Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuro Oncol ; 25(7): 1331-1342, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541551

RESUMO

BACKGROUND: To achieve replicative immortality, most cancers develop a telomere maintenance mechanism, such as reactivation of telomerase or alternative lengthening of telomeres (ALT). There are limited data on the prevalence and clinical significance of ALT in pediatric brain tumors, and ALT-directed therapy is not available. METHODS: We performed C-circle analysis (CCA) on 579 pediatric brain tumors that had corresponding tumor/normal whole genome sequencing through the Open Pediatric Brain Tumor Atlas (OpenPBTA). We detected ALT in 6.9% (n = 40/579) of these tumors and completed additional validation by ultrabright telomeric foci in situ on a subset of these tumors. We used CCA to validate TelomereHunter for computational prediction of ALT status and focus subsequent analyses on pediatric high-grade gliomas (pHGGs) Finally, we examined whether ALT is associated with recurrent somatic or germline alterations. RESULTS: ALT is common in pHGGs (n = 24/63, 38.1%), but occurs infrequently in other pediatric brain tumors (<3%). Somatic ATRX mutations occur in 50% of ALT+ pHGGs and in 30% of ALT- pHGGs. Rare pathogenic germline variants in mismatch repair (MMR) genes are significantly associated with an increased occurrence of ALT. CONCLUSIONS: We demonstrate that ATRX is mutated in only a subset of ALT+ pHGGs, suggesting other mechanisms of ATRX loss of function or alterations in other genes may be associated with the development of ALT in these patients. We show that germline variants in MMR are associated with the development of ALT in patients with pHGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Reparo de Erro de Pareamento de DNA , Homeostase do Telômero/genética , Proteína Nuclear Ligada ao X/genética , Glioma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Mutação , Telômero/genética , Telômero/patologia
2.
PLoS One ; 17(2): e0264337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202418

RESUMO

Vitamin D deficiency is common among postmenopausal women. Telomere length can be a potential protective mechanism for age-related diseases. The objective of our study is to examine the association of vitamin D supplementation on leukocyte telomere length (LTL) in healthy postmenopausal women with vitamin D deficiency. The study was designed as a placebo-controlled study to investigate the short-term effects of vitamin D supplementation and seasonal changes on vitamin D related parameters, including 25(OH)D, 1,25(OH)2D parathormone (PTH), Vitamin D binding protein (VDBP), vitamin D receptor (VDR), and telomere length in a cohort of postmenopausal women (n = 102). The group was divided as supplementation (n = 52) and placebo groups (n = 50). All parameters were measured before and after treatment. Serum VDBP levels were measured by ELISA method and VDR, GC (VDBP) gene expressions and relative telomere lengths were measured in peripheral blood mononuclear cells (PBMC) using a quantitative real-time PCR method. The results demonstrate that baseline levels were similar between the groups. After vitamin D supplementation 25(OH)D, 1,25(OH)2D, PTH and VDBP levels were changed significantly compared to the placebo group. At the end of the study period, LTL levels were significantly increased in both groups and this change was more prominent in placebo group. The change in GC expression was significant between treatment and placebo groups but VDR expression remained unchanged. Even though the study was designed to solely assess the effects of vitamin D supplementation, LTL was significantly increased in the whole study group in summer months suggesting that LTL levels are affected by sun exposure and seasonal changes rather than supplementation. The study displayed the short-term effect of Vitamin D supplementation on vitamin D, PTH levels, LTL and vitamin D associated gene expressions. The relation between Vitamin D and LTL is not linear and could be confounded by several factors such as the population differences, regional and seasonal changes in sun exposure.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Homeostase do Telômero/efeitos dos fármacos , Telômero/efeitos dos fármacos , Deficiência de Vitamina D/tratamento farmacológico , Vitamina D/farmacologia , Idoso , Estudos de Coortes , Feminino , Humanos , Leucócitos Mononucleares/ultraestrutura , Pessoa de Meia-Idade , Pós-Menopausa , Receptores de Calcitriol/sangue , Transcriptoma , Vitamina D/administração & dosagem , Vitamina D/sangue , Deficiência de Vitamina D/patologia
3.
Biomed Pharmacother ; 146: 112427, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062051

RESUMO

Common characteristics of aging include reduced somatic stem cell number, susceptibility to cardiac injuries, metabolic imbalances and increased risk for oncogenesis. In this study, Pleiotropic anti-aging effects of a decoction Jing Si herbal drink (JS) containing eight Traditional Chinese Medicine based herbs, with known effects against aging related disorders was evaluated. Adipose derived mesenchymal stem cells (ADMSCs) from 16 week old adult and 24 month old aging WKY rats were evaluated for the age-related changes in stem cell homeostasis. Effects of JS on self-renewal, klotho and Telomerase Reverse Transcriptase expression DNA damage response were determined by immunofluorescence staining. The effects were confirmed in senescence induced human ADMSCs and in addition, the potential of JS to maintain telomere length was evaluated by qPCR analysis in ADMSCs challenged for long term with doxorubicin. Further, the effects of JS on doxorubicin-induced hypertrophic effect and DNA damage in H9c2 cardiac cells; MPP+-induced damages in SH-SY5Y neuron cells were investigated. In addition, effects of JS in maintaining metabolic regulation, in terms of blood glucose regulation in type-II diabetes mice model, and their potential to suppress malignancy in different cancer cells were ascertained. The results show that JS maintains stem cell homeostasis and provides cytoprotection. In addition JS regulates blood glucose metabolism, enhances autophagic clearances in neurons and suppresses cancer growth and migration. The results show that JS acts on multiple targets and provides a cumulative protective effect against various age-associated disorders and therefore it is a candidate pleiotropic agent for healthy aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Medicina Regenerativa/métodos , Animais , Citoproteção/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Controle Glicêmico/métodos , Humanos , Camundongos , Ratos , Ratos Endogâmicos WKY , Homeostase do Telômero/efeitos dos fármacos
4.
Nutrients ; 14(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35057447

RESUMO

Elevated inflammatory cytokines and chronic pain are associated with shorter leukocyte telomere length (LTL), a measure of cellular aging. Micronutrients, such as 25-hydroxyvitamin D (vitamin D) and omega 3, have anti-inflammatory properties. Little is known regarding the relationships between vitamin D, omega 6:3 ratio, LTL, inflammation, and chronic pain. We investigate associations between vitamin D, omega 6:3 ratio, LTL, and C-reactive protein (CRP) in people living with/without chronic pain overall and stratified by chronic pain status. A cross-sectional analysis of 402 individuals (63% women, 79.5% with chronic pain) was completed. Demographic and health information was collected. Chronic pain was assessed as pain experienced for at least three months. LTL was measured in genomic DNA isolated from blood leukocytes, and micronutrients and CRP were measured in serum samples. Data were analyzed with general linear regression. Although an association between the continuous micronutrients and LTL was not observed, a positive association between omega 6:3 ratio and CRP was detected. In individuals with chronic pain, based on clinical categories, significant associations between vitamin D, omega 6:3 ratio, and CRP were observed. Findings highlight the complex relationships between anti-inflammatory micronutrients, inflammation, cellular aging, and chronic pain.


Assuntos
Envelhecimento , Senescência Celular , Dor Crônica/etiologia , Ácidos Graxos Ômega-3/sangue , Inflamação , Telômero , Vitamina D/sangue , Anti-Inflamatórios/sangue , Anti-Inflamatórios/uso terapêutico , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Dor Crônica/sangue , Dor Crônica/prevenção & controle , Estudos Transversais , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-6/sangue , Feminino , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/tratamento farmacológico , Leucócitos , Masculino , Pessoa de Meia-Idade , Homeostase do Telômero , Vitamina D/análogos & derivados , Vitamina D/uso terapêutico , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações
5.
Endocr Pathol ; 33(4): 494-505, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34993885

RESUMO

Neoplastic cells acquire the ability to proliferate endlessly by maintaining telomeres via telomerase, or alternative lengthening of telomeres (ALT). The role of telomere maintenance in pituitary neuroendocrine tumors (PitNETs) has yet to be thoroughly investigated. We analyzed surgical samples of 24 adult recurrent PitNETs (including onset and relapses for 14 of them) and 12 pediatric primary PitNETs. The presence of ALT was assessed using telomere-specific fluorescence in situ hybridization, methylation of telomerase reverse transcriptase promoter (TERTp) by methylation-specific PCR, and ATRX expression by immunohistochemistry. Among the adult recurrent PitNETs, we identified 3/24 (12.5%) ALT-positive cases. ALT was present from the onset and maintained in subsequent relapses, suggesting that this mechanism occurs early in tumorigenesis and is stable during progression. ATRX loss was only seen in one ALT-positive case. Noteworthy, ALT was observed in 3 out of 5 aggressive PitNETs, including two aggressive corticotroph tumors, eventually leading to patient's death. ALT-negative tumors (87.5%) were classified according to their low (29.2%), medium (50%), and high (8.3%) telomere fluorescence intensity, with no significant differences emerging in their molecular, clinical, or pathological characteristics. TERTp methylation was found in 6/24 cases (25%), with a total concordance in methylation status between onset and recurrences, suggesting that this mechanism remains stable throughout disease progression. TERTp methylation did not influence telomere length. In the pediatric cohort of PitNETs, TERTp methylation was also observed in 4/12 cases (33.3%), but no case of ALT activation was observed. In conclusion, ALT is triggered at onset and maintained during tumor progression in a subset of adult PitNETs, suggesting that it could be used for clinical purposes, as a potential predictor of aggressive behavior.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Telomerase , Telômero , Adulto , Criança , Humanos , Hibridização in Situ Fluorescente , Recidiva Local de Neoplasia/genética , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Neoplasias Hipofisárias/genética , Telomerase/genética , Telômero/genética , Telômero/patologia , Homeostase do Telômero/genética , Proteína Nuclear Ligada ao X/genética , Metilação de DNA , Regiões Promotoras Genéticas
7.
J Exp Zool A Ecol Integr Physiol ; 335(3): 359-366, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651921

RESUMO

Telomeres, protective caps at the end of chromosomes, are often positively related to lifespan and are thought to be an important mechanism of organismal aging. To better understand the casual relationships between telomere length and longevity, it is essential to be able to experimentally manipulate telomere dynamics (length and loss rate). Previous studies suggest that exposure to TA-65, an extract from the Chinese root Astragalus membranaceus, activates telomerase, lengthens telomeres, increases the growth of keratin-based structures, and boosts the immune system in adults. However, telomere loss is expected to be greatest during early life but whether TA-65 has similar effects during this life stage is currently unknown. Here, we experimentally exposed free-living house sparrow (Passer domesticus) chicks to TA-65 during post-natal development and examined the effects on telomere length and loss, growth of keratin-based structures, and a measure of cellular immunity. Contrary to expectation, the growth of keratin-based structures was reduced in TA-65 chicks and in the second year of the study, chicks exposed to TA-65 experienced more telomere loss than controls. Thus, the effects of TA-65 on telomeres and keratin-based structures differ across life stages and future research will be necessary to determine the mechanisms underlying these age-specific effects.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Pardais/crescimento & desenvolvimento , Homeostase do Telômero/efeitos dos fármacos , Animais
8.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672524

RESUMO

Human bone marrow stem cells (HBMSCs) are isolated from the bone marrow. Stem cells can self-renew and differentiate into various types of cells. They are able to regenerate kinds of tissue that are potentially used for tissue engineering. To maintain and expand these cells under culture conditions is difficult-they are easily triggered for differentiation or death. In this study, we describe a new culture formula to culture isolated HBMSCs. This new formula was modified from NCDB 153, a medium with low calcium, supplied with 5% FBS, extra growth factor added to it, and supplemented with N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate to maintain the cells in a steady stage. The cells retain these characteristics as primarily isolated HBMSCs. Moreover, our new formula keeps HBMSCs with high proliferation rate and multiple linage differentiation ability, such as osteoblastogenesis, chondrogenesis, and adipogenesis. It also retains HBMSCs with stable chromosome, DNA, telomere length, and telomerase activity, even after long-term culture. Senescence can be minimized under this new formulation and carcinogenesis of stem cells can also be prevented. These modifications greatly enhance the survival rate, growth rate, and basal characteristics of isolated HBMSCs, which will be very helpful in stem cell research.


Assuntos
Antioxidantes/farmacologia , Cálcio/farmacologia , Senescência Celular , Meios de Cultura/química , Células-Tronco Mesenquimais/citologia , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Separação Celular , Forma Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Telomerase/metabolismo , Homeostase do Telômero , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
9.
Cancer Treat Res Commun ; 27: 100323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33530025

RESUMO

Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.


Assuntos
Neoplasias/genética , Proteínas Oncogênicas Virais/metabolismo , Retroviridae/patogenicidade , Telomerase/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/genética , Senescência Celular/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Camundongos , Neoplasias/terapia , Neoplasias/virologia , Proteínas Oncogênicas Virais/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Regiões Promotoras Genéticas , Retroviridae/genética , Telomerase/antagonistas & inibidores , Telômero/metabolismo , Homeostase do Telômero
10.
Arterioscler Thromb Vasc Biol ; 41(3): 1047-1061, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33504179

RESUMO

Shortened telomeres have been linked to numerous chronic diseases, most importantly coronary artery disease, but the underlying mechanisms remain ill defined. Loss-of-function mutations and deletions in telomerase both accelerate telomere shortening but do not necessarily lead to a clinical phenotype associated with atherosclerosis, questioning the causal role of telomere length in cardiac pathology. The differential extranuclear functions of the 2 main components of telomerase, telomerase reverse transcriptase and telomerase RNA component, offer important clues about the complex relationship between telomere length and cardiovascular pathology. In this review, we critically discuss relevant preclinical models, genetic disorders, and clinical studies to elucidate the impact of telomerase in cardiovascular disease and its potential role as a therapeutic target. We suggest that the antioxidative function of mitochondrial telomerase reverse transcriptase might be atheroprotective, making it a potential target for clinical trials. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/terapia , Telomerase/metabolismo , Animais , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Ensaios Clínicos como Assunto , Medicamentos de Ervas Chinesas/uso terapêutico , Exercício Físico , Estudo de Associação Genômica Ampla , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Leucócitos/enzimologia , Camundongos , Modelos Cardiovasculares , Mutação , RNA/genética , Telomerase/sangue , Telomerase/genética , Homeostase do Telômero/fisiologia , Encurtamento do Telômero/fisiologia
11.
Phytother Res ; 35(4): 2252-2266, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33325602

RESUMO

D-galactose (d-gal) induces aging and memory impairment via oxidative stress and neuroinflammation pathways. This study evaluated the neuroprotective activity of thymoquinone (TQ) against d-gal. d-gal (400 mg/kg, SC), d-gal plus TQ (2.5, 5, 10 mg/kg, i.p.), and TQ alone (2.5 and 10 mg/kg) for 8 weeks were administered to rats. The effect of TQ on learning and memory were studied using the Morris water maze test. Malondialdehyde (MDA) and glutathione (GSH) levels were determined in the hippocampus. The levels of MAPKs (p-ERK/ERK, p-P38/P38), cAMP response elements binding (p-CREB/CREB), advanced glycation end products (AGEs), inflammatory markers (TNFα, IL-1ß), glial fibrillary acidic protein (GFAP), and brain-derived neurotrophic factor (BDNF) were analyzed by western blotting. Telomere length was evaluated using real-time PCR. Memory and learning impairment, MDA enhancement, GSH reduction, and neuroinflammation via increasing the TNFα, IL-1ß, and GFAP contents were observed in d-gal group. TQ with d-gal, improved memory impairment, reduced oxidative stress, and alleviated neuroinflammation. The elevated level of AGEs decreased by TQ compared to d-gal. No changes were observed in the levels of p-ERK/ERK, p-CREB/CREB, p-P38/P38, BDNF, and telomere length following administration of d-gal or TQ plus d-gal. TQ improved memory deficits of d-gal through anti-oxidative and anti-inflammatory mechanisms.


Assuntos
Benzoquinonas/química , Galactose/efeitos adversos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Wistar , Homeostase do Telômero
12.
Gerontology ; 67(1): 60-68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33321495

RESUMO

AIMS: This study aimed to explore the new role of telomere length (TL) in the novel classification of type 2 diabetes mellitus (T2DM) patients driven by cluster analysis. MATERIALS AND METHODS: A total of 541 T2DM patients were divided into 4 subgroups by k-means analysis: mild obesity-related diabetes (MOD), severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), and mild age-related diabetes (MARD). After patients with insufficient data were excluded, further analysis was conducted on 246 T2DM patients. The TL was detected using telomere restriction fragment, and the related diabetic indexes were also measured by clinical standard procedures. RESULTS: The MARD group had significantly shorter TLs than the MOD and SIDD groups. Then, we subdivided all T2DM patients into the MARD and NONMARD groups, which included the MOD, SIDD, and SIRD groups. The TLs of the MARD group, associated with age, were discovered to be significantly shorter than those of the NONMARD group (p = 0.0012), and this difference in TL disappeared after metformin (p = 0.880) and acarbose treatment (p = 0.058). The linear analysis showed that metformin can more obviously reduce telomere shortening in the MARD group (r = 0.030, 95% CI 0.010-0.051, p = 0.004), and acarbose can more apparently promote telomere attrition in the SIRD group (r = -0.069, 95% CI -0.100 to -0.039, p< 0.001) compared with other T2DM patients after adjusting for age and gender. CONCLUSIONS: The MARD group was found to have shorter TLs and benefit more from the antiaging effect of metformin than other T2DM. Shorter TLs were observed in the SIRD group after acarbose use.


Assuntos
Acarbose/uso terapêutico , Diabetes Mellitus Tipo 2 , Hipoglicemiantes/uso terapêutico , Leucócitos , Metformina/uso terapêutico , Encurtamento do Telômero/efeitos dos fármacos , Idoso , Senescência Celular/efeitos dos fármacos , Análise por Conglomerados , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Masculino , Homeostase do Telômero/efeitos dos fármacos , Resultado do Tratamento
13.
Aging (Albany NY) ; 12(22): 22445-22456, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206062

RESUMO

INTRODUCTION: Aging is characterized by the progressive loss of physiological capacity. At the cellular level, two key hallmarks of the aging process include telomere length (TL) shortening and cellular senescence. Repeated intermittent hyperoxic exposures, using certain hyperbaric oxygen therapy (HBOT) protocols, can induce regenerative effects which normally occur during hypoxia. The aim of the current study was to evaluate whether HBOT affects TL and senescent cell concentrations in a normal, non-pathological, aging adult population. METHODS: Thirty-five healthy independently living adults, aged 64 and older, were enrolled to receive 60 daily HBOT exposures. Whole blood samples were collected at baseline, at the 30th and 60th session, and 1-2 weeks following the last HBOT session. Peripheral blood mononuclear cells (PBMCs) telomeres length and senescence were assessed. RESULTS: Telomeres length of T helper, T cytotoxic, natural killer and B cells increased significantly by over 20% following HBOT. The most significant change was noticed in B cells which increased at the 30th session, 60th session and post HBOT by 25.68%±40.42 (p=0.007), 29.39%±23.39 (p=0.0001) and 37.63%±52.73 (p=0.007), respectively. There was a significant decrease in the number of senescent T helpers by -37.30%±33.04 post-HBOT (P<0.0001). T-cytotoxic senescent cell percentages decreased significantly by -10.96%±12.59 (p=0.0004) post-HBOT. In conclusion, the study indicates that HBOT may induce significant senolytic effects including significantly increasing telomere length and clearance of senescent cells in the aging populations.


Assuntos
Envelhecimento , Oxigenoterapia Hiperbárica , Imunossenescência , Subpopulações de Linfócitos/imunologia , Homeostase do Telômero , Encurtamento do Telômero , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Israel , Subpopulações de Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
14.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906638

RESUMO

In this review, we propose a holistic approach to understanding cancer as a metabolic disease. Our search for relevant studies in medical databases concludes that cancer cells do not evolve directly from normal healthy cells. We hypothesize that aberrant DNA damage accumulates over time-avoiding the natural DNA controls that otherwise repair or replace the rapidly replicating cells. DNA damage starts to accumulate in non-replicating cells, leading to senescence and aging. DNA damage is linked with genetic and epigenetic factors, but the development of cancer is favored by telomerase activity. Evidence indicates that telomere length is affected by chronic inflammations, alterations of mitochondrial DNA, and various environmental factors. Emotional stress also influences telomere length. Chronic inflammation can cause oxidative DNA damage. Oxidative stress, in turn, can trigger mitochondrial changes, which ultimately alter nuclear gene expression. This vicious cycle has led several scientists to view cancer as a metabolic disease. We have proposed complex personalized treatments that seek to correct multiple changes simultaneously using a psychological approach to reduce chronic stress, immune checkpoint therapy with reduced doses of chemo and radiotherapy, minimal surgical intervention, if any, and mitochondrial metabolic reprogramming protocols supplemented by intermittent fasting and personalized dietary plans without interfering with the other therapies.


Assuntos
Neoplasias/metabolismo , Homeostase do Telômero/fisiologia , Telômero/metabolismo , Divisão Celular , Senescência Celular/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , DNA Mitocondrial/genética , Saúde Holística , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/terapia , Estresse Oxidativo , Medicina de Precisão/métodos , Telomerase/metabolismo , Telômero/genética , Homeostase do Telômero/genética
15.
Oncogene ; 39(36): 5811-5824, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32733068

RESUMO

Telomere maintenance via telomerase reactivation is a nearly universal hallmark of cancer cells which enables replicative immortality. In contrast, telomerase activity is silenced in most adult somatic cells. Thus, telomerase represents an attractive target for highly selective cancer therapeutics. However, development of telomerase inhibitors has been challenging and thus far there are no clinically approved strategies exploiting this cancer target. The discovery of prevalent mutations in the TERT promoter region in many cancers and recent advances in telomerase biology has led to a renewed interest in targeting this enzyme. Here we discuss recent efforts targeting telomerase, including immunotherapies and direct telomerase inhibitors, as well as emerging approaches such as targeting TERT gene expression driven by TERT promoter mutations. We also address some of the challenges to telomerase-directed therapies including potential therapeutic resistance and considerations for future therapeutic applications and translation into the clinical setting. Although much work remains to be done, effective strategies targeting telomerase will have a transformative impact for cancer therapy and the prospect of clinically effective drugs is boosted by recent advances in structural models of human telomerase.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Telomerase/antagonistas & inibidores , Animais , Biomarcadores Tumorais , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/diagnóstico , Neoplasias/etiologia , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Resultado do Tratamento
16.
Nutr Metab Cardiovasc Dis ; 30(10): 1795-1799, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32723580

RESUMO

Type 2 Diabetes mellitus is associated with aging and shortened telomere length. Telomerase replaces lost telomeric repeats at the ends of chromosomes and is necessary for the replicative immortality of cells. Aspirin and the n3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are commonly used therapies in people with type 2 diabetes for reducing cardiovascular disease events, though their relation to telomerase activity is not well studied. We explored the effects of aspirin, EPA + DHA, and the combined effects of aspirin and EPA + DHA treatment on telomerase activity in 30 adults with diabetes mellitus. EPA and DHA ingestion alone increased telomerase activity then a decrease occurred with the addition of aspirin consumption. Crude (F-stat = 2.09, p = 0.13) and adjusted (F-stat = 2.20, p = 0.14) analyses of this decrease showed signs of a trend. These results suggest that aspirin has an adverse effect on aging in diabetics who have relatively high EPA and DHA ingestion.


Assuntos
Aspirina/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Telomerase/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Aspirina/efeitos adversos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/enzimologia , Ácidos Docosa-Hexaenoicos/efeitos adversos , Ácido Eicosapentaenoico/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , New York , Resultado do Tratamento
17.
Clin Nutr ; 39(10): 3086-3091, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32057534

RESUMO

BACKGROUND: Growing evidence suggested that lifestyle factors including dietary habits may influence the telomere length which is a reliable marker of biological aging and predictor for chronic diseases. However, the role of dietary selenium intake in telomere length maintenance is rarely examined. OBJECTIVE: We aimed to test the relationship between dietary selenium intake and telomere length among middle-aged and older adults in America. METHODS: A total of 3194 United States adults older than 45 years old were extracted from the National Health and Nutrition Examination Survey (NHANES) in 1999-2000 and 2001-2002. Leukocyte telomere length was measured using the quantitative real-time polymerase chain reaction (qPCR). Dietary selenium intake was assessed by a trained interviewer using 24-h dietary recall method. Generalized linear models were performed to evaluate the association of dietary selenium intake with telomere length. The restricted cubic spline analysis was used to further explore the nonlinear dose-response relationship between dietary selenium intake and telomere length. RESULTS: After adjusting potential confounders, every 20 µg increase in dietary selenium intake was associated with 0.42% (95% CI: 0.02%, 0.82%) longer telomere length in all participants. In the subgroup analyses, dietary selenium intake was related to longer telomere length in females (Percentage change: 0.87%; 95% CI: 0.26%, 1.49%) and non-obese participants (Percentage change: 0.53%; 95% CI: 0.04%, 1.02%), but not in males (Percentage change: 0.04%; 95% CI: -0.49%, 0.57%) and obese participants (Percentage change: 0.21%; 95% CI: -0.47%, 0.91%). The restricted cubic spline analysis showed a linear association between dietary selenium intake and telomere length. CONCLUSIONS: This study indicated that the increased dietary selenium intake was associated with longer telomere length among middle-aged and older adults in America. These findings require further corroboration from future prospective studies.


Assuntos
Envelhecimento/metabolismo , Dieta , Leucócitos/metabolismo , Selênio/administração & dosagem , Homeostase do Telômero , Telômero/metabolismo , Fatores Etários , Idoso , Envelhecimento/genética , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Selênio/metabolismo , Fatores Sexuais , Estados Unidos
18.
PLoS One ; 15(1): e0226972, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31914160

RESUMO

Mounting evidence indicates that coffee, a commonly consumed beverage worldwide, is inversely associated with various chronic diseases and overall mortality. Few studies have evaluated the effect of coffee drinking on telomere length, a biomarker of chromosomal integrity, and results have been inconsistent. Understanding this association may provide mechanistic insight into associations of coffee with health. The aim of our study was to test the hypothesis that heavier coffee intake is associated with greater likelihood of having above-median telomere length. We evaluated the cross-sectional association between coffee intake and relative telomere length using data from 1,638 controls from four previously conducted case-control studies nested in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Coffee intake was assessed using a food frequency questionnaire, and relative telomere length was measured from buffy-coat, blood, or buccal cells. We used unconditional logistic regression models to generate multivariable-adjusted, study-specific odds ratios for the association between coffee intake and relative telomere length. We then conducted a random-effects meta-analysis to determine summary odds ratios. We found that neither summary continuous (OR = 1.01, 95% CI = 0.99-1.03) nor categorical (OR <3 cups/day vs. none = 1.37, 95% CI = 0.71-2.65; OR ≥3 cups/day vs. none = 1.47, 95% CI = 0.81-2.66) odds ratio estimates of coffee drinking and relative telomere length were statistically significant. However, in the largest of the four contributing studies, moderate (<3 cups/day) and heavy coffee drinkers (≥3 cups/day) were 2.10 times (95% CI = 1.25, 3.54) and 1.93 times as likely (95% CI = 1.17, 3.18) as nondrinkers to have above-median telomere length, respectively. In conclusion, we found no evidence that coffee drinking is associated with telomere length. Thus, it is unlikely that telomere length plays a role in potential coffee-disease associations.


Assuntos
Cafeína/farmacologia , Café , Homeostase do Telômero/efeitos dos fármacos , Idoso , Café/metabolismo , Neoplasias Colorretais/prevenção & controle , Estudos Transversais , Feminino , Humanos , Neoplasias Pulmonares/prevenção & controle , Masculino , Pessoa de Meia-Idade , Neoplasias Ovarianas/prevenção & controle , Neoplasias da Próstata/prevenção & controle
19.
Res Vet Sci ; 129: 137-153, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32000015

RESUMO

In dogs, decreasing telomere length is a biomarker for cellular aging. On a systemic level, aging affects the locomotor system in particular, leading to restricted joint mobility. As aging is thought to be related to oxidative stress, it may be counteracted by a diet enriched with antioxidants, mitochondrial cofactors and omega-3 fatty acids. This randomized, blinded and placebo-controlled study examined the influence of an accordingly enriched diet compared to a control diet on 36 young and 38 old shepherd dogs. At the outset, after 3 and after 6 months, mean and minimum telomere lengths were measured. Furthermore, minimum and maximum joint angles and range of motion of the shoulder, elbow, carpal, hip, stifle and tarsal joints were measured by computer-assisted gait analysis. A positive influence of the enriched diet on old dogs could be verified for minimum telomere length and all three parameters of the shoulder joint on the side with the higher vertical ground reaction force after 6 months. In the other joints there were less significant differences; in some cases they indicated a contrary influence of the enriched diet on young dogs, probably due to its reduced protein content. The greater effect of the enriched diet on minimum than on mean telomere length may be due to the higher preference of telomerase for short telomeres. The greater effect on shoulder joint mobility is explained by the greater influence of musculature and connective tissue in this joint. For elderly dogs it is advisable to feed these nutritional supplements.


Assuntos
Envelhecimento/fisiologia , Antioxidantes/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Mitocôndrias/metabolismo , Articulação do Ombro/fisiologia , Homeostase do Telômero/efeitos dos fármacos , Animais , Dieta/veterinária , Suplementos Nutricionais , Cães , Método Duplo-Cego , Estresse Oxidativo , Joelho de Quadrúpedes , Telômero/efeitos dos fármacos , Encurtamento do Telômero
20.
Psychoneuroendocrinology ; 108: 20-27, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185369

RESUMO

Combinations of multiple meditation practices have been shown to reduce the attrition of telomeres, the protective caps of chromosomes (Carlson et al., 2015). Here, we probed the distinct effects on telomere length (TL) of mindfulness meditation (MM) and loving-kindness meditation (LKM). Midlife adults (N = 142) were randomized to be in a waitlist control condition or to learn either MM or LKM in a 6-week workshop. Telomere length was assessed 2 weeks before the start of the workshops and 3 weeks after their termination. After controlling for appropriate demographic covariates and baseline TL, we found TL decreased significantly in the MM group and the control group, but not in the LKM group. There was also significantly less TL attrition in the LKM group than the control group. The MM group showed changes in TL that were intermediate between the LKM and control groups yet not significantly different from either. Self-reported emotions and practice intensity (duration and frequency) did not mediate these observed group differences. This study is the first to disentangle the effects of LKM and MM on TL and suggests that LKM may buffer telomere attrition.


Assuntos
Envelhecimento/psicologia , Meditação/psicologia , Atenção Plena/métodos , Adulto , Envelhecimento/fisiologia , Emoções/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Telômero/fisiologia , Homeostase do Telômero/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA