Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Res ; 85(1): e22135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997034

RESUMO

The three-components one-pot Kabachnik-Fields reaction of sulfapyridine, diethyl phosphite, and aldehyde under thermal catalysis reaction condition in the presence of bismuth (III) triflate as a catalyst afford the corresponding sulfonamide-phosphonates (3a-3p) in good to excellent yields (78%-91%). The structures of the new synthesized compounds were elucidated and confirmed by variable spectroscopic studies. Single crystal X-ray studies for 3a, 3d, and 3i verified the proposed structure. The newly developed sulfonamide-phosphonates were evaluated for their inhibitory properties against four isoforms of human carbonic anhydrase (hCA I, II, IX, and XII). The results demonstrated that they exhibited greater potency in inhibiting hCA XII compared to hCA I, II, and IX, with Ki ranging from 5.1 to 51.1 nM. Compounds 3l and 3p displayed the highest potency, exhibiting selectivity ratios of I/XII >298.7 and 8.5, and II/XII ratios of 678.1 and 142.1, respectively. Molecular docking studies were conducted to explore their binding patterns within the binding pocket of CA XII. The results revealed that the sulfonamide NH group coordinated with the Zn2+ ion, and hydrogen bond interactions were observed with residue Thr200. Additionally, hydrophobic interactions were identified between the benzenesulfonamide phenyl ring and Leu198. Compounds 3p and 3l exhibited an additional hydrogen bonding interaction with other amino acid residues. These supplementary interactions may contribute to the enhanced potency and selectivity of these compounds toward the CA XII isoform.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Isoenzimas/metabolismo , Anidrases Carbônicas/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfanilamida , Estrutura Molecular
2.
J Med Chem ; 67(1): 152-164, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38150360

RESUMO

Acanthamoeba castellanii is an amoeba that inhabits soil and water in every part of the world. Acanthamoeba infection of the eye causes keratitis and can lead to a loss of vision. Current treatment options are only moderately effective, have multiple harmful side effects, and are tedious. In our study, we developed a novel drug screening method to define the inhibitory properties of potential new drugs against A. castellanii in vitro. We found that the clinically used carbonic anhydrase inhibitors, acetazolamide, ethoxzolamide, and dorzolamide, have promising antiamoebic properties.


Assuntos
Acanthamoeba castellanii , Amoeba , Inibidores da Anidrase Carbônica/farmacologia , Avaliação Pré-Clínica de Medicamentos
3.
Planta Med ; 89(4): 377-384, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36626924

RESUMO

Urease plays a major role in the pathogenesis of peptic and gastric ulcer and also causes acute pyelonephritis and development of infection-induced reactive arthritis. Carbonic anhydrases (CA) cause pathological disorders such as epilepsy (CA I), glaucoma, gastritis, renal, pancreatic carcinomas, and malignant brain tumors (CA II). Although various synthetic urease and carbonic anhydrase inhibitors are known, these have many side effects. Hence, present studies were undertaken on ethyl acetate extract of Aspergillus nidulans, an endophytic fungus separated from the leaves of Nyctanthes arbor-tristis Linn. and led to the isolation of five furanoxanthones, sterigmatin (1: ), sterigmatocystin (3: ), dihydrosterigmatocystin (4: ), oxisterigmatocystin C (5: ), acyl-hemiacetal sterigmatocystin (6: ), and a pyranoxanthone (2: ). Acetylation of 3: gave compound O-acetyl sterigmatocystin (7: ). Their chemical structures were elucidated by 1H and 13C NMR and MS. The inhibitory effect of isolated compounds was evaluated on urease and carbonic anhydrase (bCA II) enzymes in vitro. Compounds 3: and 6: showed significant urease inhibition (IC50 19 and 21 µM), while other compounds exhibited varying degrees of urease inhibition (IC50 33 - 51 µM). Compounds 4, 6: and 7: exhibited significant inhibition of bCA II (IC50 values 21, 25 and 18 µM respectively), compounds 1: -3: displayed moderate inhibition (IC50 61, 76 and 31 µM respectively) while 5: showed no inhibition. A mechanistic study of the most active urease inhibitors was also performed using enzyme kinetics and molecular docking. All compounds were found non-toxic on the NIH-3T3 cell line.


Assuntos
Aspergillus nidulans , Anidrases Carbônicas , Xantonas , Anidrases Carbônicas/metabolismo , Simulação de Acoplamento Molecular , Urease/metabolismo , Aspergillus nidulans/metabolismo , Xantonas/farmacologia , Esterigmatocistina , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Relação Estrutura-Atividade
4.
J Enzyme Inhib Med Chem ; 37(1): 51-61, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894972

RESUMO

Neisseria gonorrhoeae is a high-priority pathogen of concern due to the growing prevalence of resistance development against approved antibiotics. Herein, we report the anti-gonococcal activity of ethoxzolamide, the FDA-approved human carbonic anhydrase inhibitor. Ethoxzolamide displayed an MIC50, against a panel of N. gonorrhoeae isolates, of 0.125 µg/mL, 16-fold more potent than acetazolamide, although both molecules exhibited almost similar potency against the gonococcal carbonic anhydrase enzyme (NgCA) in vitro. Acetazolamide displayed an inhibition constant (Ki) versus NgCA of 74 nM, while Ethoxzolamide's Ki was estimated to 94 nM. Therefore, the increased anti-gonococcal potency of ethoxzolamide was attributed to its increased permeability in N. gonorrhoeae as compared to that of acetazolamide. Both drugs demonstrated bacteriostatic activity against N. gonorrhoeae, exhibited post-antibiotic effects up to 10 hours, and resistance was not observed against both. Taken together, these results indicate that acetazolamide and ethoxzolamide warrant further investigation for translation into effective anti-N. gonorrhoeae agents.


Assuntos
Acetazolamida/farmacologia , Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Etoxzolamida/farmacologia , Neisseria gonorrhoeae/efeitos dos fármacos , Acetazolamida/síntese química , Acetazolamida/química , Antibacterianos/síntese química , Antibacterianos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Etoxzolamida/síntese química , Etoxzolamida/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neisseria gonorrhoeae/enzimologia , Relação Estrutura-Atividade , Estados Unidos , United States Food and Drug Administration
5.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948200

RESUMO

Combination therapy is becoming imperative for the treatment of many cancers, as it provides a higher chance of avoiding drug resistance and tumor recurrence. Among the resistance-conferring factors, the tumor microenvironment plays a major role, and therefore, represents a viable target for adjuvant therapeutic agents. Thus, hypoxia and extracellular acidosis are known to select for the most aggressive and resilient phenotypes and build poorly responsive regions of the tumor mass. Carbonic anhydrase (CA, EC 4.2.1.1) IX isoform is a surficial zinc metalloenzyme that is proven to play a central role in regulating intra and extracellular pH, as well as modulating invasion and metastasis processes. With its strong association and distribution in various tumor tissues and well-known druggability, this protein holds great promise as a target to pharmacologically interfere with the tumor microenvironment by using drug combination regimens. In the present review, we summarized recent publications revealing the potential of CA IX inhibitors to intensify cancer chemotherapy and overcome drug resistance in preclinical settings.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Neoplasias/tratamento farmacológico , Animais , Hipóxia Celular/efeitos dos fármacos , Terapia Combinada , Humanos , Neoplasias/metabolismo , Microambiente Tumoral/efeitos dos fármacos
7.
J Enzyme Inhib Med Chem ; 36(1): 1874-1883, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34340614

RESUMO

A library of variously decorated N-phenyl secondary sulphonamides featuring the bicyclic tetrahydroquinazole scaffold was synthesised and biologically evaluated for their inhibitory activity against human carbonic anhydrase (hCA) I, II, IV, and IX. Of note, several compounds were identified showing submicromolar potency and excellent selectivity for the tumour-related hCA IX isoform. Structure-activity relationship data attained for various substitutions were rationalised by molecular modelling studies in terms of both inhibitory activity and selectivity.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Biologia Computacional/métodos , Isoenzimas/antagonistas & inibidores , Quinazolinas/química , Sulfonamidas/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade , Sulfonamidas/química
8.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070212

RESUMO

The approved drugs that target carbonic anhydrases (CA, EC 4.2.1.1), a family of zinc metalloenzymes, comprise almost exclusively of primary sulfonamides (R-SO2NH2) as the zinc binding chemotype. New clinical applications for CA inhibitors, particularly for hard-to-treat cancers, has driven a growing interest in the development of novel CA inhibitors. We recently discovered that the thiazolidinedione heterocycle, where the ring nitrogen carries no substituent, is a new zinc binding group and an alternate CA inhibitor chemotype. This heterocycle is curiously also a substructure of the glitazone class of drugs used in the treatment options for type 2 diabetes. Herein, we investigate and characterise three glitazone drugs (troglitazone 11, rosiglitazone 12 and pioglitazone 13) for binding to CA using native mass spectrometry, protein X-ray crystallography and hydrogen-deuterium exchange (HDX) mass spectrometry, followed by CA enzyme inhibition studies. The glitazone drugs all displayed appreciable binding to and inhibition of CA isozymes. Given that thiazolidinediones are not credited as a zinc binding group nor known as CA inhibitors, our findings indicate that CA may be an off-target of these compounds when used clinically. Furthermore, thiazolidinediones may represent a new opportunity for the development of novel CA inhibitors as future drugs.


Assuntos
Inibidores da Anidrase Carbônica/análise , Inibidores da Anidrase Carbônica/farmacologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Tiazolidinedionas/análise , Tiazolidinedionas/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Cristalografia por Raios X , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Modelos Moleculares , Tiazolidinedionas/química
9.
Talanta ; 232: 122444, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074429

RESUMO

An electrophoretically mediated microanalysis (EMMA) method for the screening of carbonic anhydrase IX inhibitors in traditional Chinese medicine (TCM) was developed. This method combines transverse diffusion of laminar flow profiles (TDLFP) and rapid polarity switching technology to achieve rapid mixing of different reactants. Different electromigration rates of different substances make it possible that incubation, separation and detection are carried out continuously in a same fused-silica capillary. In this experiment, p-nitrophenyl acetate (pNPA) was used as the substrate for the enzyme reaction, which solved the problem that capillary electrophoresis could not detect carbonate, carbon dioxide, etc., the conventional substrates of carbonic anhydrase IX. After optimizing the enzyme reaction and separation conditions, the separation of substrate and product can be finished by baseline within 4 min. The Michaelis constant of carbonic anhydrase IX was measured to be 1.2 mM. A known inhibitor acetazolamide was used to evaluate the feasibility of this method for screening carbonic anhydrase IX inhibitors, and the half-maximal inhibitory concentration (IC50) was calculated to be 1.26 µM. Finally, 4 natural compounds of 15 traditional Chinese medicine standards were discovered to exhibit enzyme inhibitory activity, including polydatin, matrine, dauricine and cepharanthine, proving that the EMMA method is an effective means for screening carbonic anhydrase IX inhibitors. The results were supported by molecular docking study.


Assuntos
Inibidores da Anidrase Carbônica , Medicina Tradicional Chinesa , Antígenos de Neoplasias , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica/farmacologia , Eletroforese Capilar , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
Biosci Rep ; 41(5)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33891003

RESUMO

Therapeutic strategies of plant origin are a better choice as both dietary plant products or its isolated active constituents against the development and progression of cancer. The present study aims to evaluate the anticancer activity of sumac (Rhus coriaria) against different human cancer MCF-7, PC-3, and SKOV3 cell lines. In addition, the study tries to explore a prospective mechanism of action, assessment of in vitro enzyme-inhibitory capacity of sumac extract against hCA I, II, IX, and XII. In the present study, the potential antitumor effects of sumac (Rhus coriaria) were explored in the human cancer cell lines; MCF-7, PC-3, and SKOV3 using in vitro assays. Apoptotic, cell survival, ELISA immunoassays were also conducted to reveal the inhibitory effects of sumac extract against hCA I, II, IX, and XII. In addition, both Clioquinol and Acetazolamide (AZM) were used as standards to explore the in vitro enzyme-inhibitory capacity of sumac extract against hCA I, II, IX, and XII. The hydro-alcoholic extract of R. coriaria (Sumac) was subjected to phytochemical analysis using GC/MS assays. Sumac at non-cytotoxic doses of 50 and 100 µM significantly modulates the growth of the MCF-7, PC-3, and SKOV3 cancer cells with a higher inhibitory effect and selectivity to carbonic anhydrase (CA) isoforms; hCA I, II, hCA IX, and XII. The data showed that sumac at doses of 50 and 100 µM significantly inhibited the growth, proliferation, and viability of cancer cells by activating the apoptotic process via caspase-3 overexpression and the regulation of Bcl-2 anti-apoptotic protein.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Extratos Vegetais/farmacologia , Rhus/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Células PC-3
11.
Eur J Med Chem ; 216: 113283, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667848

RESUMO

In the present study, we describe the design of different series of benzofuran-based derivatives as potential carbonic anhydrase inhibitors (CAIs). The adopted design is based on bioisosteric replacement for the p-fluorophenyl SLC-0111 tail with the lipophilic 2-methylbenzofuran or 5-bromobenzofuran tails to furnish the 2-methylbenzofuran (MBF) sulfonamides (MBFS; 9, 11 and 13) and 5-bromobenzofuran (BBF) sulfonamides (BBFS; 27a-b, 28a-b and 29a-c), respectively. Thereafter, the urea spacer was either elongated to furnish MBFS (17 and 19), and BBFS (30) series, or replaced by a carbamate one to afford MBFS (15). All the designed compounds were synthesized and evaluated for their inhibitory activities against four human (h) CA isoforms: hCA I, II, IX and XII. MBFS (11b and 17) and BBFS (28b, 29a and 30) efficiently inhibited the tumor-related CA IX isoform in the single-digit nanomolar range (KIs = 8.4, 7.6, 5.5, 7.1 and 1.8 nM, respectively). In particular, MBFS 11b and BBFS 28b exhibited good selectivity toward hCA IX isoform over the main off-target hCA II isoform (S.I. = 26.4 and 58.9, respectively). As a consequence, 11b and 28b were examined for their anticancer and pro-apoptotic activities toward MDA-MB-231 and MCF-7 cancer cell lines.


Assuntos
Benzofuranos/química , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/química , Antígenos de Neoplasias/metabolismo , Benzofuranos/metabolismo , Benzofuranos/farmacologia , Sítios de Ligação , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Compostos de Fenilureia , Relação Estrutura-Atividade , Sulfonamidas/química
12.
J Enzyme Inhib Med Chem ; 35(1): 1906-1922, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33078634

RESUMO

Carbonic anhydrases (CAs) are metalloenzymes responsible for the reversible hydration of carbon dioxide to bicarbonate, a fundamental reaction involved in various physiological and pathological processes. In the last decades, CAs have been considered as important drug targets for different pathologies such as glaucoma, epilepsy and cancer. The design of potent and selective inhibitors has been an outstanding goal leading to the discovery of new drugs. Among the different strategies developed to date, the design of carbohydrate-based CA inhibitors (CAIs) has emerged as a versatile tool in order to selectively target CAs. The insertion of a glycosyl moiety as a hydrophilic tail in sulfonamide, sulfenamide, sulfamate or coumarin scaffolds allowed the discovery of many different series of sugar-based CAIs, with relevant inhibitory results. This review will focus on carbohydrate-based CAIs developed so far, classifying them in glycosidic and glycoconjugated inhibitors based on the conjugation chemistry adopted.


Assuntos
Carboidratos/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Sítios de Ligação , Carboidratos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Cumarínicos/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Relação Estrutura-Atividade , Sulfamerazina/química , Sulfonamidas/química , Ácidos Sulfônicos/química , Triazóis/química
13.
J Med Chem ; 63(13): 7422-7444, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32519851

RESUMO

The "tail approach" has become a milestone in human carbonic anhydrase inhibitor (hCAI) design for various therapeutics, including antiglaucoma agents. Besides the classical hydrophobic/hydrophilic division of hCAs active site, several subpockets have been identified at the middle/outer active sites rim, which could be targeted to increase the CAI isoform selectivity. This postulate is explored here by three-tailed benzenesulfonamide CAIs (TTI) to fully exploit such amino acid differences among hCAs. In this proof-of-concept study, an extensive structure-activity relationship (SAR) study was carried out with 32 such benzenesulfonamides differing in tails combination that were assayed for hCAs I, II, IV, and XII inhibition. A structural study was undertaken by X-ray crystallography and in silico tools to assess the ligand/target interaction mode. The most active and selective inhibitors against isoforms implicated in glaucoma were assessed in a rabbit model of the disease achieving an intraocular pressure-lowering action comparable to the clinically used dorzolamide.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/química , Animais , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Simulação por Computador , Cristalografia por Raios X , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Glaucoma/tratamento farmacológico , Humanos , Pressão Intraocular/efeitos dos fármacos , Ligantes , Masculino , Estudo de Prova de Conceito , Coelhos , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
14.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545297

RESUMO

Proteins are relevant antimicrobial drug targets, and among them, enzymes represent a significant group, since most of them catalyze reactions essential for supporting the central metabolism, or are necessary for the pathogen vitality. Genomic exploration of pathogenic and non-pathogenic microorganisms has revealed genes encoding for a superfamily of metalloenzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1). CAs catalyze the physiologically crucial reversible reaction of the carbon dioxide hydration to bicarbonate and protons. Herein, we investigated the sulfonamide inhibition profile of the recombinant ß-CA (CynT2) identified in the genome of the Gram-negative bacterium Escherichia coli. This biocatalyst is indispensable for the growth of the microbe at atmospheric pCO2. Surprisingly, this enzyme has not been investigated for its inhibition with any class of CA inhibitors. Here, we show that CynT2 was strongly inhibited by some substituted benzene-sulfonamides and the clinically used inhibitor sulpiride (KIs in the range of 82-97 nM). This study may be relevant for identifying novel CA inhibitors, as well as for another essential part of the drug discovery pipeline, such as the structure-activity relationship for this class of enzyme inhibitors.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Proteínas de Escherichia coli/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Proteínas de Transporte de Ânions/antagonistas & inibidores , Proteínas de Transporte de Ânions/genética , Antibacterianos/química , Benzeno/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Humanos , Relação Estrutura-Atividade
15.
Z Naturforsch C J Biosci ; 75(5-6): 153-159, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32383693

RESUMO

Helichrysum plicatum species are used in Turkish folk medicine as lithagogue, diuretic, and nephritic. Research on the methanol (MeOH) extract of flowers of H. plicatum DC. subsp. plicatum resulted in the isolation of eight known compounds (1-8). The chemical structures of the compounds were determined as ß-sitosterol (1), apigenin (2), nonacosanoic acid (3), astragalin (4), ß-sitosterol-3-O-ß-D-glucopyranoside (5), helichrysin A (6), helichrysin B (7), and isosalipurposide (8) by spectroscopic and chromatographic/spectrometric methods, including 1D and 2D nuclear magnetic resonance and liquid chromatography-tandem mass spectrometry. Nonacosanoic acid (3) was isolated for the first time from H. plicatum DC. subsp. plicatum. The MeOH extract and isolated compounds were evaluated for their in vitro human carbonic anhydrase I (hCAI) and II (hCAII), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase inhibitory activities. The IC50 values of H. plicatum DC. subsp. plicatum MeOH extract for hCAI, hCAII, AChE, BChE, and α-glycosidase were found to be 77.87, 52.90, 115.50, 117.46, and 81.53 mg/mL, respectively. The compounds showed IC50 values of 1.43-4.47, 1.40-4.32, 1.69-2.90, 1.09-3.89, and 1.61-3.80 µM against hCAI, hCAII, AChE, BChE, and α-glycosidase, respectively. In summary, H. plicatum DC. subsp. plicatum secondary metabolites demonstrated strong inhibitory effects especially against hCAI and hCAII, whereas the MeOH extract showed a weak inhibitory effect on all enzymes.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Colinesterase/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Helichrysum/química , Compostos Fitoquímicos/farmacologia , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Colinesterase/química , Cromatografia Líquida , Flores/química , Proteínas Ligadas por GPI/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/química , Humanos , Estrutura Molecular , Compostos Fitoquímicos/química , Metabolismo Secundário , Espectrometria de Massas em Tandem
16.
Int J Mol Sci ; 21(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443560

RESUMO

Carbonic anhydrase (CA) is a widespread metalloenzyme playing a pivotal role in several physiological processes. Many studies have demonstrated the in vitro and in vivo sensitivity of CA to the exposure to several classes of pesticides in both humans and wildlife. This review aims to analyze and to discuss the literature available in this field, providing a comprehensive view useful to foresee perspectives for the development of novel CA-based pesticide biomarkers. The analysis of the available data highlighted the ability of several pesticide molecules to interact directly with the enzyme in humans and wildlife and to inhibit CA activity in vitro and in vivo, with possible alterations of key physiological functions. The analysis disclosed key areas of further research and, at the same time, identified some perspectives for the development of novel CA-based sensitive biomarkers to pesticide exposure, suitable to be used in several fields from human biomonitoring in occupational and environmental medicine to environmental monitoring on non-target species.


Assuntos
Anidrases Carbônicas , Praguicidas/farmacologia , Animais , Biomarcadores , Inibidores da Anidrase Carbônica/farmacologia , Monitoramento Ambiental , Humanos
17.
J Microbiol Biotechnol ; 30(4): 552-560, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893608

RESUMO

Human carbonic anhydrase isozyme II has been used as protein target for disorder treatment including glaucoma. Current clinically used sulfonamide-based CA inhibitors can induce side effects, and so alternatives are required. This study aimed to investigate a natural CA inhibitor from Murraya paniculata. The previously developed yeast-based assay was used to screen 14 compounds isolated from M. paniculata and identified by NMR analysis for anti-human CA isozyme II (hCAII) activity. Cytotoxicity of the compounds was also tested using the same yeast-based assay but in a different cultivation condition. Two flavonoid candidate compounds, 5, 6, 7, 8, 3', 4', 5'-heptamethoxyflavone (4) and 3 ,5, 7, 8, 3', 4', 5'-heptamethoxyflavone (9), showed potent inhibitory activity against hCAII with a minimal effective concentration of 10.8 and 21.5 µM, respectively, while they both exhibited no cytotoxic effect even at the highest concentration tested (170 µM). The results from an in vitro esterase assay of the two candidates confirmed their hCAII inhibitory activity with IC50 values of 24.0 and 34.3 µM, respectively. To investigate the potential inhibition mechanism of compound 4, in silico molecular docking was performed using the FlexX and Swissdock software. This revealed that compound 4 coordinated with the Zn2+ ion in the hCAII active site through its methoxy oxygen at a distance of 1.60 Å (FlexX) or 2.29 Å (Swissdock). The interaction energy of compound 4 with hCAII was -13.36 kcal/mol. Thus, compound 4 is a potent novel flavonoid-based hCAII inhibitor and may be useful for further anti-CAII design and development.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Flavonoides/farmacologia , Murraya/química , Saccharomyces cerevisiae/efeitos dos fármacos , Anidrase Carbônica II/química , Anidrase Carbônica II/genética , Inibidores da Anidrase Carbônica/química , Domínio Catalítico , Esterases/antagonistas & inibidores , Esterases/metabolismo , Flavonoides/química , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxazinas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Xantenos
18.
J Enzyme Inhib Med Chem ; 35(1): 306-310, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31797704

RESUMO

The differential scanning fluorimetry (DSF) screening of 5.692 fragments in combination with benzenesulfonamide (BSA) against bovine carbonic anhydrase (bCA) delivered >100 hits that either caused, on their own, a significant thermal shift (ΔTm, °C) in the protein melting temperature or significantly influenced the thermal shift observed for BSA alone. Three hits based on 1,2,3-triazole moiety represent the periphery of the recently reported potent inhibitors of hCA II, IX and XII which were efficacious in vivo. Such a re-discovery of suitable BSA periphery essentially validates the new fragment-based approach to the discovery of future CAIs. Structures of other validated fragment hits are reported.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Fluorometria , Sulfonamidas/farmacologia , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , Sulfonamidas/síntese química , Sulfonamidas/química , Benzenossulfonamidas
19.
J Enzyme Inhib Med Chem ; 35(1): 21-30, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619095

RESUMO

Trypanosoma cruzi carbonic anhydrase (TcCA) has recently emerged as an interesting target for the design of new compounds to treat Chagas disease. In this study we report the results of a structure-based virtual screening campaign to identify novel and selective TcCA inhibitors. The combination of properly validated computational methodologies such as comparative modelling, molecular dynamics and docking simulations allowed us to find high potency hits, with KI values in the nanomolar range. The compounds also showed trypanocidal effects against T. cruzi epimastigotes and trypomastigotes. All the candidates are selective for inhibiting TcCA over the human isoform CA II, which is encouraging in terms of possible therapeutic safety and efficacy.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Doença de Chagas/tratamento farmacológico , Ciclamatos/farmacologia , Tripanossomicidas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Doença de Chagas/metabolismo , Ciclamatos/síntese química , Ciclamatos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
20.
Int J Biol Macromol ; 152: 1224-1232, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751741

RESUMO

AIM: Brinzolamide (BNZ) is a carbonic anhydrase inhibitor commonly used for the treatment of glaucoma. The aim of this study was to prepare BNZ loaded chitosan-pectin mucoadhesive nanocapsules (CPNCs) by polyelectrolyte complex coacervation method for ocular delivery and evaluated for its anti glaucoma efficacy. METHODS: The prepared CPNCs were characterized for their particle size, polydispersity index, zeta-potential, surface morphology, entrapment efficiency, drug loading efficiency, mucoadhesive strength in-vitro and ex-vivo release. The pharmacodynamic studies were conducted for CPNCs on glaucoma induced rabbit eye model and compared with marketed product. RESULT AND DISCUSSION: All the formulated CPNCs exhibited the size range from 217.01 ± 0.21 to 240.05 ± 0.08 nm and appropriate physico-chemical parameters, and depicted a couple of erosion- diffusion release of BNZ over a time of 8 h. Ex-vivo corneal permeation study concluded that BNZ loaded CPNCs crosses the cornea potentially higher rate as compared to the marketed product. In pharmacodynamic study, greater intraocular pressure lowering effect was achieved by CPNCs as compared to marketed drug product. CONCLUSION: The result concluded that CPNCs are a feasible choice to conventional eye drops because of its ability to improve the bioavailability via its longer precorneal retention time and its ability to sustained release of the drug.


Assuntos
Quitosana/química , Glaucoma/tratamento farmacológico , Nanocápsulas/química , Pectinas/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Tiazinas/química , Tiazinas/farmacologia , Animais , Disponibilidade Biológica , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Córnea/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Pressão Intraocular/efeitos dos fármacos , Nanopartículas/química , Soluções Oftálmicas/química , Soluções Oftálmicas/farmacologia , Tamanho da Partícula , Polieletrólitos/química , Polieletrólitos/farmacologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA