Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728477

RESUMO

Tissue injury-induced neutrophil recruitment is a prerequisite for the initiation and amplification of inflammatory responses. Although multiple proteases and enzymes involved in post-translational modification (PTM) of proteins regulate leukocyte recruitment, an unbiased functional screen of enzymes regulating inflammatory leukocyte recruitment has yet to be undertaken. Here, using a zebrafish tail fin amputation (TFA) model to screen a chemical library consisting of 295 compounds that target proteases and PTM enzymes, we identified multiple histone deacetylase (HDAC) inhibitors that modulate inflammatory neutrophil recruitment. AR-42, a pan-HDAC inhibitor, was shown to inhibit neutrophil recruitment in three different zebrafish sterile tissue injury models: a TFA model, a copper-induced neuromast damage and mechanical otic vesicle injury (MOVI) model, and a sterile murine peritonitis model. RNA sequencing analysis of AR-42-treated fish embryos revealed downregulation of neutrophil-associated cytokines/chemokines, and exogenous supplementation with recombinant human IL-1ß and CXCL8 partially restored the defective neutrophil recruitment in AR-42-treated MOVI model fish embryos. We thus demonstrate that AR-42 non-cell-autonomously modulates neutrophil recruitment by suppressing transcriptional expression of cytokines/chemokines, thereby identifying AR-42 as a promising anti-inflammatory drug for treating sterile tissue injury-associated diseases.


Assuntos
Inibidores de Histona Desacetilases , Peixe-Zebra , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Infiltração de Neutrófilos , Neutrófilos , Quimiocinas , Peptídeo Hidrolases
2.
Int Immunopharmacol ; 119: 110177, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068336

RESUMO

OBJECTIVES: Acute lung injury (ALI) poses a serious threat to human health globally, particularly with the Coronavirus 2019 (COVID-19) pandemic. Excessive recruitment and infiltration of neutrophils is the major etiopathogenesis of ALI. Esculin, also known as 6,7-dihydroxycoumarin, is a remarkable compound derived from traditional Chinese medicine Cortex fraxini. Accumulated evidence indicates that esculin has potent anti-inflammatory effects, but its pharmaceutical effect against ALI and potential mechanisms are still unclear. METHODS: This study evaluated the protective effect of esculin against ALI by histopathological observation and biochemical analysis of lung tissues and bronchoalveolar lavage fluid (BALF) in lipopolysaccharide (LPS)-challenged ALI mice in vivo. The effects of esculin on N-formyl-met-leu-phe (fMLP)-induced neutrophil migration and chemotaxis were quantitatively assessed using a Transwell assay and an automated cell imaging system equipped with a Zigmond chamber, respectively. The drug affinity responsive target stability (DARTS) assay, in vitro protein binding assay and molecular docking were performed to identify the potential therapeutic target of esculin and the potential binding sites and pattern. RESULTS: Esculin significantly attenuated LPS-induced lung pathological injury, reduced the levels of pro-inflammatory cytokines in both BALF and lung, and suppressed the activation of NF-κB signaling. Esculin also significantly reduced the number of total cells and neutrophils as well as myeloperoxidase (MPO) activity in the BALF. Esculin impaired neutrophil migration and chemotaxis as evidenced by the reduced migration distance and velocity. Furthermore, esculin remarkably inhibited Vav1 phosphorylation, suppressed Rac1 activation and the PAK1/LIMK1/cofilin signaling axis. Mechanistically, esculin could interact with ß2 integrin and then diminish its ligand affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: Esculin inhibits ß2 integrin-dependent neutrophil migration and chemotaxis, blocks the cytoskeletal remodeling process required for neutrophil recruitment, thereby contributing to its protective effect against ALI. This study demonstrates the new therapeutic potential of esculin as a novel lead compound.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Camundongos , Humanos , Animais , Lipopolissacarídeos/farmacologia , Esculina/metabolismo , Esculina/farmacologia , Esculina/uso terapêutico , Infiltração de Neutrófilos , Simulação de Acoplamento Molecular , COVID-19/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/patologia , NF-kappa B/metabolismo , Integrinas/metabolismo , Quinases Lim/metabolismo
3.
Int Immunopharmacol ; 118: 110082, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989889

RESUMO

Sepsis-associated acute lung injury remains to be a major cause of morbidity and mortality worldwide, and there is a lack of effective therapeutic drugs. Curdione, an activeingredient of Curcuma zedoary, a traditional Chinese medicine (TCM), possesses a variety of pharmacological actions, such as anti-inflammatory, antioxidant and inhibition of platelet aggregation. However, whether curdione protects against sepsis-induced lung injury is still undetermined. In this study, we investigated the effects of curdione on sepsis-induced lung injury. Cecal ligation and puncture (CLP) surgery was performed in mice to establish a model of sepsis. Twenty-four hours after CLP, bronchoalveolar lavage fluid (BALF) and lung tissue samples were harvested for investigation. The protective effects of curdione on acute lung injury and potential mechanisms were explored by detecting pathological sections, exudative proteins, oxidative responses, inflammatory factors, platelet activation, neutrophil infiltration, and neutrophil extracellular trap (NET) formation in the lung and were further verified in vitro. We showed that treatment with curdione clearly relieved histopathological changes, reduced inflammatory cytokine elevation and total protein concentrations in BALF, and decreased oxidative stress responses in lung tissues. In addition, curdione inhibited platelet activation, further blocking the interaction between platelets and neutrophils. Finally, neutrophil infiltration and NET formation was also reduced in mice treated with curdione. In conclusion, curdione alleviates sepsis-induced lung injury by inhibiting platelet-mediated neutrophil recruitment, infiltration, and NET formation as well as its anti-inflammatory and antioxidant properties. Curdione has great therapeutic potential in sepsis.


Assuntos
Lesão Pulmonar Aguda , Armadilhas Extracelulares , Sepse , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Antioxidantes/farmacologia , Pulmão/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Infiltração de Neutrófilos , Camundongos Endogâmicos C57BL
4.
Phytomedicine ; 108: 154488, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36240606

RESUMO

BACKGROUND: Cancer has emerged as a systemic disease which targets various organs thus challenging the overall physiology of the host. Recently, we have shown that hyperactive neutrophils infiltrate various organs of tumor bearing host and contribute to gradual systemic deterioration. Therefore, taming neutrophils via potent immunomodulators could be an appropriate therapeutic approach in regulating systemic damage. Tinospora cordifolia (TC), an Ayurvedic panacea, is known for its immense medicinal values in traditional literature and recent reports have also documented its immunomodulatory potential. However, whether TC can regulate neutrophils to exert its therapeutic effectiveness has not been deciphered so far. METHODS: For the in vivo study, we utilized murine model of Dalton's Lymphoma (DL). T. cordifolia extract (TCE) treatment was scheduled at early, mid and advanced stages of tumor growth at a dose of 400 mg/kg b.w for 30 consecutive days. Effect of TCE on neutrophil infiltration was examined by immunostaining. Neutrophil elastase (NE) level in serum, ascitic fluid and various tissues was monitored by ELISA. Further, qPCR was performed to assess transcripts levels of NE, myeloperoxidase (MPO), metalloproteinases (MMP-8, MMP-9) and cathepsin G (CSTG) in various tissues. ROS level in tissue was assessed by DHE staining and organ function was assessed by histology post TCE treatment. RESULTS: Our findings showed that TC treatment significantly reduced neutrophil count in peripheral blood and their infiltration in vital organs of tumor-bearing host. Further, it ameliorated neutrophil hyperactivation by down regulating the expression of its key cargoes including NE, MPO, MMP-8, MMP-9 and CSTG at early and mid stage of tumor growth. In addition, TC treatment prevented histopathological alterations and restored the normal serum enzyme levels at different stages of tumor growth. Importantly, TC treatment also showed significant reduction in tumor burden which was accompanied by a remarkable increase in survival of the tumor-bearing mice. CONCLUSIONS: We conclude that T. cordifolia could limit systemic damage via regulating neutrophil infiltration and hyperactivation which can further lead to cancer control at both prophylactic and therapeutic level.


Assuntos
Neoplasias , Tinospora , Camundongos , Animais , Metaloproteinase 9 da Matriz , Infiltração de Neutrófilos , Metaloproteinase 8 da Matriz , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Neoplasias/tratamento farmacológico
5.
Oxid Med Cell Longev ; 2022: 1599747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242275

RESUMO

Trimethylamine-N-oxide (TMAO), an intestinal flora metabolite of choline, may aggravate atherosclerosis by inducing a chronic inflammatory response and thereby promoting the occurrence of cerebrovascular diseases. Knowledge about the influence of TMAO-related inflammatory response on the pathological process of acute stroke is limited. This study was designed to explore the effects of TMAO on neuroinflammation, brain injury severity, and long-term neurologic function in mice with acute intracerebral hemorrhage (ICH). We fed mice with either a regular chow diet or a chow diet supplemented with 1.2% choline pre- and post-ICH. In this study, we measured serum levels of TMAO with ultrahigh-performance liquid chromatography-tandem mass spectrometry at 24 h and 72 h post-ICH. The expression level of P38-mitogen-protein kinase (P38-MAPK), myeloid differentiation factor 88 (MyD88), high-mobility group box1 protein (HMGB1), and interleukin-1ß (IL-1ß) around hematoma was examined by western blotting at 24 h. Microglial and astrocyte activation and neutrophil infiltration were examined at 72 h. The lesion was examined on days 3 and 28. Neurologic deficits were examined for 28 days. A long-term choline diet significantly increased serum levels of TMAO compared with a regular diet at 24 h and 72 h after sham operation or ICH. Choline diet-induced high serum levels of TMAO did not enhance the expression of P38-MAPK, MyD88, HMGB1, or IL-1ß at 24 h. However, it did increase the number of activated microglia and astrocytes around the hematoma at 72 h. Contrary to our expectations, it did not aggravate acute or long-term histologic damage or neurologic deficits after ICH. In summary, choline diet-induced high serum levels of TMAO increased the cellular inflammatory response probably by activating microglia and astrocytes. However, it did not aggravate brain injury or worsen long-term neurologic deficits. Although TMAO might be a potential risk factor for cerebrovascular diseases, this exploratory study did not support that TMAO is a promising target for ICH therapy.


Assuntos
Astrócitos/metabolismo , Lesões Encefálicas/sangue , Lesões Encefálicas/complicações , Hemorragia Cerebral/sangue , Hemorragia Cerebral/complicações , Colina/efeitos adversos , Dieta/efeitos adversos , Metilaminas/sangue , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doença Aguda , Animais , Lesões Encefálicas/microbiologia , Hemorragia Cerebral/microbiologia , Modelos Animais de Doenças , Microbioma Gastrointestinal , Inflamação/sangue , Inflamação/induzido quimicamente , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Nat Prod Res ; 36(23): 6081-6084, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35227131

RESUMO

Pimenta pseudocaryophyllus (Gomes) Landrum is a Brazilian native plant. The mechanisms by which it promotes analgesia are unknown. We demonstrated the analgesic effect of P. pseudocaryophyllus dried extract (3 mg/kg; i.p.) in the following models of inflammatory pain (maximal inhibition): phenyl-p-benzoquinone (89%), formalin (72% - 1st phase and 96% - 2nd phase for flinches, and 50% - 1st phase and 71% - 2nd phase for licking behavior), complete Freund's adjuvant (95% - flinches and 33% - licking behavior), and carrageenin (56% - mechanical and 85% - thermal hyperalgesia) without motor impairment. Its analgesic effect depends on inhibiting neutrophil recruitment (95% - histopathology, 83% - myeloperoxidase activity, and 80% - LysM-eGFP mice), oxidative stress (86% - GSH and 98% - superoxide anion), and cytokine production (35% - IL-33, 80% - TNF-α, and 95% - IL-1ß). The present study advances in understanding the analgesic mechanisms of P. pseudocaryophyllus.


Assuntos
Pimenta , Camundongos , Animais , Infiltração de Neutrófilos , Dor/tratamento farmacológico , Estresse Oxidativo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Hiperalgesia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Inflamação/tratamento farmacológico , Citocinas/metabolismo
7.
Planta Med ; 88(6): 466-478, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33862643

RESUMO

Identification of novel anti-inflammatory strategies are needed to avoid the side effects associated with the currently available therapies. Use of anti-inflammatory herbal remedies is gaining attention. The purpose of the present investigation was to evaluate the pharmacological potential of the withanolide-rich root extracts of the medical plant Withania somnifera (L.) Dunal using in vivo and in vitro models of endotoxin-induced inflammation and oxidative stress. The pharmacological effects of W. somnifera root extracts were evaluated using a mouse model of endotoxin (lipopolysaccharide)-induced peritonitis and various relevant human cell lines. HPLC analysis of the W. somnifera root extracts identified the presence of various bioactive withanolides. In vivo challenge of mice with endotoxin resulted in the infiltration of various leukocytes, specifically neutrophils, along with monocytes and lymphocytes into the peritoneal cavity. Importantly, prophylactic treatment with W. somnifera inhibited the migration of neutrophils, lymphocytes, and monocytes and decreased the release of interleukin-1ß, TNF-α, and interleukin-6 cytokines into the peritoneal cavity as identified by ELISA. Liver (glutathione peroxidase, glutathione, glutathione disulfide, superoxide dismutase, malondialdehyde, myeloperoxidase) and peritoneal fluid (nitrite) biochemical analysis revealed the antioxidant profile of W. somnifera. Similarly, in human HepG2 cells, W. somnifera significantly modulated the antioxidant levels. In THP-1 cells, W. somnifera decreased the secretion of interleukin-6 and TNF-α. In HEK-Blue reporter cells, W. somnifera inhibited TNF-α-induced nuclear factor-κB/activator protein 1 transcriptional activity. Our findings suggest the pharmacological effects of root extracts of W. somnifera rich in withanolides inhibit neutrophil infiltration, oxidative hepatic damage, and cytokine secretion via modulating the nuclear factor-κB/activator protein 1 pathway.


Assuntos
Peritonite , Withania , Vitanolídeos , Antioxidantes/farmacologia , Citocinas/metabolismo , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Humanos , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Infiltração de Neutrófilos , Estresse Oxidativo , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Raízes de Plantas/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Withania/metabolismo , Vitanolídeos/metabolismo , Vitanolídeos/farmacologia
8.
Exp Eye Res ; 214: 108883, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896107

RESUMO

PURPOSE: To investigate the effect of Glabridin (GLD) in Aspergillus fumigatus keratitis and its associated mechanisms. METHODS: Aspergillus fumigatus (A. fumigatus) conidia was inoculated in 96-well plate, and minimal inhibitory concentration (MIC) and biofilm formation ability were evaluated after GLD treatment. Spore adhesion ability was evaluated in conidia infected human corneal epithelial cells (HCECs). Keratitis mouse model was created by corneal intrastromal injection with A. fumigatus conidia, and GLD treatment started at the day after infection. The number of fungal colonies was calculated by plate count, and degree of corneal inflammation was assessed by clinical score. Flow cytometry, myeloperoxidase (MPO), and immunofluorescence staining (IFS) experiments were used to assess neutrophil infiltrations. PCR, ELISA and Western blot were conducted to determine levels of TLR4, Dectin-1 as well as downstream inflammatory factors. RESULTS: GLD treatment suppressed the proliferation, biofilm formation abilities and adhesive capability of A. fumigatus. In mice upon A. fumigatus infection, treatment of GLD showed significantly decreased severity of corneal inflammation, reduced number of A. fumigatus in cornea, and suppressed neutrophil infiltration in cornea. GLD treatment obviously inhibited mRNA and protein levels of Dectin-1, TLR4 and proinflammatory mediators such as IL-1ß, HMGB1, and TNF-α in mice corneas compared to the control group. CONCLUSION: GLD has antifungal and anti-inflammatory effects in fungal keratitis through suppressing A. fumigatus proliferation and alleviating neutrophil infiltration, and repressing the expression of TLR4, Dectin-1 and proinflammatory mediators.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/fisiologia , Úlcera da Córnea/tratamento farmacológico , Infecções Oculares Fúngicas/tratamento farmacológico , Isoflavonas/uso terapêutico , Fenóis/uso terapêutico , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Western Blotting , Úlcera da Córnea/microbiologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Infecções Oculares Fúngicas/microbiologia , Feminino , Citometria de Fluxo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Infiltração de Neutrófilos , Reação em Cadeia da Polimerase , Receptor 4 Toll-Like/metabolismo
9.
Clin Transl Oncol ; 24(2): 244-253, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34236615

RESUMO

BACKGROUND: Bacterial-mediated cancer immunotherapy (BCI) elicits a more robust initial immune response than conventional immunotherapy, but does not prevent tumor recurrence and metastasis. BCI is associated with recruitment of tumor-infiltrating neutrophils, which could suppress the therapeutic efficacy of this modality. Development endothelial locus 1 (Del-1), a potent inhibitor of neutrophil recruitment, antagonizes lymphocyte function-associated antigen-1 on the vascular endothelium. Here, we aimed to determine the effect of Del-1-secreting S.t△ppGpp on anti-tumor activity and tumor-infiltrating neutrophil recruitment in a mouse model of colon cancer. METHODS: We investigated the anti-cancer activity of Del-1-secreting engineered Salmonella (△ppGpp S. Typhimurium) in the mice colon cancer models. RESULTS: In the present study, we identified that Del-1-secreting engineered Salmonella had more potent anti-cancer activity compared with normal S.t△ppGpp without Del-1 secretion. We postulated that Del-1 expression increased M1 macrophage recruitment to tumors by decreasing tumor-infiltrating neutrophils. This approach could enhance the anti-cancer effects of S.t△ppGpp. CONCLUSIONS: Collectively, the approach of using engineered bacteria that deliver Del-1 to block tumor-infiltrating neutrophil recruitment is a potential therapeutic approach.


Assuntos
Terapia Biológica/métodos , Proteínas de Ligação ao Cálcio/fisiologia , Moléculas de Adesão Celular/fisiologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Infiltração de Neutrófilos , Salmonella typhimurium , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Resultado do Tratamento
10.
Life Sci ; 297: 120228, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921864

RESUMO

AIMS: Alcoholic liver disease (ALD) comprises an important component in chronic liver diseases, and its clinical significance has increased due to the high consumption of alcohol worldwide. Vitamin C is a potent antioxidant, and several previous studies have suggested that its therapeutic role in ALD is derived from its antioxidant role. However, its anti-inflammatory role in ALD remains to be elucidated. Especially, the relationship between vitamin C and infiltration of neutrophils in ALD has not been discussed to date. For the reason, the present study investigated the precise role of vitamin C in neutrophil infiltration in ALD. MAIN METHODS: In the present study, wild-type C57BL/6 and vitamin C-deficient senescence marker protein 30-knockout mice were pair-fed with a Lieber-DeCarli control or ethanol diet. Ethanol-fed groups were fed with increasing concentrations of EtOH (Lieber-DeCarli control diet for 5 days, 3% EtOH diet for a week, and 5% diet for 2 weeks) with or without vitamin C supplementation. KEY FINDINGS: Vitamin C dramatically attenuated the ethanol-mediated liver disease in the vitamin C-deficient ethanol-fed mice group by suppressing the infiltration of neutrophils accompanied by less CD68-positive cell infiltration. This attenuating role of vitamin C in neutrophil infiltration in the liver is associated with its protective effect for the ethanol-mediated intestinal damage in vitamin C-deficient ethanol-fed mice. SIGNIFICANCE: This study provides a novel possibility of vitamin C to be used as an anti-inflammatory therapeutic agent associated with neutrophil infiltration in ALD, thereby helping to establish strategies for attenuating ALD.


Assuntos
Antioxidantes , Hepatopatias Alcoólicas , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos
11.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884728

RESUMO

S100A9, a pro-inflammatory alarmin, is up-regulated in inflamed tissues. However, the role of S100A9 in regulating neutrophil activation, inflammation and lung damage in sepsis is not known. Herein, we hypothesized that blocking S100A9 function may attenuate neutrophil recruitment in septic lung injury. Male C57BL/6 mice were pretreated with the S100A9 inhibitor ABR-238901 (10 mg/kg), prior to cercal ligation and puncture (CLP). Bronchoalveolar lavage fluid (BALF) and lung tissue were harvested for analysis of neutrophil infiltration as well as edema and CXC chemokine production. Blood was collected for analysis of membrane-activated complex-1 (Mac-1) expression on neutrophils as well as CXC chemokines and IL-6 in plasma. Induction of CLP markedly increased plasma levels of S100A9. ABR-238901 decreased CLP-induced neutrophil infiltration and edema formation in the lung. In addition, inhibition of S100A9 decreased the CLP-induced up-regulation of Mac-1 on neutrophils. Administration of ABR-238901 also inhibited the CLP-induced increase of CXCL-1, CXCL-2 and IL-6 in plasma and lungs. Our results suggest that S100A9 promotes neutrophil activation and pulmonary accumulation in sepsis. Targeting S100A9 function decreased formation of CXC chemokines in circulation and lungs and attenuated sepsis-induced lung damage. These novel findings suggest that S100A9 plays an important pro-inflammatory role in sepsis and could be a useful target to protect against the excessive inflammation and lung damage associated with the disease.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Calgranulina B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Sepse/complicações , Sulfonamidas/uso terapêutico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Quimiocinas CXC/metabolismo , Avaliação Pré-Clínica de Medicamentos , Interleucina-6/metabolismo , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sepse/imunologia , Sepse/metabolismo , Sulfonamidas/farmacologia
12.
Int Arch Allergy Immunol ; 182(12): 1143-1154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34649239

RESUMO

BACKGROUND: Asthma animal models provide valuable information about the pathogenesis and the treatment of asthma. An ovalbumin (OVA)/complete Freund's adjuvant (CFA)-sensitized model was developed to induce neutrophil-dominant asthma and to investigate whether fungal immunomodulatory peptide-fve (FIP-fve) could improve asthma features in the OVA/CFA-sensitized model. METHODS: We used female BALB/c mice and sensitized them intraperitoneally with OVA/CFA on days 1, 2, and 3. On days 14, 17, 21, 24, and 27, they were challenged with intranasal OVA. The airway hyper-responsiveness (AHR) was detected by BUXCO, inflammatory cells were stained with Liu's stain, the cytokines were detected using ELISA, and the airway inflammation was analyzed with hematoxylin and eosin stain. RESULTS: According to the results, OVA/CFA sensitization could induce AHR, high levels of IgE, and inflammatory cells especially neutrophils infiltration in the lung and airway inflammation. IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, IL-17, IL-25, IL-33, and transforming growth factor-ß (TGF-ß) increased in the OVA/CFA-sensitized mice. OVA/CFA-sensitized mice treated with FIP-fve not only increased IL-12 and IFN-γ but also decreased IL-4, IL-5, IL-6, IL-8, IL-13, IL-17, IL-25, IL-33, and TGF-ß in the bronchoalveolar lavage fluid. Moreover, FIP-fve significantly decreased neutrophil infiltration in the lung. CONCLUSION: The OVA/CFA model induced neutrophilic asthma successfully, and FIP-fve improved neutrophil-dominant asthma.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Proteínas Fúngicas/uso terapêutico , Neutrófilos/efeitos dos fármacos , Animais , Antiasmáticos/farmacologia , Asma/imunologia , Asma/patologia , Biomarcadores/metabolismo , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Adjuvante de Freund/imunologia , Proteínas Fúngicas/farmacologia , Imunoglobulina E/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Ovalbumina/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Resultado do Tratamento
13.
J Neuroinflammation ; 18(1): 137, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130727

RESUMO

BACKGROUND: The secondary injury caused by traumatic brain injury (TBI), especially white matter injury (WMI), is highly sensitive to neuroinflammation, which further leads to unfavored long-term outcomes. Although the cross-talk between the three active events, immune cell infiltration, BBB breakdown, and proinflammatory microglial/macrophage polarization, plays a role in the vicious cycle, its mechanisms are not fully understood. It has been reported that cordycepin, an extract from Cordyceps militaris, can inhibit TBI-induced neuroinflammation although the long-term effects of cordycepin remain unknown. Here, we report our investigation of cordycepin's long-term neuroprotective function and its underlying immunological mechanism. METHODS: TBI mice model was established with a controlled cortical impact (CCI) method. Cordycepin was intraperitoneally administered twice daily for a week. Neurological outcomes were assessed by behavioral tests, including grid walking test, cylinder test, wire hang test, and rotarod test. Immunofluorescence staining, transmission electron microscopy, and electrophysiology recording were employed to assess histological and functional lesions. Quantitative-PCR and flow cytometry were used to detect neuroinflammation. The tracers of Sulfo-NHS-biotin and Evans blue were assessed for the blood-brain barrier (BBB) leakage. Western blot and gelatin zymography were used to analyze protein activity or expression. Neutrophil depletion in vivo was performed via using Ly6G antibody intraperitoneal injection. RESULTS: Cordycepin administration ameliorated long-term neurological deficits and reduced neuronal tissue loss in TBI mice. Meanwhile, the long-term integrity of white matter was also preserved, which was revealed in multiple dimensions, such as morphology, histology, ultrastructure, and electrical conductivity. Cordycepin administration inhibited microglia/macrophage pro-inflammatory polarization and promoted anti-inflammatory polarization after TBI. BBB breach was attenuated by cordycepin administration at 3 days after TBI. Cordycepin suppressed the activities of MMP-2 and MMP-9 and the neutrophil infiltration at 3 days after TBI. Moreover, neutrophil depletion provided a cordycepin-like effect, and cordycepin administration united with neutrophil depletion did not show a benefit of superposition. CONCLUSIONS: The long-term neuroprotective function of cordycepin via suppressing neutrophil infiltration after TBI, thereby preserving BBB integrity and changing microglia/macrophage polarization. These findings provide significant clinical potentials to improve the quality of life for TBI patients.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Desoxiadenosinas/uso terapêutico , Doenças Neuroinflamatórias/prevenção & controle , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores , Infiltração de Neutrófilos/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Desoxiadenosinas/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
14.
J Leukoc Biol ; 110(3): 475-484, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34184309

RESUMO

Neutrophil plays a critical role in the progression of periodontitis. In general, its chemotaxis and activation are benefit for the host defense of bacterial infection and inflammation. However, previous studies have reported that the hyperactive and reactive neutrophils appear to be one of the reasons for tissue destruction in periodontitis tissues. In this study, we investigated an isoquinoline alkaloid Litcubanine A (LA), which from the Traditional Chinese medicinal plant, Litsea cubeba. We found LA showed significant activity in inhibiting neutrophils chemotaxis in the zebrafish yolk sac microinjection model in vivo and in mouse neutrophils in vitro. Further investigation proved that LA could inhibit the expression levels of neutrophil respiratory burst-related and inflammation-related genes CYBB and NCF2, as well as inhibit the activation of MAPK signaling pathway. Moreover, using LA, we successfully achieved the effect of reducing periodontitis bone loss by regulating neutrophil chemotaxis and related functions in a mouse ligature-induced periodontitis model.


Assuntos
Alcaloides/uso terapêutico , Quimiotaxia , Isoquinolinas/uso terapêutico , Neutrófilos/patologia , Periodontite/tratamento farmacológico , Alcaloides/farmacologia , Animais , Reabsorção Óssea/patologia , Quimiotaxia/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-8/metabolismo , Isoquinolinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microinjeções , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Periodontite/diagnóstico por imagem , Periodontite/patologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Explosão Respiratória/efeitos dos fármacos , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/metabolismo , Peixe-Zebra
15.
Pharm Biol ; 59(1): 89-96, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33535870

RESUMO

CONTEXT: Tanshinone IIA is a natural extract derived from a Chinese medicinal herb with multiple bioactivities; however, whether and how tanshinone IIA protects against colorectal cancer (CRC) are uncertain. OBJECTIVE: We investigated the potential beneficial effects of tanshinone IIA in a colitis-associated colorectal tumorigenesis mouse model and its underlying mechanisms. MATERIALS AND METHODS: Male C57BL/6 mice were treated with azoxymethane (AOM) 10 mg/kg body weight and dextran sulphate sodium (2.5% DSS) to induce a colitis-associated cancer model. Tanshinone IIA (200 mg/kg body weight) was given to the mice intraperitoneally. After 12 weeks, all mice were sacrificed to measure tumour formation, intestinal permeability, neutrophil infiltration, and colonic inflammation. In addition, whether tanshinone IIA has inhibitory effects on neutrophil activation was determined through in vitro investigations. RESULTS: We observed that tanshinone IIA significantly decreased tumour formation in AOM/DSS-treated mice compared to AOM/DSS-treated alone mice (0.266 ± 0.057 vs. 0.78 ± 0.153, p = 0.013). Tanshinone IIA also decreased intestinal permeability compared to that in AOM/DSS-treated alone mice (3.12 ± 0.369 vs. 5.06 ± 0.597, p = 0.034) and consequently reduced neutrophil infiltration of the colonic mucosa (53.25 ± 8.85 vs. 107.6 ± 13.09, p = 0.014) as well as intestinal inflammation in mice. Mechanistically, tanshinone IIA downregulated the NF-κB signalling pathway in the colonic tumours of AOM/DSS-treated mice. In vitro assays further validated that tanshinone IIA suppressed LPS-induced neutrophil activation. CONCLUSION: These data suggest that tanshinone IIA alleviates colorectal tumorigenesis through inhibition of intestinal inflammation. Tanshinone IIA may have a therapeutic potential for CRC in clinical practice.


Assuntos
Abietanos/farmacologia , Colite/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Inflamação/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/farmacologia , Azoximetano/toxicidade , Colite/complicações , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação/complicações , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Acta Biomater ; 123: 354-363, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476827

RESUMO

Resolvins are a group of specialized proresolving lipid mediators (SPMs) enzymatically produced from omega-3 fatty acids during acute inflammation response to infections or tissue injury. Resolvin D1 (RvD1) is one of resolvins and is well studied in resolution of inflammation to treat inflammatory diseases. Resolution of inflammation includes the inhibition of polymorphonuclear leukocyte recruitment and reduced cytokine production. However, effective delivery of RvD1 to inflammatory tissues is challenging because of its lack of tissue targeting and poor physicochemical properties. Here, we proposed nanovesicles made from human neutrophil membrane which can specifically target inflamed tissues, and we loaded RvD1 on the surface of nanovesicles and antibiotic (ceftazidime, CEF) inside nanovesicles for improved treatment of bacterial infections. In a mouse model of bacterium-induced peritonitis, we demonstrated that human neutrophil cell membrane-formed vesicles (NMVs) enhanced inflammation resolution and bacterial killing after co-delivery of RvD1 and CEF. Our studies reveal that neutrophil nanovesicles may be critical for enhanced therapy to infectious diseases.


Assuntos
Doenças Transmissíveis , Preparações Farmacêuticas , Animais , Humanos , Inflamação/tratamento farmacológico , Infiltração de Neutrófilos , Neutrófilos
17.
J Surg Res ; 261: 282-292, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33477077

RESUMO

BACKGROUND: Ischemia-reperfusion injury has been one of the culprits of tissue injury and flap loss after island flap transpositions. Thus, significant research has been undertaken to study how to prevent or decrease the spread of ischemia-reperfusion injury. Preventive effects of ß-glucan on ischemia-reperfusion injury in the kidney, lung, and small intestine have previously been reported. In this study, we present the ameliorating effects of ß-glucan on ischemia-reperfusion injury using the epigastric artery island-flap in rats. MATERIALS AND METHODS: Thirty Wistar-Albino rats were equally divided into three groups: sham, experimental model, and treatment groups. In the sham group, an island flap was elevated and sutured back to the original position without any ischemia. In the experimental model group, the same-sized flap was elevated and sutured back with 8 h of ischemia and consequent 12 h of reperfusion. In the treatment group, 50 mg per kilogram ß-glucan was administered to the rats using an orogastric tube for 10 d before the experiment. The same-sized flap is elevated and sutured back to its original position with 8 h of ischemia and 12 h of consequent reperfusion in the treatment group. Tissue biopsies were taken on the first day of the experimental surgery. Tissue neutrophil aggregation and vascular responses were evaluated by histological examinations. Tissue oxidant and antioxidant enzyme levels are evaluated biochemically after tissue homogenization. Topographic follow-up and evaluation of the flaps were maintained, and photographs were taken on the first and seventh day of the experimental surgery. RESULTS: Topographic flap survival was significantly better in the ß-glucan administered group. The neutrophil number, malondialdehyde, and myeloperoxidase levels were significantly lower while glutathione peroxidase and superoxide dismutase levels were significantly higher in the ß-glucan administered group respective to the experimental model group. CONCLUSIONS: Based on the results of our study, we can conclude that ß-glucan is protective against ischemia-reperfusion injury. Our study presents the first experimental evidence of such an effect on skin island flaps.


Assuntos
Retalhos de Tecido Biológico/efeitos adversos , Traumatismo por Reperfusão/prevenção & controle , beta-Glucanas/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos , Artérias Epigástricas , Retalhos de Tecido Biológico/imunologia , Masculino , Infiltração de Neutrófilos , Oxirredutases/metabolismo , Ratos Wistar , Traumatismo por Reperfusão/enzimologia , Sobrevivência de Tecidos
18.
J Ethnopharmacol ; 267: 113501, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122121

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Stem barks of Caesalpinia ferrea Mart. Ex Tul. (Caesalpiniaceae), also known as pau-ferro jucá or jucaína, are popularly used to treat contusions, diabetes, rheumatism and other inflammatory conditions in the form of tea, lick or decoction. OBJECTIVE: To evaluate the effect of the polysaccharide-rich extract obtained from C. ferrea stem barks (PE-Cf) in mice models of acute inflammation induced by zymosan and the involvement of oxidative stress biomarkers. MATERIALS AND METHODS: Mice were treated with PE-Cf (0.001, 0.01, 0.1, 1 mg/kg) by endovenous route (i.v.) or per oral (p.o.) 30 or 60 min before injection of the inflammatory stimuli zymosan (0.5 mg; intraperitoneal or subcutaneous intraplantar). The inflammatory parameters (edema, nociception, leukocyte migration) and oxidative stress markers (myeloperoxidase-MPO, malondialdehyde-MDA, nitrite, reduced glutathione-GSH, glutathione peroxidase-GPx) were evaluated in the models of paw edema (hidropletysmometry/expressed as ml or area under curve-AUC) and peritonitis (optical microscopy/expressed as n° of cells/mm3 of peritoneal fluid). Statistical analysis was performed by ANOVA, followed by Bonferroni test. RESULTS: PE-Cf (0.1, 0.01 and 1 mg/kg) dose-dependently inhibited paw edema, showing maximal effect (74%) at 1 mg/kg in the 5th (52 ± 9.6 µl vs. zymosan: 204 ± 3.6 µl). PE-Cf (1 mg/kg) also inhibited by 43% MPO activity in the paw tissues (17 ± 1 vs. zymosan: 30 ± 2.6 U/mg). Besides, 4 h after peritonitis induction, PE-Cf (1 mg/kg) reduced neutrophil migration by 84% (432 ± 45 vs. zymosan: 2651 ± 643 cells/mm3); visceral nociception by 76% (3 ± 0.6 vs. zymosan: 16 ± 4 writhes); nitric oxide by 73% (0.131 ± 0.033 vs. zymosan: 0.578 ± 0.185 NO2-/NO3-ml); MDA (98 ± 10 vs. zymosan:156 ± 21 U/ml), and increased GSH by 65% (736 ± 65 vs. zymosan: 259 ± 58 µmol/ml) and GPx by 72% (0.037 ± 0.007 vs. zymosan: 0.010 ± 0.005 U/mg protein). CONCLUSION: The polysaccharide-rich extract of Caesalpinia ferrea stem barks present anti-inflammatory and antioxidant effects in mice models of acute inflammation induced by zymosan.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Caesalpinia , Edema/prevenção & controle , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peritonite/prevenção & controle , Casca de Planta , Caules de Planta , Polissacarídeos/farmacologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Biomarcadores/metabolismo , Caesalpinia/química , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/metabolismo , Edema/patologia , Feminino , Camundongos , Infiltração de Neutrófilos , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/metabolismo , Dor Nociceptiva/prevenção & controle , Peritonite/induzido quimicamente , Peritonite/metabolismo , Peritonite/patologia , Casca de Planta/química , Caules de Planta/química , Polissacarídeos/isolamento & purificação , Transdução de Sinais , Zimosan
19.
J Ethnopharmacol ; 267: 113497, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091492

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sheng-Mai Yin (SMY), a famous traditional Chinese medicine formula, has been commonly used in China for centuries to treat various diseases, such as inflammation-related diseases. However, the anti-inflammatory activity of SMY and its potential mechanisms still have not yet been clearly understood. AIM OF THE STUDY: In this study, we aimed to determine the anti-inflammatory effect of SMY and explore its underlying mechanisms both on RAW 264.7 cells and zebrafish. MATERIALS AND METHODS: The levels of pro-inflammatory cytokines IL-6 and TNF-α secreted by RAW 264.7 cells were measured by ELISA. The protein expressions of IκBα, p-IκBα (Ser32), STAT3 and p-STAT3 (Tyr705) were determined by Western blotting. And the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 macrophage cells was detected by confocal microscopy. Moreover, the in vivo anti-inflammatory effect of SMY and its potential mechanisms were further investigated by survival analysis, hematoxylin-eosin staining (H&E), observation of neutrophil migration and quantitative real-time PCR (qRT-PCR) analysis in zebrafish inflammatory models. RESULTS: SMY reduced the release of IL-6 and TNF-α, inhibited the phosphorylation of IκBα and STAT3 as well as the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 cells. Furthermore, the increased survival, decreased infiltration of inflammatory cells and the attenuated migration of neutrophils together suggested the in vivo anti-inflammatory effects of SMY. More importantly, SMY reduced the gene expressions of pro-inflammatory cytokines and suppressed LPS-induced up-regulation of NF-κB, IκBα and STAT3 in zebrafish inflammatory models. CONCLUSION: SMY exerts significant anti-inflammatory effects with a potential mechanism of inhibiting the NF-κB and STAT3 signal pathways. Our findings suggest a scientific rationale of SMY to treat inflammatory diseases in clinic.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Sulfato de Cobre , Citocinas/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células RAW 264.7 , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
J Ethnopharmacol ; 269: 113747, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359185

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liang-Ge-San (LGS), a traditional Chinese medicine (TCM) formula, is usually used in acute inflammatory diseases in China. AIM OF THE STUDY: This study aims to detect the optimal combination of anti-inflammatory components from LGS. MATERIALS AND METHODS: Four mainly representative components (phillyrin, emodin, baicalin, and liquiritin) from LGS were chosen. The optimal combination was investigated by orthogonal design study. Zebrafish inflammation model was established by lipopolysaccharide (LPS)-yolk microinjection, and then the anti-inflammatory activities of different combinations were determined by survival analysis, changes on inflammatory cells infiltration, the MyD88/NF-κB and MAPK pathways and inflammatory cytokines production. RESULTS: The different combinations of bioactive ingredients from LGS significantly protected zebrafish from LPS-induced inflammation, as evidenced by decreased recruitment of macrophages and neutrophils, inhibition of the MyD88/NF-κB and MAPK pathways and down-regulation of TNF-α and IL-6. Among them, the combination group 8 most significantly protected against LPS. The combination of group 8 is: 0.1 µM of emodin, 2 µM of baicalin, 20 µM of phillyrin and 12.5 µM of liquiritin. CONCLUSION: The optimized combination group 8 exerts the most significant anti-inflammatory activity by inhibiting the recruitment of inflammatory cells, activation of the MyD88/NF-κB and MAPK pathways and the secretion of pro-inflammatory cytokines. This present study provides pharmacological evidences for the further development of new modern Chinese drug from LGS to treat acute inflammatory diseases, but indicated the use of zebrafish in the screening of components from formulas.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Emodina/farmacologia , Emodina/uso terapêutico , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Inflamação/induzido quimicamente , Interleucina-6/genética , Larva/citologia , Larva/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Medicina Tradicional Chinesa , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Saco Vitelino/citologia , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/imunologia , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA