Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 915279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157459

RESUMO

Objective: To explore the valuably influential factors and improve the diagnostic accuracy and efficiency of 99mTc-methoxyisobutylisonitrile (MIBI) uptake in parathyroids of secondary hyperparathyroidism (SHPT) patients with chronic renal failure (CRF). Methods: The correlation analysis was performed between clinical indices related to CRF and 99mTc-MIBI uptake intensity TBR (the gray value mean ratio between the parathyroid target and the bilateral neck background, semiquantitatively calculated with ImageJ software). All clinical indices and TBRs were compared by a three- or two-level grouping method of MIBI uptake, which was visually qualitatively assessed. The three-level grouping method comprised slight, medium, and high groups with little, faint, and distinct MIBI concentration in parathyroids, respectively. The two-level grouping method comprised insignificant and significant groups with TBR greater than or less than 0.49-0.71, respectively. Results: MIBI uptake was significantly positively related to patient age, CRF course, hemodialysis vintage, serum parathyroid hormone (PTH), and alkaline phosphatase (AKP) but was significantly negatively related to serum uric acid (UA). MIBI washout was significantly positively related to patient age but was significantly negatively related to serum phosphorus (P) and calcium (Ca) × P. Oral administration of calcitriol and calcium could significantly reduce the MIBI uptake. MIBI uptake tendency might alter. Such seven indices, namely the MIBI uptake, CRF course, hemodialysis vintage, serum AKP, calcium, cysteine proteinase inhibitor C, and PTH, were comparable between the slight and medium groups but were significantly different between the slight and high groups or between the medium and high groups. The above seven indices plus blood urea nitrogen/creatinine were all significantly different between the insignificant and significant groups. All above significances were with P < 0.05. Conclusions: Patient age, CRF course, hemodialysis vintage, serum PTH, AKP, UA, phosphorus, Ca × P, oral administration of calcitriol and calcium, and parathyroids themselves can significantly influence MIBI uptake in parathyroids of SHPT patients with CRF. The two-level grouping method of MIBI intensity should be adopted to qualitatively diagnose the MIBI uptake.


Assuntos
Hiperparatireoidismo Secundário , Falência Renal Crônica , Fosfatase Alcalina , Calcitriol , Cálcio , Creatinina , Inibidores de Cisteína Proteinase , Humanos , Hiperparatireoidismo Secundário/complicações , Hiperparatireoidismo Secundário/diagnóstico por imagem , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Hormônio Paratireóideo , Fósforo , Tecnécio Tc 99m Sestamibi , Ácido Úrico
2.
J Am Chem Soc ; 144(7): 2905-2920, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142215

RESUMO

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacocinética , Domínio Catalítico , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacocinética , Células Vero
3.
Bioengineered ; 13(2): 3350-3361, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048792

RESUMO

The COVID-19 new variants spread rapidly all over the world, and until now scientists strive to find virus-specific antivirals for its treatment. The main protease of SARS-CoV-2 (Mpro) exhibits high structural and sequence homology to main protease of SARS-CoV (93.23% sequence identity), and their sequence alignment indicated 12 mutated/variant residues. The sequence alignment of SARS-CoV-2 main protease led to identification of only one mutated/variant residue with no significant role in its enzymatic process. Therefore, Mpro was considered as a high-profile drug target in anti-SARS-CoV-2 drug discovery. Apigenin analogues to COVID-19 main protease binding were evaluated. The detailed interactions between the analogues of Apigenin and SARS-CoV-2 Mpro inhibitors were determined as hydrogen bonds, electronic bonds and hydrophobic interactions. The binding energies obtained from the molecular docking of Mpro with Boceprevir, Apigenin, Apigenin 7-glucoside-4'-p-coumarate, Apigenin 7-glucoside-4'-trans-caffeate and Apigenin 7-O-beta-d-glucoside (Cosmosiin) were found to be -6.6, -7.2, -8.8, -8.7 and -8.0 kcal/mol, respectively. Pharmacokinetic parameters and toxicological characteristics obtained by computational techniques and Virtual ADME studies of the Apigenin analogues confirmed that the Apigenin 7-glucoside-4'-p-coumarate is the best candidate for SARS-CoV-2 Mpro inhibition.


Assuntos
Antivirais/farmacologia , Apigenina/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Sequência de Aminoácidos , Antivirais/química , Antivirais/farmacocinética , Apigenina/química , Apigenina/farmacocinética , Bioengenharia , COVID-19/virologia , Simulação por Computador , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Glucosídeos/química , Glucosídeos/farmacocinética , Glucosídeos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Fitoterapia , Domínios Proteicos , SARS-CoV-2/genética
4.
SLAS Discov ; 27(1): 8-19, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058179

RESUMO

The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Catepsina L/antagonistas & inibidores , Linhagem Celular , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
5.
J Med Chem ; 65(4): 2940-2955, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34665619

RESUMO

Antiviral agents that complement vaccination are urgently needed to end the COVID-19 pandemic. The SARS-CoV-2 papain-like protease (PLpro), one of only two essential cysteine proteases that regulate viral replication, also dysregulates host immune sensing by binding and deubiquitination of host protein substrates. PLpro is a promising therapeutic target, albeit challenging owing to featureless P1 and P2 sites recognizing glycine. To overcome this challenge, we leveraged the cooperativity of multiple shallow binding sites on the PLpro surface, yielding novel 2-phenylthiophenes with nanomolar inhibitory potency. New cocrystal structures confirmed that ligand binding induces new interactions with PLpro: by closing of the BL2 loop of PLpro forming a novel "BL2 groove" and by mimicking the binding interaction of ubiquitin with Glu167 of PLpro. Together, this binding cooperativity translates to the most potent PLpro inhibitors reported to date, with slow off-rates, improved binding affinities, and low micromolar antiviral potency in SARS-CoV-2-infected human cells.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Antivirais/síntese química , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , COVID-19/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/isolamento & purificação , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Pandemias , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas
6.
Angew Chem Int Ed Engl ; 60(48): 25428-25435, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34570415

RESUMO

The main protease (3CLp) of the SARS-CoV-2, the causative agent for the COVID-19 pandemic, is one of the main targets for drug development. To be active, 3CLp relies on a complex interplay between dimerization, active site flexibility, and allosteric regulation. The deciphering of these mechanisms is a crucial step to enable the search for inhibitors. In this context, using NMR spectroscopy, we studied the conformation of dimeric 3CLp from the SARS-CoV-2 and monitored ligand binding, based on NMR signal assignments. We performed a fragment-based screening that led to the identification of 38 fragment hits. Their binding sites showed three hotspots on 3CLp, two in the substrate binding pocket and one at the dimer interface. F01 is a non-covalent inhibitor of the 3CLp and has antiviral activity in SARS-CoV-2 infected cells. This study sheds light on the complex structure-function relationships of 3CLp and constitutes a strong basis to assist in developing potent 3CLp inhibitors.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antivirais/química , Sítios de Ligação , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Inibidores de Cisteína Proteinase/química , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica , SARS-CoV-2/química , Bibliotecas de Moléculas Pequenas/química , Células Vero
7.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443335

RESUMO

The specificity of inhibition by 6,6'-dihydroxythiobinupharidine (DTBN) on cysteine proteases was demonstrated in this work. There were differences in the extent of inhibition, reflecting active site structural-steric and biochemical differences. Cathepsin S (IC50 = 3.2 µM) was most sensitive to inhibition by DTBN compared to Cathepsin B, L and papain (IC50 = 1359.4, 13.2 and 70.4 µM respectively). DTBN is inactive for the inhibition of Mpro of SARS-CoV-2. Docking simulations suggested a mechanism of interaction that was further supported by the biochemical results. In the docking results, it was shown that the cysteine sulphur of Cathepsin S, L and B was in close proximity to the DTBN thiaspirane ring, potentially forming the necessary conditions for a nucleophilic attack to form a disulfide bond. Covalent docking and molecular dynamic simulations were performed to validate disulfide bond formation and to determine the stability of Cathepsins-DTBN complexes, respectively. The lack of reactivity of DTBN against SARS-CoV-2 Mpro was attributed to a mismatch of the binding conformation of DTBN to the catalytic binding site of Mpro. Thus, gradations in reactivity among the tested Cathepsins may be conducive for a mechanism-based search for derivatives of nupharidine against COVID-19. This could be an alternative strategy to the large-scale screening of electrophilic inhibitors.


Assuntos
Alcaloides/farmacologia , Cisteína Proteases/metabolismo , Alcaloides/química , Animais , Antivirais/farmacologia , Sítios de Ligação , COVID-19/metabolismo , Domínio Catalítico , Catepsinas/farmacologia , Linhagem Celular Tumoral , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Camundongos , Simulação de Acoplamento Molecular/métodos , Nuphar/química , Papaína/farmacologia , Extratos Vegetais/farmacologia , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
9.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672721

RESUMO

The ongoing coronavirus pandemic has been a burden on the worldwide population, with mass fatalities and devastating socioeconomic consequences. It has particularly drawn attention to the lack of approved small-molecule drugs to inhibit SARS coronaviruses. Importantly, lessons learned from the SARS outbreak of 2002-2004, caused by severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), can be applied to current drug discovery ventures. SARS-CoV-1 and SARS-CoV-2 both possess two cysteine proteases, the main protease (Mpro) and the papain-like protease (PLpro), which play a significant role in facilitating viral replication, and are important drug targets. The non-covalent inhibitor, GRL-0617, which was found to inhibit replication of SARS-CoV-1, and more recently SARS-CoV-2, is the only PLpro inhibitor co-crystallised with the recently solved SARS-CoV-2 PLpro crystal structure. Therefore, the GRL-0617 structural template and pharmacophore features are instrumental in the design and development of more potent PLpro inhibitors. In this work, we conducted scaffold hopping using GRL-0617 as a reference to screen over 339,000 ligands in the chemical space using the ChemDiv, MayBridge, and Enamine screening libraries. Twenty-four distinct scaffolds with structural and electrostatic similarity to GRL-0617 were obtained. These proceeded to molecular docking against PLpro using the AutoDock tools. Of two compounds that showed the most favourable predicted binding affinities to the target site, as well as comparable protein-ligand interactions to GRL-0617, one was chosen for further analogue-based work. Twenty-seven analogues of this compound were further docked against the PLpro, which resulted in two additional hits with promising docking profiles. Our in silico pipeline consisted of an integrative four-step approach: (1) ligand-based virtual screening (scaffold-hopping), (2) molecular docking, (3) an analogue search, and, (4) evaluation of scaffold drug-likeness, to identify promising scaffolds and eliminate those with undesirable properties. Overall, we present four novel, and lipophilic, scaffolds obtained from an exhaustive search of diverse and uncharted regions of chemical space, which may be further explored in vitro through structure-activity relationship (SAR) studies in the search for more potent inhibitors. Furthermore, these scaffolds were predicted to have fewer off-target interactions than GRL-0617. Lastly, to our knowledge, this work contains the largest ligand-based virtual screen performed against GRL-0617.


Assuntos
Antivirais/química , COVID-19/enzimologia , Proteases 3C de Coronavírus , Inibidores de Cisteína Proteinase/química , Simulação de Acoplamento Molecular , SARS-CoV-2/enzimologia , Antivirais/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Tratamento Farmacológico da COVID-19
10.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669720

RESUMO

Coronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths worldwide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on experimental pIC50 values reported for a structurally diverse dataset. A robust model with only five descriptors is found, with values of R2 = 0.897, Q2LOO = 0.854, and Q2ext = 0.876 and complying with all the parameters established in the validation Tropsha's test. The analysis of the applicability domain (AD) reveals coverage of about 90% for the external test set. Docking and molecular dynamic analysis are performed on the three most relevant biological targets for SARS-CoV-2: main protease, papain-like protease, and RNA-dependent RNA polymerase. A screening of the DrugBank database is executed, predicting the pIC50 value of 6664 drugs, which are IN the AD of the model (coverage = 79%). Fifty-seven possible potent anti-COVID-19 candidates with pIC50 values > 6.6 are identified, and based on a pharmacophore modelling analysis, four compounds of this set can be suggested as potent candidates to be potential inhibitors of SARS-CoV-2. Finally, the biological activity of the compounds was related to the frontier molecular orbitals shapes.


Assuntos
Antivirais/química , COVID-19/enzimologia , Proteases 3C de Coronavírus , Inibidores de Cisteína Proteinase/química , Bases de Dados de Compostos Químicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA , SARS-CoV-2/enzimologia , Antivirais/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Inibidores de Cisteína Proteinase/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Relação Quantitativa Estrutura-Atividade , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , Tratamento Farmacológico da COVID-19
11.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668085

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged to be the greatest threat to humanity in the modern world and has claimed nearly 2.2 million lives worldwide. The United States alone accounts for more than one fourth of 100 million COVID-19 cases across the globe. Although vaccination against SARS-CoV-2 has begun, its efficacy in preventing a new or repeat COVID-19 infection in immunized individuals is yet to be determined. Calls for repurposing of existing, approved, drugs that target the inflammatory condition in COVID-19 are growing. Our initial gene ontology analysis predicts a similarity between SARS-CoV-2 induced inflammatory and immune dysregulation and the pathophysiology of rheumatoid arthritis. Interestingly, many of the drugs related to rheumatoid arthritis have been found to be lifesaving and contribute to lower COVID-19 morbidity. We also performed in silico investigation of binding of epigallocatechin gallate (EGCG), a well-known catechin, and other catechins on viral proteins and identified papain-like protease protein (PLPro) as a binding partner. Catechins bind to the S1 ubiquitin-binding site of PLPro, which might inhibit its protease function and abrogate SARS-CoV-2 inhibitory function on ubiquitin proteasome system and interferon stimulated gene system. In the realms of addressing inflammation and how to effectively target SARS-CoV-2 mediated respiratory distress syndrome, we review in this article the available knowledge on the strategic placement of EGCG in curbing inflammatory signals and how it may serve as a broad spectrum therapeutic in asymptomatic and symptomatic COVID-19 patients.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Catequina/análogos & derivados , Proteases 3C de Coronavírus , Inibidores de Cisteína Proteinase , SARS-CoV-2/enzimologia , Chá/química , Antivirais/química , Antivirais/uso terapêutico , Sítios de Ligação , COVID-19/enzimologia , COVID-19/epidemiologia , Catequina/química , Catequina/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/uso terapêutico , Humanos
12.
Cell Commun Signal ; 19(1): 24, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627137

RESUMO

BACKGROUND: The oncogenic transcript factor c-Maf is stabilized by the deubiquitinase Otub1 and promotes myeloma cell proliferation and confers to chemoresistance. Inhibition of the Otub1/c-Maf axis is a promising therapeutic target, but there are no inhibitors reported on this specific axis. METHODS: A luciferase assay was applied to screen potential inhibitors of Otub1/c-Maf. Annexin V staining/flow cytometry was applied to evaluate cell apoptosis. Immunoprecipitation was applied to examine protein ubiquitination and interaction. Xenograft models in nude mice were used to evaluate anti-myeloma activity of AVT. RESULTS: Acevaltrate (AVT), isolated from Valeriana glechomifolia, was identified based on a bioactive screen against the Otub1/c-Maf/luciferase system. AVT disrupts the interaction of Otub1/c-Maf thus inhibiting Otub1 activity and leading to c-Maf polyubiquitination and subsequent degradation in proteasomes. Consistently, AVT inhibits c-Maf transcriptional activity and downregulates the expression of its target genes key for myeloma growth and survival. Moreover, AVT displays potent anti-myeloma activity by triggering myeloma cell apoptosis in vitro and impairing myeloma xenograft growth in vivo but presents no marked toxicity. CONCLUSIONS: The natural product AVT inhibits the Otub1/c-Maf axis and displays potent anti-myeloma activity. Given its great safety and efficacy, AVT could be further developed for MM treatment. Video Abstract.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/uso terapêutico , Iridoides/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-maf/antagonistas & inibidores , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/genética , Inibidores de Cisteína Proteinase/farmacologia , Feminino , Humanos , Iridoides/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-maf/metabolismo
13.
J Enzyme Inhib Med Chem ; 36(1): 147-153, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33430659

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19). Since its emergence, the COVID-19 pandemic has not only distressed medical services but also caused economic upheavals, marking urgent the need for effective therapeutics. The experience of combating SARS-CoV and MERS-CoV has shown that inhibiting the 3-chymotrypsin-like protease (3CLpro) blocks the replication of the virus. Given the well-studied properties of FDA-approved drugs, identification of SARS-CoV-2 3CLpro inhibitors in an FDA-approved drug library would be of great therapeutic value. Here, we screened a library consisting of 774 FDA-approved drugs for potent SARS-CoV-2 3CLpro inhibitors, using an intramolecularly quenched fluorescence (IQF) peptide substrate. Ethacrynic acid, naproxen, allopurinol, butenafine hydrochloride, raloxifene hydrochloride, tranylcypromine hydrochloride, and saquinavir mesylate have been found to block the proteolytic activity of SARS-CoV-2 3CLpro. The inhibitory activity of these repurposing drugs against SARS-CoV-2 3CLpro highlights their therapeutic potential for treating COVID-19 and other Betacoronavirus infections.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Domínio Catalítico , Proteases 3C de Coronavírus/química , Avaliação Pré-Clínica de Medicamentos , Corantes Fluorescentes , Humanos , Simulação de Acoplamento Molecular , Especificidade por Substrato
14.
J Labelled Comp Radiopharm ; 64(4): 159-167, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33226657

RESUMO

The cathepsin K (CatK) enzyme is abundantly expressed in osteoclasts, and CatK inhibitors have been developed for the treatment of osteoporosis. In our effort to support discovery and clinical evaluations of a CatK inhibitor, we sought to discover a radioligand to determine target engagement of the enzyme by therapeutic candidates using positron emission tomography (PET). L-235, a potent and selective CatK inhibitor, was labeled with carbon-11. PET imaging studies recording baseline distribution of [11 C]L-235, and chase and blocking studies using the selective CatK inhibitor MK-0674 were performed in juvenile and adult nonhuman primates (NHP) and ovariectomized rabbits. Retention of the PET tracer in regions expected to be osteoclast-rich compared with osteoclast-poor regions was examined. Increased retention of the radioligand was observed in osteoclast-rich regions of juvenile rabbits and NHP but not in the adult monkey or adult ovariectomized rabbit. Target engagement of CatK was observed in blocking studies with MK-0674, and the radioligand retention was shown to be sensitive to the level of MK-0674 exposure. [11 C]L-235 can assess target engagement of CatK in bone only in juvenile animals. [11 C]L-235 may be a useful tool for guiding the discovery of CatK inhibitors.


Assuntos
Catepsina K/antagonistas & inibidores , Osteoporose/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Animais , Osso e Ossos/diagnóstico por imagem , Radioisótopos de Carbono/química , Inibidores de Cisteína Proteinase/química , Avaliação Pré-Clínica de Medicamentos , Feminino , Ligantes , Macaca mulatta , Ligação Proteica , Coelhos , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Radiofarmacêuticos/química , Distribuição Tecidual
15.
Bioorg Med Chem ; 29: 115860, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191083

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) brutally perils physical and mental health worldwide. Unavailability of effective anti-viral drug rendering global threat of COVID-19 caused by SARS-CoV-2. In this scenario, viral protease enzymes are crucial targets for drug discovery. This extensive study meticulously focused on two viral proteases such as main protease (Mpro) and papain-like protease (PLpro), those are essential for viral replication. This review provides a detail overview of the targets (Mpro and PLpro) from a structural and medicinal chemistry point of view, together with recently reported protease inhibitors. An insight into the challenges in the development of effective as well as drug like protease inhibitors is discussed. Peptidomimetic and/or covalent coronavirus protease inhibitors possessed potent and selective active site inhibition but compromised in pharmacokinetic parameters to be a drug/drug like molecule. Lead optimization of non-peptidomimetic and/or low molecular weight compounds may be a better option for oral delivery. A masterly combination of adequate pharmacokinetic properties with coronavirus protease activity as well as selectivity will provide potential drug candidates in future. This study is a part of our endeavors which surely dictates medicinal chemistry efforts to discover effective anti-viral agent for this devastating disease.


Assuntos
Antivirais/metabolismo , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Descoberta de Drogas , Antivirais/química , Domínio Catalítico , Proteases 3C de Coronavírus/química , Inibidores de Cisteína Proteinase/química , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , SARS-CoV-2/enzimologia
16.
Sci Rep ; 10(1): 19570, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177555

RESUMO

The Ananas comosus stem extract is a complex mixture containing various cysteine ​​proteases of the C1A subfamily, such as bromelain and ananain. This mixture used for centuries in Chinese medicine, has several potential therapeutic applications as anti-cancer, anti-inflammatory and ecchymosis degradation agent. In the present work we determined the structures of bromelain and ananain, both in their free forms and in complex with the inhibitors E64 and TLCK. These structures combined with protease-substrate complexes modeling clearly identified the Glu68 as responsible for the high discrimination of bromelain in favor of substrates with positively charged residues at P2, and unveil the reasons for its weak inhibition by cystatins and E64. Our results with purified and fully active bromelain, ananain and papain show a strong reduction of cell proliferation with MDA-MB231 and A2058 cancer cell lines at a concentration of about 1 µM, control experiments clearly emphasizing the need for proteolytic activity. In contrast, while bromelain and ananain had a strong effect on the proliferation of the OCI-LY19 and HL-60 non-adherent cell lines, papain, the archetypal member of the C1A subfamily, had none. This indicates that, in this case, sequence/structure identity beyond the active site of bromelain and ananain is more important than substrate specificity.


Assuntos
Ananas/química , Bromelaínas/química , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Bromelaínas/antagonistas & inibidores , Bromelaínas/metabolismo , Bromelaínas/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Cisteína/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Inibidores de Cisteína Proteinase/metabolismo , Dissulfetos/química , Humanos , Leucina/análogos & derivados , Leucina/química , Leucina/metabolismo , Modelos Moleculares , Caules de Planta/química , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Tosilina Clorometil Cetona/química , Tosilina Clorometil Cetona/metabolismo
17.
Antiviral Res ; 182: 104927, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910955

RESUMO

Feline infectious peritonitis (FIP) which is caused by feline infectious peritonitis virus (FIPV), a variant of feline coronavirus (FCoV), is a member of family Coronaviridae, together with severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. So far, neither effective vaccines nor approved antiviral therapeutics are currently available for the treatment of FIPV infection. Both human and animal CoVs shares similar functional proteins, particularly the 3CL protease (3CLpro), which plays the pivotal role on viral replication. We investigated the potential drug-liked compounds and their inhibitory interaction on the 3CLpro active sites of CoVs by the structural-bases virtual screening. Fluorescence resonance energy transfer (FRET) assay revealed that three out of twenty-eight compounds could hamper FIPV 3CLpro activities with IC50 of 3.57 ± 0.36 µM to 25.90 ± 1.40 µM, and Ki values of 2.04 ± 0.08 to 15.21 ± 1.76 µM, respectively. Evaluation of antiviral activity using cell-based assay showed that NSC629301 and NSC71097 could strongly inhibit the cytopathic effect and also reduced replication of FIPV in CRFK cells in all examined conditions with the low range of EC50 (6.11 ± 1.90 to 7.75 ± 0.48 µM and 1.99 ± 0.30 to 4.03 ± 0.60 µM, respectively), less than those of ribavirin and lopinavir. Analysis of FIPV 3CLpro-ligand interaction demonstrated that the selected compounds reacted to the crucial residues (His41 and Cys144) of catalytic dyad. Our investigations provide a fundamental knowledge for the further development of antiviral agents and increase the number of anti-CoV agent pools for feline coronavirus and other related CoVs.


Assuntos
Antivirais/farmacologia , Coronavirus Felino/efeitos dos fármacos , Coronavirus Felino/enzimologia , Inibidores de Cisteína Proteinase/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , COVID-19 , Domínio Catalítico , Gatos , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Avaliação Pré-Clínica de Medicamentos/métodos , Peritonite Infecciosa Felina/tratamento farmacológico , Peritonite Infecciosa Felina/virologia , Humanos , Concentração Inibidora 50 , Cinética , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Modelos Moleculares , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos
18.
Nature ; 586(7827): 113-119, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32707573

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Assuntos
Antivirais/análise , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Betacoronavirus/crescimento & desenvolvimento , COVID-19 , Linhagem Celular , Inibidores de Cisteína Proteinase/análise , Inibidores de Cisteína Proteinase/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazonas , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Morfolinas/análise , Morfolinas/farmacologia , Pandemias , Pirimidinas , Reprodutibilidade dos Testes , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Triazinas/análise , Triazinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
19.
Bioorg Med Chem Lett ; 30(18): 127439, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717373

RESUMO

Cysteine protease B (CPB) can be targeted by reversible covalent inhibitors that could serve as antileishmanial compounds. Here, sixteen dipeptidyl nitrile derivatives were synthesized, tested against CPB, and analyzed using matched molecular pairs to determine the effects of stereochemistry and p-phenyl substitution on enzyme inhibition. The compound (S)-2-(((S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl)amino)-N-(1-cyanocyclopropyl)-3-phenylpropanamide (5) was the most potent CPB inhibitor (pKi = 6.82), which was also selective for human cathepsin B (pKi < 5). The inversion of the stereochemistry from S to R was more detrimental to potency when placed at the P2 position than at P3. The p-Br derivatives were more potent than the p-CH3 and p-OCH3 derivatives, probably due to intermolecular interactions with the S3 subsite.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Cisteína/química , Nitrilas/síntese química , Sítios de Ligação , Catepsina B/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 204: 112553, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717481

RESUMO

The SUMO (small ubiquitin-related modifier)-specific proteases (SENPs) are responsible for the cleavage of SUMO from its target proteins, thus play important roles in the dynamic SUMOylation and deSUMOylation processes. SENPs are related to a variety of human diseases including cancer and represent a new class of potential therapeutic targets with mechanism of action that is likely to be different from that of current clinically used drugs. However, potent inhibitors that are selective within the SENPs family members still remain a challenge due to their high homology. In order to demonstrate the feasibility of developing selective inhibitors within the SENPs family, we chose SENP1/2/5 as representatives, aiming to identify inhibitors with selectivity among the members. Starting from a hit compound ZCL951 from virtual screening, a series of benzothiophene-2-carboxamide inhibitors were designed based on the protein structures of SENP1, 2, and 5. First, an unoccupied hydrophobic pocket was first identified which led to IC50 as low as 0.56 µM. Furthermore, the ethylacetate 77 gave both submicromolar inhibitory activity and 33-fold selectivity for SENP2 versus SENP5. They are the most potent and selective nonpeptidic inhibitor reported so far for the SENPs family, as far as we are aware. Their structure-activity relationship was also discussed.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Relação Estrutura-Atividade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA