Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.913
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3377, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643150

RESUMO

Zinc-alpha2-glycoprotein (AZGP1) has been implicated in peripheral metabolism; however, its role in regulating energy metabolism in the brain, particularly in POMC neurons, remains unknown. Here, we show that AZGP1 in POMC neurons plays a crucial role in controlling whole-body metabolism. POMC neuron-specific overexpression of Azgp1 under high-fat diet conditions reduces energy intake, raises energy expenditure, elevates peripheral tissue leptin and insulin sensitivity, alleviates liver steatosis, and promotes adipose tissue browning. Conversely, mice with inducible deletion of Azgp1 in POMC neurons exhibit the opposite metabolic phenotypes, showing increased susceptibility to diet-induced obesity. Notably, an increase in AZGP1 signaling in the hypothalamus elevates STAT3 phosphorylation and increases POMC neuron excitability. Mechanistically, AZGP1 enhances leptin-JAK2-STAT3 signaling by interacting with acylglycerol kinase (AGK) to block its ubiquitination degradation. Collectively, these results suggest that AZGP1 plays a crucial role in regulating energy homeostasis and glucose/lipid metabolism by acting on hypothalamic POMC neurons.


Assuntos
Leptina , Pró-Opiomelanocortina , Camundongos , Animais , Leptina/metabolismo , Fosforilação , Pró-Opiomelanocortina/metabolismo , Hipotálamo/metabolismo , Homeostase/fisiologia , Metabolismo Energético/fisiologia , Neurônios/metabolismo
2.
Food Funct ; 15(8): 4109-4121, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38597225

RESUMO

While there have been advancements in understanding the direct and indirect impact of riboflavin (B2) on intestinal inflammation, the precise mechanisms are still unknown. This study focuses on evaluating the effects of riboflavin (B2) supplementation on a colitis mouse model induced with 3% dextran sodium sulphate (DSS). We administered three different doses of oral B2 (VB2L, VB2M, and VB2H) and assessed its impact on various physiological and biochemical parameters associated with colitis. Mice given any of the three doses exhibited relative improvement in the symptoms and intestinal damage. This was evidenced by the inhibition of the pro-inflammatory cytokines TNF-α, IL-1ß, and CALP, along with an increase in the anti-inflammatory cytokine IL-10. B2 supplementation also led to a restoration of oxidative homeostasis, as indicated by a decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels and an increase in reduced glutathione (GSH) and catalase (CAT) activities. B2 intervention showed positive effects on intestinal barrier function, confirmed by increased expression of tight junction proteins (occludin and ZO-1). B2 was linked to an elevated relative abundance of Actinobacteriota, Desulfobacterota, and Verrucomicrobiota. Notably, Verrucomicrobiota showed a significant increase in the VB2H group, reaching 15.03% relative abundance. Akkermansia exhibited a negative correlation with colitis and might be linked to anti-inflammatory function. Additionally, a remarkable increase in n-butyric acid, i-butyric acid, and i-valeric acid was reported in the VB2H group. The ameliorating role of B2 in gut inflammation can be attributed to immune system modulation as well as alterations in the gut microbiota composition, along with elevated levels of fecal SCFAs.


Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Homeostase , Camundongos Endogâmicos C57BL , Riboflavina , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Riboflavina/farmacologia , Homeostase/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
3.
Drug Metab Dispos ; 52(5): 408-421, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38575184

RESUMO

Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.


Assuntos
Neoplasias da Mama , Mama , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Mama/metabolismo , Neoplasias da Mama/metabolismo , Estrogênios , Homeostase , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
4.
FASEB J ; 38(7): e23605, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597508

RESUMO

Understanding the homeostatic interactions among essential trace metals is important for explaining their roles in cellular systems. Recent studies in vertebrates suggest that cellular Mn metabolism is related to Zn metabolism in multifarious cellular processes. However, the underlying mechanism remains unclear. In this study, we examined the changes in the expression of proteins involved in cellular Zn and/or Mn homeostatic control and measured the Mn as well as Zn contents and Zn enzyme activities to elucidate the effects of Mn and Zn homeostasis on each other. Mn treatment decreased the expression of the Zn homeostatic proteins metallothionein (MT) and ZNT1 and reduced Zn enzyme activities, which were attributed to the decreased Zn content. Moreover, loss of Mn efflux transport protein decreased MT and ZNT1 expression and Zn enzyme activity without changing extracellular Mn content. This reduction was not observed when supplementing with the same Cu concentrations and in cells lacking Cu efflux proteins. Furthermore, cellular Zn homeostasis was oppositely regulated in cells expressing Zn and Mn importer ZIP8, depending on whether Zn or Mn concentration was elevated in the extracellular milieu. Our results provide novel insights into the intricate interactions between Mn and Zn homeostasis in mammalian cells and facilitate our understanding of the physiopathology of Mn, which may lead to the development of treatment strategies for Mn-related diseases in the future.


Assuntos
Manganês , Zinco , Animais , Zinco/metabolismo , Manganês/metabolismo , Cobre/metabolismo , Homeostase , Mamíferos/metabolismo
5.
Mol Nutr Food Res ; 68(8): e2300643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600887

RESUMO

SCOPE: Polyphenols are the major active substances in red jujube fruit, and their anti-inflammatory and antioxidant activities suggest their potential utility in the prevention of ulcerative colitis (UC). METHODS AND RESULTS: In this study, the effect of polyphenol extracts from red jujube (Ziziphus jujuba Mill. "Junzao") (PERJ) on the dextron sulfate sodium (DSS)-induced UC mice is investigated. The result shows that PERJ effectively improves clinical symptoms, including food and water intake, the disease activity insex (DAI) and spleen index, and routine blood levels, and alleviates the shortening of the colon, in mice with DSS-induced UC. Meanwhile, PERJ remarkably decreases the expression of proinflammatory factors. Moreover, PERJ repairs intestinal barrier damage by increasing the expression level of mucin 2 and mucin 3, and the result is also confirmed in the histological assessment. Besides, the expression levels of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and mitogen-activated protein kinase cascade (MAPKs) signaling pathway-related proteins are inhibited by the PERJ administration. Finally, 16S rRNA sequencing analyses reveal that PERJ reverses intestinal microbiota dysbiosis by enhancing the abundance of Firmicutes and decreasing that of Proteobacteria and Bacteroidetes. CONCLUSION: PERJ probably inhibits the development of UC by suppressing the NLRP3 and MAPKs signaling pathways and regulating gut microbiota homeostasis, and can be considered as a potential resource for preventing UC.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Sistema de Sinalização das MAP Quinases , Extratos Vegetais , Ziziphus , Animais , Masculino , Camundongos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Ziziphus/química
6.
Neurochem Int ; 176: 105725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561151

RESUMO

Epilepsy constitutes a global health concern, affecting millions of individuals and approximately one-third of patients exhibit drug resistance. Recent investigations have revealed alterations in cerebral iron content in both epilepsy patients and animal models. However, the extant literature lacks a comprehensive exploration into the ramifications of modulating iron homeostasis as an intervention in epilepsy. This study investigated the impact of deferasirox, a iron ion chelator, on epilepsy. This study unequivocally substantiated the antiepileptic efficacy of deferasirox in a kainic acid-induced epilepsy model. Furthermore, deferasirox administration mitigated seizure susceptibility in a pentylenetetrazol-induced kindling model. Conversely, the augmentation of iron levels through supplementation has emerged as a potential exacerbating factor in the precipitating onset of epilepsy. Intriguingly, our investigation revealed a hitherto unreported discovery: ITPRIP was identified as a pivotal modulator of excitatory synaptic transmission, regulating seizures in response to deferasirox treatment. In summary, our findings indicate that deferasirox exerts its antiepileptic effects through the precise targeting of ITPRIP and amelioration of cerebral iron homeostasis, suggesting that deferasirox is a promising and novel therapeutic avenue for interventions in epilepsy.


Assuntos
Anticonvulsivantes , Encéfalo , Deferasirox , Epilepsia , Homeostase , Quelantes de Ferro , Ferro , Deferasirox/farmacologia , Ferro/metabolismo , Animais , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Camundongos , Excitação Neurológica/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Ratos Sprague-Dawley
7.
Int Immunopharmacol ; 132: 111932, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38560961

RESUMO

Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1ß to bioactive IL-1ß. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.


Assuntos
Gota , Homeostase , Hiperuricemia , Transdução de Sinais , Ácido Úrico , Humanos , Gota/metabolismo , Gota/tratamento farmacológico , Ácido Úrico/metabolismo , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
8.
Phytomedicine ; 128: 155394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569294

RESUMO

BACKGROUND: Current therapeutic agents for AD have limited efficacy and often induce undesirable side effects. Gegen Qinlian tablets (GGQLT) are a well-known clearingheat formula used in clinical treatment of inflammatory diseases. Based on traditional Chinese medicine (TCM) theory, the strategy of clearing-heat is then compatible with the treatment of AD. However, it remains unknown whether GGQLT can exert neuroprotective effects and alleviate neuroinflammation in AD. PURPOSE: This study aimed to evaluate the anti-AD effects of GGQLT and to decipher its intricate mechanism using integrative analyses of network pharmacology, transcriptomic RNA sequencing, and gut microbiota. METHODS: The ingredients of GGQLT were analyzed using HPLC-ESI-Q/TOF-MS. The AD model was established by bilateral injection of Aß1-42 into the intracerebroventricular space of rats. The Morris water maze was used to evaluate the cognitive function of the AD rats. The long-term toxicity of GGQLT in rats was assessed by monitoring their body weights and pathological alterations in the liver and kidney. Reactive astrocytes and microglia were assessed by immunohistochemistry by labeling GFAP and Iba-1. The levels of inflammatory cytokines in the hippocampus were evaluated using ELISA kits, RT-PCR, and Western blot, respectively. The potential anti-AD mechanism was predicted by analyses of RNA-sequencing and network pharmacology. Western blot and immunohistochemistry were utilized to detect the phosphorylation levels of IκBα, NF-κB p65, p38, ERK and JNK. The richness and composition of gut bacterial and fungal microflora were investigated via 16S rRNA and ITS sequencing. RESULTS: Typical ingredients of GGQLT were identified using HPLC-ESI-Q/TOF-MS. GGQLT significantly improved the cognitive function of AD rats by suppressing the activation of microglia and astrocytes, improving glial morphology, and reducing the neuroinflammatory reactions in the hippocampus. RNA-sequencing, network and experimental pharmacological studies demonstrated that GGQLT inhibited the activation of NF-κB/MAPK signaling pathways in the hippocampus. GGQLT could also restore abnormal gut bacterial and fungal homeostasis and no longer-term toxicity of GGQLT was observed. CONCLUSIONS: Our findings, for the first time, demonstrate GGQLT exhibit anti-AD effects and is worthy of further exploration and development.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Masculino , Ratos , Doenças Neuroinflamatórias/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Homeostase/efeitos dos fármacos , Comprimidos , Peptídeos beta-Amiloides/metabolismo , Neuroglia/efeitos dos fármacos , Farmacologia em Rede , Progressão da Doença , Citocinas/metabolismo
9.
Phytomedicine ; 127: 155480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484462

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy. PURPOSE: The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology. METHODS: A rat IVDD puncture model was established and treated by gavage with different concentrations of SBD, and clean faeces, serum, liver, kidney, and intervertebral disc (IVD) were collected after 4 weeks. We assessed the safety by liver and kidney weighing, functional tests and tissue staining, the expression of tumor necrosis factor-alpha (TNF-ɑ), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) inflammatory factors in serum was detected by ELISA kits, and X-ray test, magnetic resonance imaging (MRI) examination, immunohistochemistry (IHC), western blotting (WB), hematoxylin-eosin (HE) staining and safranin O-fast green (SO/FG) staining were used to assess the efficacy. Finally, we performed 16S rRNA sequencing analysis on the faeces of different groups and untargeted metabolomics on serum and analyzed the association between them. RESULTS: SBD can effectively reduce the inflammatory response, regulate the metabolic balance of extracellular matrix (ECM), improve symptoms, and restore IVD function. In addition, SBD can significantly improve the diversity of intestinal flora and maintain the balance. At the phylum level, SBD greatly increased the relative abundance of Patescibacteria and Actinobacteriota and decreased the relative abundance of Bacteroidota. At the genus level, SBD significantly increased the relative abundance of Clostridia_UCG-014, Enterorhabdus, and Adlercreutzia, and decreased the relative abundance of Ruminococcaceae_UCG-005 (p < 0.05). Untargeted metabolomics indicated that SBD significantly improved serum metabolites and altered serum expression of 4alpha-phorbol 12,13-didecanoate (4alphaPDD), euscaphic acid (EA), alpha-muricholic acid (α-MCA), 5-hydroxyindoleacetic acid (5-HIAA), and kynurenine (Kyn) (p < 0.05), and the metabolic pathways were mainly lipid metabolism and amino acid metabolism. CONCLUSIONS: This study demonstrated that SBD can extensively regulate intestinal flora and serum metabolic homeostasis to reduce inflammatory response, inhibit the degradation of ECM, restore IVD height and water content to achieve apparent therapeutic effect for IVDD.


Assuntos
Microbioma Gastrointestinal , Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , RNA Ribossômico 16S , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Homeostase
10.
Food Funct ; 15(6): 3158-3173, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38440931

RESUMO

The gut health-promoting properties of saponin-rich Polygonatum cyrtonema Hua (FP) fermented with Lactobacillus plantarum P9 were explored in a dextran sulfate sodium (DSS)-induced colitis mouse model. FP supplementation effectively inhibited DSS-induced physiological alteration and impaired immune responses by reducing the disease activity index (DAI) score and restoring the T helper (Th) 1/Th2 and regulatory T (Treg)/Th17 ratios. In addition, FP supplementation protected the gut barrier function against DSS-induced damage via upregulation of zonula occludens (ZO)-1 and occludin and downregulation of pro-inflammatory cytokines, including interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α), IL-18, and the granulocyte-macrophage colony-stimulating factor (GM-CSF). This study further elucidated the potential mechanisms underlying the FP-mediated suppression of the plasticity of type 3 innate lymphoid cells (ILC3) and subsequent macrophage polarization. Therefore, the FP supplementation effectively restored mucosal immune homeostasis and enhanced gut integrity. In addition, it suppressed the growth of Escherichia-Shigella and Enterococcus and promoted the enrichment of probiotics and short-chain fatty acid-producing microbes, such as Romboutsia, Faecalibaculum, and Blautia. In conclusion, P. cyrtonema Hua fermented with L. plantarum P9 might be a promising dietary intervention to improve gut health by sustaining overall gut homeostasis and related gut integrity.


Assuntos
Colite , Polygonatum , Animais , Camundongos , Dextranos , Imunidade Inata , Linfócitos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Homeostase , Interleucina-1beta , Sulfatos , Sódio
11.
J Agric Food Chem ; 72(13): 7230-7243, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38494694

RESUMO

Long-term high-fat diet (HFD) will induce dysbiosis and a disturbance of intestinal homeostasis. Large yellow tea polysaccharide (LYP) has been shown to improve obesity-associated metabolic disease via modulation of the M2 polarization. However, the contribution of LYP to intestinal barrier impairment and improvement mechanisms in obesity caused by an HFD are still not clear. In this study, we evaluated the impacts of LYP on the mucosal barrier function and microbiota composition in HFD-feeding mice. Results exhibited that dietary LYP supplement could ameliorate the physical barrier function via maintaining intestinal mucosal integrity and elevating tight-junction protein production, strengthen the chemical barrier function via up-regulating the levels of glucagon-like peptide-1 and increasing mucin-producing goblet cell numbers, and enhance the intestinal immune barrier function though suppressing immune cell subsets and cytokines toward pro-inflammatory phenotypes. Moreover, LYP reshaped the constitution and metabolism of intestinal flora by enriching probiotics that produce short-chain fatty acids. Overall, LYP might be used as a critical regulator of intestinal homeostasis to improve host health by promoting gut barrier integrity, modulating intestinal immune response, and inhibiting bowel inflammation.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Obesidade/etiologia , Obesidade/genética , Polissacarídeos/farmacologia , Homeostase , Chá , Camundongos Endogâmicos C57BL
12.
Phytomedicine ; 128: 155291, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518640

RESUMO

BACKGROUND: As a traditional Chinese medicinal herb, the lipid-lowing biological potential of Eucommia ulmoides leaves (EL) has been demonstrated. After fermentation, the EL have been made into various products with lipid-lowering effects and antioxidant activity. However, the anti-hyperlipidemic mechanism of fermented Eucommia ulmoides leaves (FEL) is unclear now. PURPOSE: To evaluate the effects of FEL on hyperlipidemia and investigate the mechanism based on regulating gut homeostasis and host metabolism. METHODS: Hyperlipidemia animal model in Wistar rats was established after 8 weeks high-fat diet (HFD) fed. The administered doses of aqueous extract of FEL (FELE) were 128, 256 and 512 mg/kg/d, respectively. Serum biochemical parameters detection, histopathological sections analysis, 16S rDNA sequencing of gut microbiota and untargeted fecal metabolomics analysis, were performed to determine the therapeutic effects and predict related pathways of FELE on hyperlipidemia. The changes of proteins and genes elated to lipid were detected by Immunofluorescence (IF) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: 56 Components in FELE were identified by UPLC-MS, with organic acids, flavonoids and phenolic acids accounting for the majority. The intervention of FELE significantly reduced the body weight, lipid accumulation and the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein-cholesterol (LDL-C) in hyperlipidemia rats, while increased the level of High-density lipoprotein-cholesterol (HDL-C). Meanwhile, FELE improved the inflammatory makers and oxidative stress factors, which is tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT). These results demonstrated that FETE can effectively reduce blood lipids and alleviate inflammation and oxidative damage caused by hyperlipidemia. Mechanistically, FELE restore the homeostasis of gut microbiota by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of probiotics, especially Lactobacillus, Rombousia, Bacteroides, Roseburia, Clostridia_UCG-014_Unclassified, while modulated metabolism through amino acid, bile acid and lipid-related metabolism pathways. In addition, the Pearson correlation analysis found that the upregulated bilirubin, threonine, dopamine and downregulated lipocholic acid, d-sphingosine were key metabolites after FELE intervention. IF and qRT-PCR analysis showed that FELE upregulated the expression of fatty acid oxidation proteins and genes (PPARα, CPT1A), bile acid synthesis and excretion proteins and genes (LXRα, CYP7A1, FXR), and downregulated the expression of adipogenic gene (SREBP-1c) by regulating gut microbiota to improve metabolism and exert a lipid-lowering effect. CONCLUSION: This work filled the lipid-lowering mechanism gap of FEL. FELE can improve HFD-induced hyperlipidemia by regulating the gut microbiota homeostasis and metabolism. Thus, FEL has the potential to develop into the novel raw material of lipid-lowering drugs.


Assuntos
Dieta Hiperlipídica , Eucommiaceae , Microbioma Gastrointestinal , Homeostase , Hiperlipidemias , Extratos Vegetais , Folhas de Planta , Ratos Wistar , Animais , Hiperlipidemias/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Eucommiaceae/química , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Folhas de Planta/química , Homeostase/efeitos dos fármacos , Ratos , Extratos Vegetais/farmacologia , Fermentação , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia
13.
Sheng Li Xue Bao ; 76(1): 128-136, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38444138

RESUMO

Cardiovascular complications are the leading cause of death in diabetic patients. Among them, diabetic cardiomyopathy (DCM) is a type of specific cardiomyopathy excluding myocardial damage caused by hypertension and coronary heart disease. It is characterized by abnormal metabolism of cardiomyocytes and gradual decline of cardiac function. The clinical manifestations of DCM are impaired diastolic function in early stage and impaired systolic function in late stage. Eventually it developed into heart failure. Mitochondria are the main organelles that provide energy in cardiomyocytes. Mitochondrial dynamics refers to the dynamic process of mitochondrial fusion and fission, which is an important approach for mitochondrial quality control. Mitochondrial dynamics plays a crucial role in maintaining mitochondrial homeostasis and cardiac function. The proteins that regulate mitochondrial fission are mainly Drp1 and its receptors, Fis1, MFF, MiD49 and MiD51. The protein that performs mitochondrial outer membrane fusion is Mfn1/2, and the inner membrane fusion protein is Opa1. This paper reviews recent progress on mitochondrial dynamics in DCM. The main contents are as follows: mitochondrial dynamics imbalance in both type 1 and 2 DCM is manifested as increased fission and inhibited fusion. The molecular mechanism of the former is mainly associated with up-regulated Drp1 and down-regulated Opa1, while the molecular mechanism of the latter is mainly associated with up-regulated Drp1 and down-regulated Mfn1/2. Increased mitochondrial fission and inhibited fusion can lead to mitochondrial dysfunction and promote the development of DCM. The active ingredients of the traditional Chinese medicine such as punicalagin, paeonol and endogenous substance melatonin can improve mitochondrial function and alleviate the symptoms of DCM by inhibiting mitochondrial fission or promoting mitochondrial fusion. This article is helpful to further understand the role and mechanism of mitochondrial dynamics in DCM, and provide new treatment methods and intervention strategies for clinical DCM patients based on mitochondrial dynamics.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Humanos , Dinâmica Mitocondrial , Miocárdio , Homeostase , Proteínas de Membrana
14.
J Ethnopharmacol ; 326: 117995, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38428656

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Inflammatory bowel disease (IBD) presents a risk of carcinogenesis, which escalates with the duration of IBD. Persistent histological inflammation is considered to be the driving factor of colitis carcinogenesis. Effective control of inflammation is helpful to prevent and treat colitis-related colorectal cancer (CAC). Anchang Yuyang Decoction (AYD), a traditional Chinese medicine (TCM) formula, is originated from the ancient prescription of TCM for treating colitis and colorectal cancer. AYD has demonstrated efficacy in treating IBD and potential anti-carcinogenic properties. AIM OF THE STUDY: This research aims to assess the therapeutic efficacy of AYD in ameliorating experimental colitis-related carcinogenesis induced by AOM/DSS. It further seeks to elucidate its potential mechanisms by integrating multiple omics sequencing approaches. MATERIALS AND METHODS: A rat model for colitis-related carcinogenesis was developed using azoxymethane (AOM)/dextran sulfate sodium (DSS). UPLC-MS identified AYD's chemical constituents. Rats were administered varying doses of AYD (18.37, 9.19 and 4.59 g/kg) orally for 53 days, with mesalazine as a positive control. The study evaluated anti-carcinogenic effects by examining adenoma number, adenoma load, abnormal crypt foci (ACF), histopathological damage, and tumor-related protein expression. Anti-inflammatory and reparative effects were assessed through body weight, disease activity index (DAI), colon length, spleen index, inflammatory cytokine levels, and tight junction protein expression. The effects on intestinal microbiota and host metabolism were explored through 16S rRNA sequencing, targeted short-chain fatty acid (SCFA) metabonomics, and non-targeted colon metabolomics. Potential AYD targets were identified through transcriptomic sequencing and validated by qRT-PCR and western blotting. RESULTS: AYD significantly reduced adenoma number, adenoma load, neoplasm-associated lesions, ACF, and tumor-related protein expression (e.g., p53, PCNA) in AOM/DSS-induced rats, thus impeding colitis-related carcinogenesis progression. AYD also alleviated histopathological damage and inflammation, promoting intestinal mucosal barrier repair. Furthermore, AYD modulated intestinal flora structure, enhanced SCFA production, and regulated colon metabolites. Transcriptomic sequencing revealed a significant impact on the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Subsequent qRT-PCR and western blotting experiments indicated AYD's influence in up-regulating PPAR-γ and down-regulating PPAR-α, PPAR-ß/δ, and related proteins (thrombomodulin [Thbd], fatty acid binding protein 5 [Fabp5], stearoyl-CoA desaturase 2 [Scd2], phospholipid transfer protein [Pltp]). CONCLUSIONS: This study demonstrates AYD's ability to inhibit experimental colitis-related carcinogenesis induced by AOM/DSS. Its mechanism likely involves modulation of the PPAR signaling pathway, impacting intestinal microbiota and host metabolic equilibrium.


Assuntos
Adenoma , Colite , Neoplasias Colorretais , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Ratos , Animais , Camundongos , Receptores Ativados por Proliferador de Peroxissomo , RNA Ribossômico 16S , Cromatografia Líquida , Espectrometria de Massas em Tandem , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/patologia , Transdução de Sinais , Carcinogênese , Azoximetano/toxicidade , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Homeostase , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
15.
Gut Microbes ; 16(1): 2327377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466137

RESUMO

Although metals are essential for life, they are toxic to bacteria in excessive amounts. Therefore, the maintenance of metal homeostasis is critical for bacterial physiology and pathogenesis. Vibrio parahaemolyticus is a significant food-borne pathogen that mainly causes acute gastroenteritis in humans and acute hepatopancreatic necrosis disease in shrimp. Herein, we report that ZntA functions as a zinc (Zn) and cadmium (Cd) homeostasis mechanism and contributes to oxidative stress resistance and virulence in V. parahaemolyticus. zntA is remarkably induced by Zn, copper, cobalt, nickel (Ni), and Cd, while ZntA promotes V. parahaemolyticus growth under excess Zn/Ni and Cd conditions via maintaining Zn and Cd homeostasis, respectively. The growth of ΔzntA was inhibited under iron (Fe)-restricted conditions, and the inhibition was associated with Zn homeostasis disturbance. Ferrous iron supplementation improved the growth of ΔzntA under excess Zn, Ni or Cd conditions. The resistance of ΔzntA to H2O2-induced oxidative stress also decreased, and its virulence was attenuated in zebrafish models. Quantitative real-time PCR, mutagenesis, and ß-galactosidase activity assays revealed that ZntR positively regulates zntA expression by binding to its promoter. Collectively, the ZntR-regulated ZntA is crucial for Zn and Cd homeostasis and contributes to oxidative stress resistance and virulence in V. parahaemolyticus.


Assuntos
Microbioma Gastrointestinal , Vibrio parahaemolyticus , Humanos , Animais , Zinco , Cádmio/toxicidade , Vibrio parahaemolyticus/genética , Virulência , Peróxido de Hidrogênio , Peixe-Zebra , Homeostase , Estresse Oxidativo , Ferro
16.
Maturitas ; 184: 107948, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447232

RESUMO

OBJECTIVE: Middle-aged women with obesity are at increased risk of iron overload and iron disorder is known to disrupt n-3 polyunsaturated fatty acid homeostasis. We evaluated relationships between pretreatment hemoglobin and n-3 polyunsaturated fatty acid levels, and tested whether pretreatment hemoglobin contributed to inter-individual variability in weight loss with special focus on changes in body weight, iron and n-3 polyunsaturated fatty acid profiles. STUDY DESIGN: 117 middle and older aged women with obesity and more than two metabolic abnormalities were randomized to a 12-week hypocaloric diet without or with fish oil supplementation. Blood iron biomarker and erythrocyte membrane phospholipid profiles were evaluated. MAIN OUTCOME: The absolute change from baseline to week 12 in serum iron and erythrocyte n-3 polyunsaturated fatty acid levels according to pretreatment hemoglobin tertiles and fish oil supplementation. RESULTS: A Pearson correlation analysis showed that pretreatment hemoglobin levels were negatively correlated with linoleic acid (r = -0.231), α-linoleic acid (r = -0.279), and n-3 polyunsaturated fatty acid (r = -0.217) (all p < 0.05). Dietary weight loss markedly enhanced erythrocyte membrane lipids of linoleic acid, α-linoleic acid, and n-6 and n-3 polyunsaturated fatty acid only in those women with the highest pretreatment hemoglobin levels (tertile 3) (all p < 0.05). Fish oil supplementation increased bioavailable iron in women with moderate pretreatment hemoglobin levels (tertile 2) (p < 0.05) and, to a lesser extent, prevented a reduction in circulating iron in those with the lowest hemoglobin levels (tertile 1). CONCLUSION: Dietary weight loss is an effective treatment program to manage obesity-related iron and n-3 polyunsaturated fatty acid disorders, particularly for middle-aged women with obesity and iron overload.


Assuntos
Suplementos Nutricionais , Membrana Eritrocítica , Ácidos Graxos Ômega-3 , Óleos de Peixe , Hemoglobinas , Homeostase , Ferro , Obesidade , Redução de Peso , Humanos , Feminino , Pessoa de Meia-Idade , Ácidos Graxos Ômega-3/administração & dosagem , Obesidade/dietoterapia , Obesidade/complicações , Obesidade/sangue , Obesidade/metabolismo , Óleos de Peixe/administração & dosagem , Ferro/sangue , Ferro/metabolismo , Membrana Eritrocítica/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/análise , Dieta Redutora , Adulto , Restrição Calórica , Fosfolipídeos/sangue
17.
Prog Retin Eye Res ; 100: 101250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460758

RESUMO

Changes in the bacterial flora in the gut, also described as gut microbiota, are readily acknowledged to be associated with several systemic diseases, especially those with an inflammatory, neuronal, psychological or hormonal factor involved in the pathogenesis and/or the perception of the disease. Maintaining ocular surface homeostasis is also based on all these four factors, and there is accumulating evidence in the literature on the relationship between gut microbiota and ocular surface diseases. The mechanisms involved are mostly interconnected due to the interaction of central and peripheral neuronal networks, inflammatory effectors and the hormonal system. A better understanding of the influence of the gut microbiota on the maintenance of ocular surface homeostasis, and on the onset or persistence of ocular surface disorders could bring new insights and help elucidate the epidemiology and pathology of ocular surface dynamics in health and disease. Revealing the exact nature of these associations could be of paramount importance for developing a holistic approach using highly promising new therapeutic strategies targeting ocular surface diseases.


Assuntos
Microbioma Gastrointestinal , Homeostase , Humanos , Microbioma Gastrointestinal/fisiologia , Homeostase/fisiologia , Oftalmopatias/microbiologia
18.
Br J Pharmacol ; 181(12): 1768-1792, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38355288

RESUMO

BACKGROUND AND PURPOSE: Panax ginseng is widely applied in the adjuvant treatment of cardiometabolic diseases in clinical practice without clear mechanisms. This study aims to clearly define the efficacy and underlying mechanism of P. ginseng and its active components in protecting against atherosclerosis. EXPERIMENTAL APPROACH: The anti-atherogenic efficacy of total ginseng saponin extract (TGS) and its components was evaluated on Ldlr-/- mice. Gut microbial structure was analysed by 16S rRNA sequencing and PCR. Bile acid profiles were revealed using targeted metabolomics with LC-MS/MS analysis. The contribution of gut microbiota to atherosclerosis was assessed by co-housing experiments. KEY RESULTS: Ginsenoside Rb1, representing protopanaxadiol (PPD)-type saponins, increased intestinal Lactobacillus abundance, resulting in enhanced bile salt hydrolase (BSH) activity to promote intestinal conjugated bile acid hydrolysis and excretion, followed by suppression of enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signal, and thereby increased cholesterol 7α-hydroxylase (CYP7A1) transcriptional expression and facilitated metabolic elimination of cholesterol. Synergistically, protopanaxatriol (PPT)-type saponins, represented by ginsenoside Rg1, protected against atherogenesis-triggered gut leak and metabolic endotoxaemia. Ginsenoside Rg1 directly induced mucin production to nutritionally maintain Akkermansia muciniphila, which reciprocally inhibited gut permeation. Rb1/Rg1 combination, rather than a single compound, can largely mimic the holistic efficacy of TGS in protecting Ldlr-/- mice from atherogenesis. CONCLUSION AND IMPLICATIONS: Our study provides strong evidence supporting TGS and ginsenoside Rb1/Rg1 combinations as effective therapies against atherogenesis, via targeting different signal nodes by different components and may provide some elucidation of the holistic mode of herbal medicines.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Ginsenosídeos , Homeostase , Camundongos Knockout , Panax , Animais , Ginsenosídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Masculino , Camundongos , Panax/química , Camundongos Endogâmicos C57BL , Ácidos e Sais Biliares/metabolismo , Receptores de LDL/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Amidoidrolases/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo
19.
J Med Food ; 27(4): 301-311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377551

RESUMO

Baicalin has been acknowledged for its anti-inflammatory properties. However, its potential impact on osteoarthritis (OA) has not yet been explored. Therefore, our study aimed to examine the effects of Baicalin on OA, both in laboratory and animal models. To evaluate its efficacy, human chondrocytes affected by OA were treated with interleukin-1ß and/or Baicalin. The effects were then assessed through viability tests using the cell counting kit-8 (CCK-8) method and flow cytometry. In addition, we analyzed the expressions of various factors such as FOXO1, autophagy, apoptosis, and cartilage synthesis and breakdown to corroborate the effects of Baicalin. We also assessed the severity of OA through analysis of tissue samples. Our findings demonstrate that Baicalin effectively suppresses inflammatory cytokines and MMP-13 levels caused by collagenase-induced osteoarthritis, while simultaneously preserving the levels of Aggrecan and Col2. Furthermore, Baicalin has been shown to enhance autophagy. Through the use of FOXO1 inhibitors, lentivirus-mediated knockdown, and chromatin immunoprecipitation, we verified that Baicalin exerts its protective effects by activating FOXO1, which binds to the Beclin-1 promoter, thereby promoting autophagy. In conclusion, our results show that Baicalin has potential as a therapeutic agent for treating OA (Clinical Trial Registration number: 2023-61).


Assuntos
Cartilagem Articular , Flavonoides , Proteína Forkhead Box O1 , Osteoartrite , Animais , Humanos , Apoptose , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proteína Forkhead Box O1/efeitos dos fármacos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Homeostase , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo
20.
Phytomedicine ; 127: 155392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412575

RESUMO

BACKGROUND: Tiliroside (TIL) is a flavonoid compound that exists in a variety of edible plants. These dietary plants are widely used as food and medicine to treat various diseases. However, the effect of TIL on pancreatic cancer (PC) and its underlying mechanisms are unclear. PURPOSE: This study aims to reveal the anti-PC effect of TIL and clarify its mechanism. METHODS: The inhibitory effects of TIL on PC growth were studied both in vitro and in vivo. Flow cytometry, transmission electron microscopy, immunofluorescence, biochemical analyses, RT-qPCR, genetic ablation, and western blotting were employed to evaluate ferroptosis, autophagy, and iron regulation. Additionally, RNA sequencing (RNA-seq), biomolecular layer interferometry (BLI), and molecular simulation analysis were combined to identify TIL molecular targets. The clinicopathological significance of Calpain-2 (CAPN2) was determined through immunohistochemistry (IHC) on a PC tissue microarray. RESULTS: Herein, we showed that TIL was an effective anti-PC drug. CAPN2 was involved in the TIL - induced elevation of the labile iron pool (LIP) in PC cells. TIL directly bound to and inhibited CAPN2 activity, resulting in AKT deactivation and decreased expression of glucose transporters (GLUT1 and GLUT3) in PC cells. Consequently, TIL impaired ATP and NADPH generation, inducing autophagy and ROS production. The accumulation of TIL-induced ROS combined with LIP iron causes the Fenton reaction, leading to lipid peroxidation. Meanwhile, TIL-induced reduction of free iron ions promoted autophagic degradation of ferritin to regulate cellular iron homeostasis, which further exacerbated the death of PC cells by ferroptosis. As an extension of these in vitro findings, our murine xenograft study showed that TIL inhibited the growth of PANC-1 cells. Additionally, we showed that CAPN2 expression levels were related to clinical prognoses in PC patients. CONCLUSION: We identify TIL as a potent bioactive inhibitor of CAPN2 and an anti-PC candidate of natural origin. These findings also highlight CAPN2 as a potential target for PC treatment.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Calpaína/genética , Calpaína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Flavonoides/farmacologia , Neoplasias Pancreáticas/patologia , Ferro/metabolismo , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA