Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 820
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1446-1454, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621928

RESUMO

This study investigated the mechanism of Yuxuebi Tablets(YXB) in the treatment of synovial inflammation in rheumatoid arthritis(RA) based on transcriptomic analysis. Transcriptome sequencing technology was employed to analyze the gene expression profiles of joint tissues from normal rats, collagen-induced arthritis(CIA) rats(an RA model), and YXB-treated rats. Common diffe-rentially expressed genes(DEGs) were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. RA synovial inflammation-related target genes were retrieved from the OMIM and GeneCards databases. Venny 2.1 software was used to identify the intersection of YXB target genes and RA synovial inflammation-related target genes, and GO and KEGG enrichment analyses were performed on the intersecting target genes. Immunohistochemistry was used to assess the protein expression levels of the inflammatory factors interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in rat joint tissues. Western blot analysis was employed to measure the expression levels of key proteins in the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway. A total of 2 058 DEGs were identified by intersecting the genes from the normal group vs model group and the model group vs YXB treatment group. A search in OMIM and GeneCards databases yielded 1 102 RA synovial inflammation-related target genes. After intersecting with the DEGs in the YXB treatment group, 204 intersecting target genes were identified, primarily involving biological processes such as immune response, signal transduction, and inflammatory response; cellular components including plasma membrane, extracellular space, and extracellular region; molecular functions like protein binding, identical protein binding, and receptor binding. These target genes were mainly enriched in signaling pathways such as PI3K/Akt, cytokine-cytokine receptor interaction, and Janus kinase/signal transducer and activator of transcription(JAK/STAT). Western blot results showed that YXB at low, medium, and high doses could significantly inhibit the expression levels of key proteins in the PI3K/Akt signaling pathway in rat joint tissues in a dose-dependent manner. Immunohistochemistry further confirmed these findings, showing that YXB not only suppressed the protein expression levels of the inflammatory factors IL-1ß and TNF-α in the joint synovial tissues of CIA rats, but also inhibited p-Akt protein expression. In conclusion, this study used transcriptomic analysis to uncover the key mechanisms of YXB in inhibiting synovial inflammation and alleviating the progression of RA, with a focus on its role in suppressing the PI3K/Akt signaling pathway.


Assuntos
Artrite Reumatoide , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Membrana Sinovial , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Perfilação da Expressão Gênica/métodos
2.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649200

RESUMO

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Assuntos
Terapia por Acupuntura , Artrite Experimental , Quimiocina CXCL1 , Receptores de Interleucina-8B , Córtex Somatossensorial , Animais , Humanos , Masculino , Camundongos , Ratos , Pontos de Acupuntura , Artrite Experimental/terapia , Artrite Experimental/metabolismo , Artrite Experimental/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Inflamação/terapia , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos BALB C , Dor/metabolismo , Dor/genética , Manejo da Dor , Ratos Wistar , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Transdução de Sinais , Córtex Somatossensorial/metabolismo
3.
J Agric Food Chem ; 72(14): 7832-7844, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38544357

RESUMO

Lycopene has been proven to alleviate nonalcoholic steatohepatitis (NASH), but the precise mechanisms are inadequately elucidated. In this study, we found a previously unknown regulatory effect of lycopene on the apoptosis signal-regulating kinase 1 (ASK1) signaling pathway in both in vivo and in vitro models. Lycopene supplementation (3 and 6 mg/kg/day) exhibited a significant reduction in lipid accumulation, inflammation, and fibrosis of the liver in mice fed with a high-fat/high-cholesterol diet or a methionine-choline-deficient diet. RNA sequencing uncovered that the mitogen-activated protein kinases signaling pathway, which is closely associated with inflammation and endoplasmic reticulum (ER) stress, was significantly downregulated by lycopene. Furthermore, we found lycopene ameliorated ER swelling and decreased the expression levels of ER stress markers (i.e., immunoglobulin heavy chain binding protein, C/EBP homologous protein, and X-box binding protein 1s). Especially, the inositol-requiring enzyme 1α involved in the ASK1 phosphorylation was inhibited by lycopene, resulting in the decline of the subsequent c-Jun N-terminal kinase (JNK) signaling cascade. ASK1 inhibitor DQOP-1 eliminated the lycopene-induced inhibition of the ASK1-JNK pathway in oleic acid and palmitic acid-induced HepG2 cells. Molecular docking further indicated hydrophobic interactions between lycopene and ASK1. Collectively, our research indicates that lycopene can alleviate ER stress and attenuate inflammation cascades and lipid accumulation by inhibiting the ASK1-JNK pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Sistema de Sinalização das MAP Quinases/fisiologia , Licopeno/metabolismo , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/farmacologia , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Estresse do Retículo Endoplasmático , Lipídeos/farmacologia , Apoptose
4.
Sci Rep ; 14(1): 7354, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548769

RESUMO

Immune nutrition is currently used to enhance fish health by incorporating functional ingredients into aquafeeds. This study aimed to investigate the connections between tryptophan nutrition and the network that regulates the communication pathways between neuroendocrine and immune systems in European seabass (Dicentrarchus labrax). When tryptophan was supplemented in the diet of unstressed fish, it induced changes in the hypothalamic-pituitary-interrenal axis response to stress. Tryptophan-mediated effects were observed in the expression of anti-inflammatory cytokines and glucocorticoid receptors. Tryptophan supplementation decreased pro-opiomelanocortin b-like levels, that are related with adrenocorticotropic hormone and cortisol secretion. When stressed fish fed a tryptophan-supplemented diet were subjected to an inflammatory stimulus, plasma cortisol levels decreased and the expression of genes involved in the neuroendocrine response was altered. Modulatory effects of tryptophan dietary intervention on molecular patterns seem to be mediated by altered patterns in serotonergic activity.


Assuntos
Hidrocortisona , Triptofano , Animais , Triptofano/metabolismo , Suplementos Nutricionais , Inflamação/genética , Dieta
5.
Calcif Tissue Int ; 114(5): 490-501, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528199

RESUMO

To elucidate the precise upstream and downstream regulatory mechanisms of inflammatory factors in osteoporosis (OP) progression and to establish a causal relationship between inflammatory factors and OP. We conducted bidirectional Mendelian randomization (MR) analyses using data for 41 cytokines obtained from three independent cohorts comprising 8293 Finnish individuals. Estimated bone mineral density (eBMD) data were derived from 426,824 UK Biobank White British individuals (55% female) and fracture data from 416,795 UK Biobank participants of European ancestry. The inverse variance-weighted method was the primary MR analysis approach. We employed other methods as complementary approaches for mutual corroboration. To test for pleiotropy and heterogeneity, we used the MR-Egger regression, MR-pleiotropy residual sum and outlier global test, and the Cochrane Q test. Macrophage inflammatory protein (MIP)-1α and interleukin (IL)-12p70 expression associated negatively and causally with eBMD (ß = -0.017 [MIP-1α], ß = -0.011 [IL-12p70]). Conversely, tumor necrosis factor-related apoptosis-inducing ligand was associated with a decreased risk of fractures (Odds Ratio: 0.980). Additionally, OP influenced the expression of multiple inflammatory factors, including growth-regulated oncogene-α, interferon-gamma, IL-6, beta nerve growth factor, and IL-2. Finally, we discovered complex bidirectional causal relationships between IL-8, IL-10, and OP. Specific inflammatory factors may contribute to OP development or may be causally affected by OP. We identified a bidirectional causal relationship between certain inflammatory factors and OP. These findings provide new perspectives for early prediction and targeted treatment of OP. Larger cohort studies are necessary in the future to further validate these findings.


Assuntos
Densidade Óssea , Citocinas , Inflamação , Análise da Randomização Mendeliana , Osteoporose , Humanos , Análise da Randomização Mendeliana/métodos , Feminino , Osteoporose/genética , Citocinas/metabolismo , Inflamação/genética , Masculino , Densidade Óssea/genética , Pessoa de Meia-Idade , Idoso , Estudos de Coortes
6.
Adv Sci (Weinh) ; 11(19): e2308031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493498

RESUMO

Activated microglia in the retina are essential for the development of autoimmune uveitis. Yin-Yang 1 (YY1) is an important transcription factor that participates in multiple inflammatory and immune-mediated diseases. Here, an increased YY1 lactylation in retinal microglia within in the experimental autoimmune uveitis (EAU) group is observed. YY1 lactylation contributed to boosting microglial activation and promoting their proliferation and migration abilities. Inhibition of lactylation suppressed microglial activation and attenuated inflammation in EAU. Mechanistically, cleavage under targets & tagmentation ï¼ˆCUT&Tag) analysis revealed that YY1 lactylation promoted microglial activation by regulating the transcription of a set of inflammatory genes, including STAT3, CCL5, IRF1, IDO1, and SEMA4D. In addition, p300 is identified as the writer of YY1 lactylation. Inhibition of p300 decreased YY1 lactylation and suppressed microglial inflammation in vivo and in vitro. Collectively, the results showed that YY1 lactylation promoted microglial dysfunction in autoimmune uveitis by upregulating inflammatory cytokine secretion and boosting cell migration and proliferation. Therapeutic effects can be achieved by targeting the lactate/p300/YY1 lactylation/inflammatory genes axis.


Assuntos
Doenças Autoimunes , Modelos Animais de Doenças , Microglia , Uveíte , Fator de Transcrição YY1 , Animais , Microglia/metabolismo , Microglia/imunologia , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Camundongos , Uveíte/genética , Uveíte/imunologia , Uveíte/metabolismo , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células/genética
7.
Food Chem Toxicol ; 186: 114511, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360389

RESUMO

This article explores the impact of environmental chemicals on CCR5 expression and related inflammatory responses based on curated data from the Comparative Toxicogenomics Database (CTD). A total of 143 CCR5-interacting chemicals was found, with 229 chemical interactions. Of note, 67 (29.3%) out of 229 interactions resulted in "increased expression" of CCR5 mRNA or CCR5 protein, and 42 (18.3%) chemical interactions resulted in "decreased expression". The top-5 CCR5-interacting chemicals were "Tetrachlorodibenzodioxin", "Lipopolysaccharides", "Benzo(a)pyrene", "Drugs, Chinese Herbal", and "Ethinyl Estradiol". Based on the number of interactions and importance as environmental contaminant, we then focused our analysis on Tetrachlorodibenzodioxin and Benzo(a)pyrene. There is some consistency in the data supporting an increase in CCR5 expression triggered by Tetrachlorodibenzodioxin; although data concerning CCR5-Benzo(a)pyrene interactions is limited. Considering the high linkage disequilibrium between CCR5 and CCR2 genes, we also search for chemicals that interact with both genes, which resulted in 72 interacting chemicals, representing 50.3% of the 143 CCR5-interacting chemicals and 37.5% of the 192 CCR2-interacting chemicals. In conclusion, CTD data showed that environmental contaminants indeed affect CCR5 expression, with a tendency towards increased expression. The interaction of environmental contaminants with other chemokine receptor genes may potentialize their toxic effects on the chemokine system, favoring inflammation.


Assuntos
Dibenzodioxinas Policloradas , Toxicogenética , Humanos , Benzo(a)pireno/toxicidade , Inflamação/induzido quimicamente , Inflamação/genética , Quimiocinas , Receptores CCR5/genética
8.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338681

RESUMO

Selenium has been proven to influence several biological functions, showing to be an essential micronutrient. The functional studies demonstrated the benefits of a balanced selenium diet and how its deficiency is associated with diverse diseases, especially cancer and viral diseases. Selenium is an antioxidant, protecting the cells from damage, enhancing the immune system response, preventing cardiovascular diseases, and decreasing inflammation. Selenium can be found in its inorganic and organic forms, and its main form in the cells is the selenocysteine incorporated into selenoproteins. Twenty-five selenoproteins are currently known in the human genome: glutathione peroxidases, iodothyronine deiodinases, thioredoxin reductases, selenophosphate synthetase, and other selenoproteins. These proteins lead to the transport of selenium in the tissues, protect against oxidative damage, contribute to the stress of the endoplasmic reticulum, and control inflammation. Due to these functions, there has been growing interest in the influence of polymorphisms in selenoproteins in the last two decades. Selenoproteins' gene polymorphisms may influence protein structure and selenium concentration in plasma and its absorption and even impact the development and progression of certain diseases. This review aims to elucidate the role of selenoproteins and understand how their gene polymorphisms can influence the balance of physiological conditions. In this polymorphism review, we focused on the PubMed database, with only articles published in English between 2003 and 2023. The keywords used were "selenoprotein" and "polymorphism". Articles that did not approach the theme subject were excluded. Selenium and selenoproteins still have a long way to go in molecular studies, and several works demonstrated the importance of their polymorphisms as a risk biomarker for some diseases, especially cardiovascular and thyroid diseases, diabetes, and cancer.


Assuntos
Neoplasias , Selênio , Humanos , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Inflamação/genética , Neoplasias/genética , Biomarcadores
9.
J Sci Food Agric ; 104(4): 2272-2283, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947475

RESUMO

BACKGROUND: Dietary interventions are crucial in modulating inflammation in humans. Strawberries are enjoyed by people of different ages as a result of their attractive phenotype and taste. In addition, the active compounds in strawberries may contribute to the reduction of inflammation. When developing new strawberry cultivars to address agricultural and environmental threats, the bioactivity of strawberries must be improved to maintain their health benefits. RESULTS: We determined the phytochemical contents of extracts from a new Korean strawberry cultivar, with the CN7 cultivar extract possessing the highest total polyphenol and flavonoid contents compared to the CN5 and Seolhyang cultivar extracts. The new Korean strawberry cultivars reduced the expression of inflammatory-related genes in lipopolysaccharide (LPS)-induced RAW264.7 cells via the nuclear factor-kappa B signaling pathway, indicating an anti-inflammatory effect. The CN7 cultivar showed greater bioactivity potential and the highest ellagic acid content; hence, we assessed the effect of the CN7 cultivar in an LPS-stimulated mouse model. The CN7 cultivar treatment demonstrated its effectiveness in reducing inflammation via the downregulation of inflammatory cytokines secretion and gene expression. CONCLUSION: The results obtained in the present study have revealed the observable differences of the newly developed strawberry cultivars with Seolhyang in mitigating inflammation induced by LPS. The enhanced phytochemical content of the CN7 cultivar extract may contribute to its improved anti-inflammatory effect. Therefore, it is crucial to maintain the nutritive benefits of strawberry during the development of new cultivation. © 2023 Society of Chemical Industry.


Assuntos
Fragaria , Animais , Camundongos , Humanos , Fragaria/química , Lipopolissacarídeos , Frutas/química , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/análise , Anti-Inflamatórios/metabolismo , Macrófagos , República da Coreia
10.
Adv Biol (Weinh) ; 8(1): e2300315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37759403

RESUMO

Systemic sclerosis (SSc) is an immune-mediated rheumatic disease that is characterized by fibrosis of the skin and internal organs and vasculopathy with poor prognosis. Dangui Huoxue Preparation (DHP) is a clinically effective traditional Chinese herbal formula for the treatment of SSc in the hospital. This study aims to investigate the therapeutic effects and underlying molecular mechanisms of DHP in the treatment of SSc. SSc mice models are induced by bleomycin (BLM). Tissues of DHP group, normal control group, and positive control drug Sanqi Tongshu Capsule (STC) group are collected for inflammation, fibrosis, and vasculopathy. Also, the human dermal fibroblasts (HDF) stimulated with TGF-ß1 are analyzed for in vitro study. The expression levels of MCP-1, IFN-γ, IL-1ß, IL-10, Fizz1, iNOS, and IL12p40, and the mRNA levels of Col1a1, Col1a2, Col3a1, and Col5a1 are significantly decreased in all DHP groups and STC group compare with those in the BLM group. The main drug of DHP inhibits the proliferation and migration of HDF, reduces Ctgf, Itgb3, Itgb5 expression, and also inhibits the Smad3 pathway. In conclusion, DHP can ameliorate SSc skin inflammation, fibrosis, and vasculopathy, possibly suppressing the TGF-ß1/Smad3 signaling pathway through extracellular and intracellular mechanisms.


Assuntos
Escleroderma Sistêmico , Fator de Crescimento Transformador beta1 , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/efeitos adversos , Modelos Animais de Doenças , Fibrose , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Bleomicina/toxicidade , Bleomicina/uso terapêutico
11.
Biofactors ; 50(2): 311-325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37676478

RESUMO

There is limited knowledge about the factors that drive gut-liver axis changes after selenium (Se) deficiency-induced gut or liver injuries. Thus, we tested Se deficiency in mice to determine its effects on intestinal bacterial balance and whether it induced liver injury. Serum Se concentration, lipopolysaccharide (LPS) level, and liver injury biomarkers were tested using a biochemical method, while pathological changes in the liver and jejunum were observed via hematoxylin and eosin stain, and a fluorescence spectrophotometer was used to evaluate intestinal permeability. Tight junction (TJ)-related and toll-like receptor (TLR) signaling-related pathway genes and proteins were tested using quantitative polymerase chain reaction, western blotting, immunohistochemistry, and 16S ribosomal ribonucleic acid gene-targeted sequencing of jejunum microorganisms. Se deficiency significantly decreased glutathione peroxidase activity and disrupted the intestinal flora, with the most significant effect being a decrease in Lactobacillus reuteri. The expression of TJ-related genes and proteins decreased significantly with increased treatment time, whereas supplementation with Se, fecal microbiota transplantation, or L. reuteri reversed these decreases. Signs of liver injury and LPS content were significantly increased after intestinal flora imbalance or jejunum injury, and the levels of TLR signaling-related genes were significantly increased. The results indicated that Se deficiency disrupted the microbiota balance, decreased the expression of intestinal TJ factors, and increased intestinal permeability. By contrast, LPS increased due to a bacterial imbalance, which may induce inflammatory liver injury via the TLR4 signaling pathway.


Assuntos
Microbioma Gastrointestinal , Hepatite , Selênio , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Selênio/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inflamação/genética , NF-kappa B/metabolismo
12.
Mol Metab ; 80: 101864, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159883

RESUMO

OBJECTIVE: Maternal exposure during pregnancy is a strong determinant of offspring health outcomes. Such exposure induces changes in the offspring epigenome resulting in gene expression and functional changes. In this study, we investigated the effect of maternal Western hypercaloric diet (HCD) programming during the perinatal period on neuronal plasticity and cardiometabolic health in adult offspring. METHODS: C57BL/6J dams were fed HCD for 1 month prior to mating with regular diet (RD) sires and kept on the same diet throughout pregnancy and lactation. At weaning, offspring were maintained on either HCD or RD for 3 months resulting in 4 treatment groups that underwent cardiometabolic assessments. DNA and RNA were extracted from the hypothalamus to perform whole genome methylation, mRNA, and miRNA sequencing followed by bioinformatic analyses. RESULTS: Maternal programming resulted in male-specific hypertension and hyperglycemia, with both males and females showing increased sympathetic tone to the vasculature. Surprisingly, programmed male offspring fed HCD in adulthood exhibited lower glucose levels, less insulin resistance, and leptin levels compared to non-programmed HCD-fed male mice. Hypothalamic genes involved in inflammation and type 2 diabetes were targeted by differentially expressed miRNA, while genes involved in glial and astrocytic differentiation were differentially methylated in programmed male offspring. These data were supported by our findings of astrogliosis, microgliosis and increased microglial activation in programmed males in the paraventricular nucleus (PVN). Programming induced a protective effect in male mice fed HCD in adulthood, resulting in lower protein levels of hypothalamic TGFß2, NF-κB2, NF-κBp65, Ser-pIRS1, and GLP1R compared to non-programmed HCD-fed males. Although TGFß2 was upregulated in male mice exposed to HCD pre- or post-natally, only blockade of the brain TGFß receptor in RD-HCD mice improved glucose tolerance and a trend to weight loss. CONCLUSIONS: Our study shows that maternal HCD programs neuronal plasticity in the offspring and results in male-specific hypertension and hyperglycemia associated with hypothalamic inflammation in mechanisms and pathways distinct from post-natal HCD exposure. Together, our data unmask a compensatory role of HCD programming, likely via priming of metabolic pathways to handle excess nutrients in a more efficient way.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Hiperglicemia , Hipertensão , MicroRNAs , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Camundongos , Animais , Masculino , Dieta Ocidental , Diabetes Mellitus Tipo 2/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Camundongos Endogâmicos C57BL , Epigênese Genética , Hipotálamo/metabolismo , Inflamação/genética , Inflamação/metabolismo , Hiperglicemia/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Cardiovasculares/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4731-4737, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802812

RESUMO

This study aimed to analyze the effect of matrine on tumor necrosis factor-α(TNF-α)-induced inflammatory response in human umbilical vein endothelial cells(HUVECs) and explore whether the underlying mechanism was related to the miR-25-3p-mediated Krüppel-like factor 4(Klf4) pathway. The HUVEC cell inflammation model was induced by TNF-α stimulation. After 24 or 48 hours of incubation with different concentrations of matrine(0.625, 1.25, and 2.5 mmol·L~(-1)), CCK-8 assay was used to detect cell proliferation. After treatment with 2.5 mmol·L~(-1) matrine for 48 h, the expression of TNF-α, interleukin-6(IL-6), interleukin-1ß(IL-1ß), and Klf4 mRNA and miR-25-3p was detected by real-time fluorescence-based quantitative PCR, and the protein expression of TNF-α, IL-6, IL-1ß, and Klf4 was detected by Western blot. The anti-miR-25-3p was transfected into HUVECs, and the effect of anti-miR-25-3p on TNF-α-induced cell proliferation and inflammatory factors was detected by the above method. The cells were further transfected with miR-25-3p and incubated with matrine to detect the changes in proliferation and expression of related inflammatory factors, miR-25-3p, and Klf4. The targeting relationship between miR-25-3p and Klf4 was verified by bioinformatics analysis and dual luciferase reporter gene assay. The results displayed that matrine could inhibit TNF-α-induced HUVEC proliferation, decrease the mRNA and protein expression of TNF-α, IL-6, and IL-1ß, increase the mRNA and protein expression of Klf4, and reduce the expression of miR-25-3p. Bioinformatics analysis showed that there were specific complementary binding sites between miR-25-3p and Klf4 sequences. Dual luciferase reporter gene assay confirmed that miR-25-3p negatively regulated Klf4 expression in HUVECs by targeting. The inhibition of miR-25-3p expression can reduce TNF-α-induced cell proliferation and mRNA and protein expression of TNF-α, IL-6, and IL-1ß. MiR-25-3p overexpression could reverse the effect of matrine on TNF-α-induced cell proliferation and the mRNA and protein expression of TNF-α, IL-6, IL-1ß, and Klf4. This study shows that matrine inhibits the inflammatory response induced by TNF-α in HUVECs through miR-25-3p-mediated Klf4 pathway.


Assuntos
MicroRNAs , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana , Matrinas , Interleucina-6/genética , Transdução de Sinais , Antagomirs , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Luciferases/metabolismo , Luciferases/farmacologia , RNA Mensageiro , Apoptose
14.
Int J Biol Macromol ; 253(Pt 8): 127501, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866585

RESUMO

Bisphenol A (BPA) is an endocrine disruptor. Excessive BPA intake can damage the structure and function of the respiratory tract. Dietary selenium (Se) deficiency may also cause immune tissue damage. To investigate the potential mechanism of BPA on tracheal damage in selenium-deficient chickens and the role of microRNAs (miRNAs) in this process, we established in vitro and in vivo Se deficiency and BPA exposure models and screened out miR-155 for follow-up experiments. We further predicted and confirmed the targeting relationship between miR-155 and TRAF3 using TargetScan and dual luciferase assays and found that miR-155 was highly expressed and caused inflammatory damage. Further studies showed that BPA exposure increased airway oxidative stress, activated the NF-κB pathway, and caused inflammation and immune damage in selenium-deficient chickens, but down-regulating miR-155 and NAC treatment could reverse this phenomenon. This suggested that these pathways are regulated by the miR-155/TRAF3/ROS axis. In conclusion, BPA exposure aggravates airway inflammation in selenium-deficient chickens by regulating miR-155/TRAF3/ROS. This study revealed the mechanism of BPA exposure combined with Se deficiency in tracheal inflammatory injury in chickens and enriched the theoretical basis of BPA injury in poultry.


Assuntos
MicroRNAs , Selênio , Animais , Galinhas/metabolismo , Selênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética
15.
Inflamm Res ; 72(12): 2169-2180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37889323

RESUMO

OBJECTIVE: Ulcerative colitis (UC) is an inflammatory disease characterized by recurrent episodes of chronic intestinal inflammation. It is closely associated with immune dysregulation in the intestines. However, the mechanisms underlying the role of immune-related N7-methylguanosine (m7G) internal modification in UC remain unclear. METHODS: We conducted a screening of differentially expressed genes (DEGs) associated with m7G and performed immune infiltration analysis. We then investigated the correlation between m7G-related DEGs and immune cells or pathways. To further explore the functional implications, we conducted functional enrichment analysis to identify gene modules that strongly correlated with hub gene expression. In addition, we constructed a miRNA regulatory network for the hub genes in UC. Furthermore, we examined the association between hub genes and disease remission in UC patients undergoing biologic therapy. RESULTS: We obtained 13 m7G-related DEGs and conducted an in-depth analysis of immune infiltration. Among them, we identified five hub genes (NUDT7, NUDT12, POLR2H, QKI, and PRKCB) that showed diagnostic potential for UC. Through WGCNA and KEGG analysis, we found that gene modules strongly correlated with m7G hub gene expression were enriched in inflammation-related pathways. Furthermore, Kaplan-Meier survival analysis revealed a significant association between changes in hub gene expression levels and disease remission in UC patients undergoing biologic therapy. CONCLUSION: The findings of this study demonstrate that five m7G-related DEGs, including the m7G-modified recognition protein QKI, play a key role in the occurrence and progression of UC intestinal inflammation, which is closely related to intestinal immunity. These results provide valuable insights into the mechanisms of m7G modification in UC development and offer new perspectives for exploring novel therapeutic targets for UC.


Assuntos
Colite Ulcerativa , MicroRNAs , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Terapia Biológica , Inflamação/genética
16.
Sci Rep ; 13(1): 15245, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710007

RESUMO

The intensive exposure of the liver cells to any type of noxae, such as viruses, drugs, alcohols, and xenobiotics could induce hepatic inflammation through the upregulation of gene expression of several fibrotic and inflammatory mediators. So, our study assessed the role of silymarin on the inflammatory response induced by carbon tetrachloride (CCl4) as an example of xenobiotics on liver tissues in male rats. Forty-eight Wister male rats (weight: 130 ± 10) were housed for 14 days and then divided randomly into six groups: control, SLY: rats received only silymarin orally for 12 weeks (daily), CO: rats were injected with corn oil for 8 weeks (3 times weekly), CCl4: rats were injected with CCl4 solubilized in corn oil for 8 weeks (day by day), Treated: rats received silymarin for 4 weeks after CCl4 injection, Protected: rats received silymarin for 4 weeks before and 8 weeks during CCl4 injection. When the treatment period for the rats was over, they underwent scarification after anesthesia. Then, the sera were extracted from the collected blood for the determination of irisin levels, liver functions, and lipid profiles. Liver tissues were separated for the histopathological examinations, the determination of oxidative stress (OS) parameters content, and the relative gene expression of inflammatory cytokines; nuclear factor kappa (NF)-κB, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, cyclooxygenase (COX)-2, and transforming growth factor beta (TGF-ß). The findings showed that silymarin reduced liver inflammation by overcoming the OS process and inflammatory cytokines production which was stimulated by CCl4. These results were confirmed by histopathology of liver tissues.


Assuntos
Óleo de Milho , Citocinas , Masculino , Animais , Ratos , Ratos Wistar , Xenobióticos , Fígado , Interleucina-6 , Ciclo-Oxigenase 2/genética , NF-kappa B , Inflamação/induzido quimicamente , Inflamação/genética
17.
Redox Biol ; 64: 102803, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392516

RESUMO

Inflammatory bowel disease (IBD) is an immune-mediated gut dysfunction, which might also be associated with an inflammatory phenotype in the liver. It is known that the nutritional intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is inversely correlated to the severity and occurrence of IBD. In order to investigate whether n-3 PUFA can also reduce liver inflammation and oxidative liver damage due to colon inflammation, we explored the dextran sulfate sodium (DSS)-induced colitis model in wild-type and fat-1 mice with endogenously increased n-3 PUFA tissue content. Besides confirming previous data of alleviated DSS-induced colitis in the fat-1 mouse model, the increase of n-3 PUFA also resulted in a significant reduction of liver inflammation and oxidative damage in colitis-affected fat-1 mice as compared to wild-type littermates. This was accompanied by a remarkable increase of established inflammation-dampening n-3 PUFA oxylipins, namely docosahexaenoic acid-derived 19,20-epoxydocosapentaenoic acid and eicosapentaenoic acid-derived 15-hydroxyeicosapentaenoic acid and 17,18-epoxyeicosatetraenoic acid. Taken together, these observations demonstrate a strong inverse correlation between the anti-inflammatory lipidome derived from n-3 PUFA and the colitis-triggered inflammatory changes in the liver by reducing oxidative liver stress.


Assuntos
Colite , Ácidos Graxos Ômega-3 , Doenças Inflamatórias Intestinais , Camundongos , Animais , Camundongos Transgênicos , Ácidos Graxos Ômega-3/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Inflamação/genética , Fígado , Estresse Oxidativo
18.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446212

RESUMO

Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in the pathogenesis of inflammatory diseases, and its pro- and anti-inflammatory effects have been reported for different ALOX-isoforms. Human ALOX15B oxygenates arachidonic acid to its 15-hydroperoxy derivative, whereas the corresponding 8-hydroperoxide is formed by mouse Alox15b (Alox8). This functional difference impacts the biosynthetic capacity of the two enzymes for creating pro- and anti-inflammatory eicosanoids. To explore the functional consequences of the humanization of the reaction specificity of mouse Alox15b in vivo, we tested Alox15b knock-in mice that express the arachidonic acid 15-lipoxygenating Tyr603Asp and His604Val double mutant of Alox15b, instead of the arachidonic acid 8-lipoxygenating wildtype enzyme, in two different animal inflammation models. In the dextran sodium sulfate-induced colitis model, female Alox15b-KI mice lost significantly more bodyweight during the acute phase of inflammation and recovered less rapidly during the resolution phase. Although we observed significant differences in the colonic levels of selected pro- and anti-inflammatory eicosanoids during the time-course of inflammation, there were no differences between the two genotypes at any time-point of the disease. In Freund's complete adjuvant-induced paw edema model, Alox15b-KI mice were less susceptible than outbred wildtype controls, though we did not observe significant differences in pain perception (Hargreaves-test, von Frey-test) when the two genotypes were compared. our data indicate that humanization of the reaction specificity of mouse Alox15b (Alox8) sensitizes mice for dextran sodium sulfate-induced experimental colitis, but partly protects the animals in the complete Freund's adjuvant-induced paw edema model.


Assuntos
Colite , Dextranos , Humanos , Camundongos , Feminino , Animais , Ácido Araquidônico , Inflamação/genética , Mamíferos , Anti-Inflamatórios , Edema/induzido quimicamente , Edema/genética , Modelos Animais de Doenças
19.
Inflamm Res ; 72(8): 1649-1664, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37498393

RESUMO

BACKGROUND, OBJECTIVES AND DESIGN: Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS: Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS: In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION: The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.


Assuntos
Araquidonato 15-Lipoxigenase , Colite , Humanos , Camundongos , Feminino , Animais , Camundongos Transgênicos , Adjuvante de Freund , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/uso terapêutico , Dextranos/efeitos adversos , Dextranos/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Anti-Inflamatórios/farmacologia , Camundongos Knockout , Edema/induzido quimicamente , Edema/genética , Edema/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças
20.
Zhen Ci Yan Jiu ; 48(5): 438-45, 2023 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-37247856

RESUMO

OBJECTIVE: To observe the effect of heat-reinforcing needling (HRN) on inflammatory factors and necrotizing apoptosis of synovial cells in synovial tissues of knee joint in rabbits with cold syndrome rheumatoid arthritis (RA), so as to explore its underlying mechanisms in treating RA. METHODS: By using the random number table method, 40 New Zealand rabbits were randomly divided into normal, model, antagonist(AG), twist-reinforceing needling (TRN) and HRN groups, with 8 rabbits in each group. The model of cold syndrome RA was established by ovalbumin induction combined with Freund's complete adjuvant injection and cryogenic freezing method. In the AG group, the antagonist TAK-632 (25 mg/kg) was administered intragastrically, once every 2 days, for a total of 7 times. Rabbits of TRN and HRN groups were treated with corresponding acupuncture techniques on bilateral "Zusanli" (ST36) for 30 min, once a day for 14 days. After intervention, the changes of knee skin temperature and circumference were measured. Color Doppler ultrasound was used to observe the joint cavity effusion, synovial thickness and internal blood flow signal. The histomorphological changes of synovial tissues were observed after HE staining. ELISA was used to detect the contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6 in serum. Transmission electron microscope was used to observe the ultrastructure, necrosis and apoptosis of synovial cells. Western blot was used to detect the protein expressions of receptor-interacting protein kinase1 (RIPK1), RIPK3, mixed lineage kinase domain-like protein (MLKL), and phosphorylation (p)-MLKL in synovial tissues. RESULTS: Compared with the normal group, the synovial was diffusely hyperplasia, joint cavity effusion and abnormal blood flow signal were obvious, inflammatory cells were clustered, arranged closely and disordered in the model group. The findings of transmission electron microscopy showed disruption of cell membrane integrity, swollen or ruptured mitochondria, obviously ruptured nucleus, condensed and pyknotic chromatin and nucleolus in the model group. Also, the skin temperature of the knee joint was significantly decreased (P<0.01), while the circumference of the knee joint, the contents of TNF-α, IL-1ß and IL-6 in serum, the protein expressions of RIPK1, RIPK3, p-MLKL and MLKL in synovial tissues were significantly increased (P<0.01) in the model group. Compared with the model group, synovial tissue hyperplasia, joint cavity effusion, abnormal blood flow signals, synovial cell proliferation, inflammatory cell infiltration, disruption of cell membrane integrity, cell swelling, cell rupture, and nuclear pyknosis were reduced to different degrees in the AG, TRN and HRN groups. Additionally, the skin temperature of the knee joint was increased (P<0.01, P<0.05), while the circumference of the knee joint, the contents of TNF-α, IL-1ß and IL-6 in serum, the expressions of RIPK1, RIPK3, p-MLKL and MLKL in synovial tissues were decreased (P<0.01, P<0.05) in the AG, TRN and HRN groups. The effects of HRN and AG were notably superior to that of TRN in up-regulating skin temperature of the knee joint, and down-regulating the circumference of the knee joint, the contents of TNF-α, IL-1ß and IL-6 in serum, the expressions of RIPK1, RIPK3, p-MLKL and MLKL in synovial tissues (P<0.01, P<0.05). CONCLUSION: HRN can reduce synovial inflammation of knee joint in rabbits with cold syndrome RA, which may be related to its function in inhibiting the necrotizing apoptosis of synovial cells.


Assuntos
Artrite Reumatoide , Temperatura Alta , Animais , Coelhos , Apoptose , Artrite Reumatoide/genética , Artrite Reumatoide/terapia , Hiperplasia , Inflamação/genética , Inflamação/terapia , Interleucina-6/genética , Articulação do Joelho , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA