Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 37(6): 2419-2436, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781177

RESUMO

Anti-Alzheimer's disease (AD) drugs can only change the symptoms of cognitive impairment in a short time but cannot prevent or completely cure AD. Thus, a more effective drug is urgently needed. Cornuside is extracted from Corni Fructus, a traditional Chinese medicine that plays an important role in treating dementia and other age-related diseases. Thus, the study aimed to explore the effects and mechanisms of Cornuside on the D-galactose (D-Gal) induced aging mice accompanied by cognitive decline. Initially, we found that Cornuside improved the learning and memory abilities of D-Gal-treated mice in behavioral experiments. Pharmacological experiments indicated that Cornuside acted on anti-oxidant and anti-inflammatory effects. Cornuside also reversed acetylcholin esterase (AChE) activity. Meanwhile, pathology tests showed that Cornuside had a protective effect on neuron damage. Cornuside increased the expression of brain-derived neurotrophic factor (BDNF), and down-regulated the expression of receptor for advanced glycosylation end products (RAGE), ionized calcium binding adapter molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) respectively. Further studies claimed that Cornuside had important effects on the expression of IκBα and extracellular signal-regulated kinases 1/2 (ERK1/2). These effects might be achieved through regulating the AGEs-RAGE-IκBα-ERK1/2 signaling pathway, among which, ERK1/2 might be the key protein. The study provides direct preclinical evidence for the research of Cornuside, which may become an excellent candidate drug for the treatment of aging-related AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Inibidor de NF-kappaB alfa/uso terapêutico , Transdução de Sinais , Envelhecimento , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Encéfalo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Galactose/efeitos adversos
2.
Nutr Neurosci ; 26(2): 127-137, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36692990

RESUMO

ABSTRACTMicroglia are key regulators of inflammation and oxidative stress (OS) in the CNS. Microglia activation can lead to chronic inflammation, OS, and neurodegeneration. Blueberries (BB) reduce inflammation and OS when administered to microglia before stressors such as lipopolysaccharide (LPS), but the therapeutic value of BBs administered after activation by stressors has not been examined. Therefore, this study investigated the differential effects of pre-, post-, and pre-/post-BB on inflammation and OS in LPS-activated microglia. Rat microglia were pretreated with BB (0.5 mg/mL) or control media (C) for 24 hours, incubated overnight with LPS (0 or 200 ng/mL), and post-treated with BB or C for 24 hours. Biomarkers of inflammation (e.g. nitrite [NO2-], tumor necrosis factor-ɑ [TNFɑ], inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX-2], phosphorylated IκB-α [pIκB-ɑ]) and OS (e.g. NADPH oxidase [NOX2]) were assessed. LPS increased NO2-, TNFɑ, COX-2, iNOS, pIκB-ɑ, and NOX2 compared to non-stressed conditions (P < 0.05), however BB before and/or after LPS significantly reduced these markers compared to no BB (P < 0.05). Pre-BB was more effective than post-BB at reducing LPS-induced NO2-, TNFɑ, and COX-2 (P < 0.05). Pre-BB was also more effective than pre-/post-BB at attenuating LPS-induced NO2- and TNFɑ (P < 0.05). All BB treatments were equally effective in reducing LPS-induced iNOS, pIκB-ɑ, and NOX2. Results suggest that BBs can target the downstream events of LPS-induced microglial activation and prevent stressor-induced neuroinflammation and OS. Furthermore, BBs may not need to be present prior to microglial activation for beneficial effects, suggesting that dietary interventions may be effective even after initiation of disease processes.Graphical Abstract. Cascade of inflammatory and OS-inducing events associated with self-propelling microglial activation by LPS and the effects of blueberry (0.5 mg/mL) administered before and/or after LPS on these processes (blue arrows). BB, blueberry; COX2, cyclooxygenase-2; IκB-ɑ, inhibitor kappa-B-ɑ; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; NF-κB, nuclear factor kappa-B; NO, nitric oxide; NOX2, NADPH oxidase; OS, oxidative stress; ROS, reactive oxygen species; TNFɑ, tumor necrosis factor-ɑ.


Assuntos
Mirtilos Azuis (Planta) , Microglia , Ratos , Animais , Transdução de Sinais , Lipopolissacarídeos/farmacologia , Inibidor de NF-kappaB alfa/farmacologia , Inibidor de NF-kappaB alfa/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Dióxido de Nitrogênio/efeitos adversos , NF-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Inflamação/tratamento farmacológico , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia , NADPH Oxidases/uso terapêutico , Estresse Oxidativo , Óxido Nítrico/metabolismo
3.
PeerJ ; 10: e14209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312760

RESUMO

Background: Ulcerative colitis is a unique inflammatory bowel disease with ulcerative lesions of the colonic mucosa. Melianodiol (MN), a triterpenoid, isolated from the fruits of the Chinese medicinal plant Melia azedarach, possesses significant anti-inflammatory properties. Objective: The present study investigated the protective effects of MN on lipopolysaccharide (LPS)-induced macrophages and DSS-mediated ulcerative colitis in mice. Methods: In the study, mice were given MN (50, 100, and 200 mg/kg) and 5-ASA (500 mg/kg) daily for 9 days after induction by DSS for 1 week. The progress of the disease was monitored daily by observation of changes in clinical signs and body weight. Results: The results showed that MN effectively improved the overproduction of inflammatory factors (IL-6, NO, and TNF-α) and suppressed the activation of the NF-κB signalling cascade in LPS-mediated RAW264.7 cells. For DSS-mediated colitis in mice, MN can reduce weight loss and the disease activity index (DAI) score in UC mice, suppress colon shortening, and alleviate pathological colon injury. Moreover, MN treatment notably up regulated the levels of IL-10 and down regulated those of IL-1ß and TNF-α, and inhibited the protein expression of p-JAK2, p-STAT3, iNOS, NF-κB P65, p-P65, p-IKKα/ß, and p-IκBα in the colon. After MN treatment, the levels of MDA and NO in colonic tissue were remarkably decreased, whereas the levels of GSH, SOD, Nrf-2, Keap-1, HO-1, IκBα, and eNOS protein expression levels were significantly increased. Conclusion: These results indicate that MN can activate the Nrf-2 signalling pathway and inhibit the JAK/STAT, iNOS/eNOS, and NF-κB signalling cascades, enhance intestinal barrier function, and effectively reduce the LPS-mediated inflammatory response in mouse macrophages and DSS-induced intestinal injury in UC.


Assuntos
Colite Ulcerativa , Triterpenos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Inibidor de NF-kappaB alfa/uso terapêutico , Fator de Necrose Tumoral alfa/efeitos adversos , Lipopolissacarídeos/toxicidade , Anti-Inflamatórios/farmacologia , Triterpenos/efeitos adversos
4.
Neuroimmunomodulation ; 29(4): 486-492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35995035

RESUMO

BACKGROUND: Inflammatory pain mediated by nuclear factor kappa-B (NF-κB) signal pathway has become an increasingly important clinical issue in the last decade. As a potent antioxidant, Nodakenetin has been shown to have a prominent inhibitory effect on inflammation. However, the therapeutic effects and underlying pharmacological mechanisms of Nodakenetin for inflammatory pain remain unclear. METHODS: Intraplanar injection of complete Freund's adjuvant (CFA) was used to establish a model of chronic inflammation pain in C57BL/6 mice. The chronic neuropathic pain model was conducted by the sciatic nerve ligation surgery. QRT-PCR was performed to estimate the RNA levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). Western blot was used to demonstrated the protein levels of phospho-IkappaBα (IκBα), p50, and p65 in HEK293T cells. RESULTS: The bioactive components of the traditional Chinese medicine Notopterygium forbesii boiss mainly include Nodakenetin, isoimperatorin, and pregnenolone. Nodakenetin significantly alleviated CFA-induced inflammatory pain but showed no significant therapeutic effect on surgically induced neuralgia in a mouse model. In contrast, isoimperatorin and pregnenolone did not relieve CFA-induced inflammatory pain. Mechanistically, Nodakenetin inhibited IL-1ß-induced activation of the NF-κB pathway and phosphorylation of IκBα in HEK293T cells. Furthermore, Nodakenetin treatment suppressed the expression of IL-6, TNF-α, and IL-1ß in mouse bone marrow-derived macrophages. CONCLUSION: Nodakenetin alleviates inflammatory pain induced by CFA injection in vivo and modulates NF-κB signal pathway in vitro.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Camundongos , Animais , Humanos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Inibidor de NF-kappaB alfa/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Dor/patologia , Adjuvante de Freund/efeitos adversos , Transdução de Sinais , Inflamação/metabolismo , Pregnenolona/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA