Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Expert Rev Vaccines ; 15(9): 1113-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27118328

RESUMO

INTRODUCTION: Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose significant public health problems in their endemic regions. Moreover, HF arenaviruses represent credible biodefense threats. There are not FDA-approved arenavirus vaccines and current anti-arenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. AREAS COVERED: Live-attenuated vaccines (LAV) represent the most feasible approach to control HF arenaviruses within their endemic regions. Different platforms, including recombinant viral vectors expressing LASV antigens, and the use of attenuated reassortant arenaviruses, have been used to develop LAV candidates against LASV with promising results in animal models of LASV infection, but none of them has entered a clinical trial. These vaccine efforts have been the subject of recent reviews and will not be examined in this review, which is focused on new avenues for the development of safe and effective LAV to combat HF arenaviruses. Expert commentary: The development of arenavirus reverse genetics has provided investigators with a novel powerful approach to manipulate the genomes of HF arenaviruses, which has opened new avenues for the rapid development of safe and effective LAV to combat these human pathogens.


Assuntos
Infecções por Arenaviridae/prevenção & controle , Arenavirus/imunologia , Febres Hemorrágicas Virais/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Animais , Infecções por Arenaviridae/virologia , Descoberta de Drogas/tendências , Avaliação Pré-Clínica de Medicamentos , Febres Hemorrágicas Virais/virologia , Humanos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação
2.
J Virol ; 89(16): 8428-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041296

RESUMO

UNLABELLED: Certain members of the Arenaviridae family are category A agents capable of causing severe hemorrhagic fevers in humans. Specific antiviral treatments do not exist, and the only commonly used drug, ribavirin, has limited efficacy and can cause severe side effects. The discovery and development of new antivirals are inhibited by the biohazardous nature of the viruses, making them a relatively poorly understood group of human pathogens. We therefore adapted a reverse-genetics minigenome (MG) rescue system based on Junin virus, the causative agent of Argentine hemorrhagic fever, for high-throughput screening (HTS). The MG rescue system recapitulates all stages of the virus life cycle and enables screening of small-molecule libraries under biosafety containment level 2 (BSL2) conditions. The HTS resulted in the identification of four candidate compounds with potent activity against a broad panel of arenaviruses, three of which were completely novel. The target for all 4 compounds was the stage of viral entry, which positions the compounds as potentially important leads for future development. IMPORTANCE: The arenavirus family includes several members that are highly pathogenic, causing acute viral hemorrhagic fevers with high mortality rates. No specific effective treatments exist, and although a vaccine is available for Junin virus, the causative agent of Argentine hemorrhagic fever, it is licensed for use only in areas where Argentine hemorrhagic fever is endemic. For these reasons, it is important to identify specific compounds that could be developed as antivirals against these deadly viruses.


Assuntos
Antivirais/farmacologia , Infecções por Arenaviridae/prevenção & controle , Arenavirus/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Internalização do Vírus/efeitos dos fármacos , Antivirais/isolamento & purificação , Humanos , Vírus Junin/genética , Genética Reversa/métodos
3.
Antiviral Res ; 80(3): 239-50, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18782590

RESUMO

Several arenaviruses cause hemorrhagic fever (HF) in humans, and evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Moreover, arenaviruses pose a biodefense threat. No licensed anti-arenavirus vaccines are available, and current anti-arenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with anemia and other side effects. Therefore, it is important to develop effective vaccines and better antiviral drugs to combat the dual threats of naturally occurring and intentionally introduced arenavirus infections. The development of arenavirus reverse genetic systems is allowing investigators to conduct a detailed molecular characterization of the viral cis-acting signals and trans-acting factors that control each of the steps of the arenavirus life cycle, including RNA synthesis, packaging and budding. Knowledge derived from these studies is uncovering potential novel targets for therapeutic intervention, as well as facilitating the establishment of assays to identify and characterize candidate antiviral drugs capable of interfering with specific steps of the virus life cycle. Likewise, the ability to generate predetermined specific mutations within the arenavirus genome and analyze their phenotypic expression would significantly contribute to the elucidation of arenavirus-host interactions, including the basis of their ability to cause severe HF. This, in turn, could lead to the development of novel, potent and safe arenavirus vaccines.


Assuntos
Antivirais/farmacologia , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus/genética , Vacinas Virais/imunologia , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/prevenção & controle , Infecções por Arenaviridae/virologia , Arenavirus/efeitos dos fármacos , Arenavirus/imunologia , Arenavirus/fisiologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Regiões Promotoras Genéticas , Vacinas Virais/genética , Fenômenos Fisiológicos Virais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA