is involved in numerous signaling pathways that lead to tumorigenesis. EZH2 is mutated in cancer and shows overexpression. Due to its mutation and overexpression, the cells that help combat cancer are suppressed and carcinogenicity is promoted. The association of EZH2 and YY1 poses an intriguing mechanism in relation to cancer.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/genética , Complexo Repressor Polycomb 2/genética , Lisina , Epigênese Genética , Yin-Yang , Neoplasias/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
20.
Front Immunol ; 14: 1250055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854591

RESUMO

Background: The interplay between bacterial virulence factors and the host innate immune response in pneumococcal meningitis (PM) can result in uncontrolled neuroinflammation, which is known to induce apoptotic death of progenitor cells and post-mitotic neurons in the hippocampal dentate gyrus, resulting in cognitive impairment. Vitamin B12 attenuates hippocampal damage and reduces the expression of some key inflammatory genes in PM, by acting as an epidrug that promotes DNA methylation, with increased production of S-adenosyl-methionine, the universal donor of methyl. Material and methods: Eleven-day-old rats were infected with S. pneumoniae via intracisternal injection and then administered either vitamin B12 or a placebo. After 24 hours of infection, the animals were euthanized, and apoptosis in the hippocampal dentate gyrus, microglia activation, and the inflammatory infiltrate were quantified in one brain hemisphere. The other hemisphere was used for RNA-Seq and RT-qPCR analysis. Results: In this study, adjuvant therapy with B12 was found to modulate the hippocampal transcriptional signature induced by PM in infant rats, mitigating the effects of the disease in canonical pathways related to the recognition of pathogens by immune cells, signaling via NF-kB, production of pro-inflammatory cytokines, migration of peripheral leukocytes into the central nervous system, and production of reactive species. Phenotypic analysis revealed that B12 effectively inhibited microglia activation in the hippocampus and reduced the inflammatory infiltrate in the central nervous system of the infected animals. These pleiotropic transcriptional effects of B12 that lead to neuroprotection are partly regulated by alterations in histone methylation markings. No adverse effects of B12 were predicted or observed, reinforcing the well-established safety profile of this epidrug. Conclusion: B12 effectively mitigates the impact of PM on pivotal neuroinflammatory pathways. This leads to reduced microglia activation and inflammatory infiltrate within the central nervous system, resulting in the attenuation of hippocampal damage. The anti-inflammatory and neuroprotective effects of B12 involve the modulation of histone markings in hippocampal neural cells.


Assuntos
Meningite Pneumocócica , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Meningite Pneumocócica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Histonas , Vitamina B 12/uso terapêutico , Modelos Animais de Doenças , Streptococcus pneumoniae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA