Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 72(2): 173-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296560

RESUMO

Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 µM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Avaliação Pré-Clínica de Medicamentos , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Aprendizado de Máquina , Proteínas Repressoras
2.
J Nat Med ; 78(1): 236-245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991632

RESUMO

Chrysin (5,7-dihydroxyflavone, 6) and galangin 3-methyl ether (5,7-dihydroxy-3-methoxy flavone, 7) were obtained from the leaves of Oroxylum indicum (L.) Kurz in 4% and 6% yields, respectively. Both compounds could act as pan-histone deacetylase (HDAC) inhibitors. Structural modification of these lead compounds provided thirty-eight derivatives which were further tested as HDAC inhibitors. Compounds 6b, 6c, and 6q were the most potent derivatives with the IC50 values of 97.29 ± 0.63 µM, 91.71 ± 0.27 µM, and 96.87 ± 0.45 µM, respectively. Molecular docking study indicated the selectivity of these three compounds toward HDAC8 and the test against HDAC8 showed IC50 values in the same micromolar range. All three compounds were further evaluated for the anti-proliferative activity against HeLa and A549 cell lines. Compound 6q exhibited the best activity against HeLa cell line with the IC50 value of 13.91 ± 0.34 µM. Moreover, 6q was able to increase the acetylation level of histone H3. These promising HDAC inhibitors deserve investigation as chemotherapeutic agents for treating cancer.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Células HeLa , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Flavonoides/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/farmacologia
3.
Nat Commun ; 14(1): 3548, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322067

RESUMO

Lipoic acid is an essential enzyme cofactor in central metabolic pathways. Due to its claimed antioxidant properties, racemic (R/S)-lipoic acid is used as a food supplement but is also investigated as a pharmaceutical in over 180 clinical trials covering a broad range of diseases. Moreover, (R/S)-lipoic acid is an approved drug for the treatment of diabetic neuropathy. However, its mechanism of action remains elusive. Here, we performed chemoproteomics-aided target deconvolution of lipoic acid and its active close analog lipoamide. We find that histone deacetylases HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, and HDAC10 are molecular targets of the reduced form of lipoic acid and lipoamide. Importantly, only the naturally occurring (R)-enantiomer inhibits HDACs at physiologically relevant concentrations and leads to hyperacetylation of HDAC substrates. The inhibition of HDACs by (R)-lipoic acid and lipoamide explain why both compounds prevent stress granule formation in cells and may also provide a molecular rationale for many other phenotypic effects elicited by lipoic acid.


Assuntos
Inibidores de Histona Desacetilases , Ácido Tióctico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácido Tióctico/farmacologia , Histona Desacetilases/metabolismo , Antioxidantes/farmacologia
4.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902164

RESUMO

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Histona Desacetilases , Ácidos Hidroxâmicos , Oxidiazóis , Humanos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Processamento de Proteína Pós-Traducional , Acetilação , Oxidiazóis/química , Oxidiazóis/farmacologia , Linhagem Celular Tumoral
5.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985402

RESUMO

Finding structurally similar compounds in compound databases is highly efficient and is widely used in present-day drug discovery methodology. The most-trusted and -followed similarity indexing method is Tanimoto similarity indexing. Epigenetic proteins like histone deacetylases (HDACs) inhibitors are traditionally used to target cancer, but have only been investigated very recently for their possible effectiveness against rheumatoid arthritis (RA). The synthetic drugs that have been identified and used for the inhibition of HDACs include SAHA, which is being used to inhibit the activity of HDACs of different classes. SAHA was chosen as a compound of high importance as it is reported to inhibit the activity of many HDAC types. Similarity searching using the UNPD database as a reference identified aglaithioduline from the Aglaia leptantha compound as having a ~70% similarity of molecular fingerprints with SAHA, based on the Tanimoto indexing method using ChemmineR. Aglaithioduline is abundantly present in the shell and fruits of A. leptantha. In silico studies with aglaithioduline were carried out against the HDAC8 protein target and showed a binding affinity of -8.5 kcal mol. The complex was further subjected to molecular dynamics simulation using Gromacs. The RMSD, RMSF, compactness and SASA plots of the target with aglaithioduline, in comparison with the co-crystallized ligand (SAHA) system, showed a very stable configuration. The results of the study are supportive of the usage of A. leptantha and A. edulis in Indian traditional medicine for the treatment of pain-related ailments similar to RA. Our study therefore calls for further investigation of A. leptantha and A. edulis for their potential use against RA by targeting epigenetic changes, using in vivo and in vitro studies.


Assuntos
Artrite Reumatoide , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Amidas , Simulação de Dinâmica Molecular , Epigênese Genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Simulação de Acoplamento Molecular , Histona Desacetilases/genética , Proteínas Repressoras
6.
J Enzyme Inhib Med Chem ; 37(1): 1315-1319, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35514164

RESUMO

Histone deacetylases (HDACs) are a family of enzymes responsible for regulating DNA transcription by modulating its binding to histone proteins. HDACs are overexpressed in several types of cancers and are recognised as drug targets. Vorinostat, or suberanilohydroxamic acid (SAHA), is an histone deacetylase (HDAC) inhibitor with a hydroxamic acid as a zinc-binding group (ZBG), and it has been FDA approved for the treatment of T-cell lymphoma. In this work, phosphorus-based SAHA analogues were synthesised to assess their zinc-binding effectiveness compared to the hydroxamic acid of SAHA. Specifically, we examined phosphate, phosphoramidate and phosphorothiolate groups as isosteres of the canonical hydroxamic acid motif of conventional HDAC inhibitors. The compounds were screened for binding to HDAC enzymes from HeLa cell lysate. The most potent derivatives were then screened against HDAC3 and HDAC8 isoforms. HDAC inhibition assays demonstrated that these phosphorus-based SAHA analogs exhibited slow binding to HDACs but with greater potency than phosphonate SAHA analogs examined previously. All compounds inhibited HDACs, the most potent having an IC50 of 50 µM.


Assuntos
Histona Desacetilases , Fósforo , Células HeLa , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Proteínas Repressoras/metabolismo , Vorinostat/farmacologia , Zinco
7.
Biomed Pharmacother ; 147: 112577, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35078092

RESUMO

Cowanin, a xanthone derivative extracted from the Garcinia fusca plant, has been recognized for various biological activities including, antimicrobial, anti-inflammatory, and anticancer activities. However, the mechanism to induce cancer cell death in cancer cells remains to be fully elucidated. Our previous report showed that other xanthones from these plants could act as histone deacetylase inhibitors (HDACi), so we deeply analyzed the role of cowanin, a major compound of G.fusca, and investigated through the mode of cell death both apoptosis and autophagy that have never been reported. As a result, it was demonstrated that cowanin indicated the role of HDACi as other xanthones. The molecular docking analysis showed that cowanin could interact within the catalytic pocket region of HDAC class I (HDAC2, 8) and II (HDAC4, 7) proteins and inhibit their activity. Also, the level of protein expression of HDAC2, 4, 7, and 8 was distinctly decreased, and the level of histone H3 and H4 acetylation increased in cowanin treated cells. For the mode of cell death, cowanin demonstrated both apoptosis and autophagy activation in Jurkat cells. Besides, cowanin significantly suppressed phosphorylation of PI3K, Akt, and mTOR signaling. Therefore, these findings revealed that cowanin represents a new promising candidate for development as an anticancer agent by inducing apoptosis and autophagy via PI3K/AKT/mTOR pathway and effectively inhibiting HDAC activity.


Assuntos
Garcinia , Inibidores de Histona Desacetilases , Extratos Vegetais , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Células Jurkat/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
8.
Eur J Med Chem ; 227: 113961, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34742014

RESUMO

Clinical treatment of candidiasis has suffered from increasingly severe drug resistance and limited efficacy. Thus, novel strategies to deal with drug resistance are highly desired to develop effective therapeutic agents. Herein, dual inhibition of heat shock protein 90 (Hsp90) and histone deacetylase (HDAC) was validated as a new strategy to potentiate efficacy of fluconazole against resistant Candida albicans infections. The first generation of Hsp90/HDAC dual inhibitors were designed as synergistic enhancers to treat azoles-resistant candidiasis. In particular, compound J5 exhibited fungal-selective inhibitory effects on Hsp90 and HDACs, leading to low toxicity and excellent in vitro (FICI = 0.266) and in vivo synergistic antifungal potency to treat fluconazole resistant candidiasis. Antifungal-mechanistic investigation revealed that compound J5 suppressed important virulence factors and down-regulated expression of resistance-associated genes. Therefore, Hsp90/HDAC dual inhibitors represent a new strategy for the development of novel antifungal therapeutics to combat azole-resistant candidiasis.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Animais , Antifúngicos/síntese química , Antifúngicos/química , Azóis/síntese química , Azóis/química , Relação Dose-Resposta a Droga , Farmacorresistência Fúngica/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
9.
Eur J Med Chem ; 226: 113825, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34562854

RESUMO

Histone deacetylases (HDACs) play an important role in regulating the expression of genes involved in tumorigenesis and tumor maintenance, and hence they have been considered as key targets in cancer therapy. As a novel category of antitumor agents, histone deacetylase inhibitors (HDACis) can induce cell cycle arrest, apoptosis, and differentiation in cancer cells, ultimately combating cancer. Although in the United States, the use of HDACis for the treatment of certain cancers has been approved, the therapeutic efficacy of HDACis as a single therapeutic agent in solid tumorshas been unsatisfactory and drug resistance may yet occur. To enhance therapeutic efficacy and limit drug resistance, numerous combination therapies involving HDACis in synergy with other antitumor therapies have been studied. In this review, we describe the classification of HDACs. Moreover, we summarize the antitumor mechanism of the HDACis for targeting key cellular processes of cancers (cell cycle, apoptosis, angiogenesis, DNA repair, and immune response). In addition, we outline the major developments of other antitumor therapies in combination with HDACis, including chemotherapy, radiotherapy, phototherapy, targeted therapy, and immunotherapy. Finally, we discuss the current state and challenges of HDACis-drugs combinations in future clinical studies, with the aim of optimizing the antitumor effect of such combinations.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular
10.
Eur J Med Chem ; 221: 113524, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992927

RESUMO

Invasive fungal infections remain a challenge due to lack of effective antifungal agents and serious drug resistance. Discovery of antifungal agents with novel antifungal mechanism is important and urgent. Previously, we designed the first CYP51/HDAC dual inhibitors with potent activity against resistant Candida albicans infections. To better understand the antifungal spectrum and synergistic mechanism, herein new CYP51/HDAC dual inhibitors were designed which showed potent in vitro and in vivo antifungal activity against C. neoformans and C. tropicalis infections. Antifungal mechanism studies revealed that the CYP51/HDAC dual inhibitors acted by inhibiting various virulence factors of C. tropicalis and C. neoformans and down-regulating resistance-associated genes. This study highlights the potential of CYP51/HDAC dual inhibitors as a promising strategy for the discovery of novel broad-spectrum antifungal agents.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Candidíase Cutânea/tratamento farmacológico , Criptococose/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/química , Antifúngicos/síntese química , Antifúngicos/química , Candida tropicalis/efeitos dos fármacos , Candida tropicalis/metabolismo , Candidíase Cutânea/metabolismo , Criptococose/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/metabolismo , Família 51 do Citocromo P450/antagonistas & inibidores , Família 51 do Citocromo P450/metabolismo , Relação Dose-Resposta a Droga , Farmacorresistência Fúngica/efeitos dos fármacos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Med Chem ; 64(8): 4709-4729, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33797924

RESUMO

We describe the discovery of histone deacetylase (HDACs) 1, 2, and 3 inhibitors with ethyl ketone as the zinc-binding group. These HDACs 1, 2, and 3 inhibitors have good enzymatic and cellular activity. Their serum shift in cellular potency has been minimized, and selectivity against hERG has been improved. They are also highly selective over HDACs 6 and 8. These inhibitors contain a variety of substituted heterocycles on the imidazole or oxazole scaffold. Compounds 31 and 48 stand out due to their good potency, high selectivity over HDACs 6 and 8, reduced hERG activity, optimized serum shift in cellular potency, and good rat and dog PK profiles.


Assuntos
Canal de Potássio ERG1/metabolismo , HIV-1/fisiologia , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Cetonas/química , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Imidazóis/química , Oxazóis/química , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Ratos , Relação Estrutura-Atividade , Ativação Viral/efeitos dos fármacos
12.
Mol Inform ; 40(3): e2000105, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067876

RESUMO

Histone deacetylase 3 (HDAC3) is a potential drug target for treatment of human diseases such as cancer, chronic inflammation, neurodegenerative diseases and diabetes. Machine learning (ML) as an essential cheminformatics approach has been widely used for QSAR modeling. However, none of them has been applied to HDAC3. To this end, we carefully compiled a set of 1098 compounds from the ChEMBL database that have been assayed against HDAC3 and calculated three different sets of molecular features for each compound, i. e. two-dimensional Mordred descriptors, MACCS keys (166 bits) and Morgan2 fingerprints (1024 bits). Five ML classifiers, i. e. k-Nearest Neighbour (KNN), Support Vector Machine (SVM), Random forest (RF), eXtreme Gradient Boosting (XGBoost) and Deep Neural Network (DNN) were trained on each feature set and optimized for classification. A total of 15 models were generated and carefully compared, among which the best-performing one was the XGBoost model based on the Morgan2 fingerprints, i. e. XGBoost_morgan2. Evaluated on a well-curated benchmarking set named MUBD-HDAC3, this model achieved a high early ROC enrichment (ROCE0.5 %: 41.02). A further retrospective screening of an annotated chemical library in PubChem demonstrated that the best model could identify 8 novel-scaffold HDAC3 inhibitors while assaying only 1 % of the compounds. To make this model accessible for the scientific community, we developed a python GUI application named HDAC3i-Finder to facilitate prospective screening for HDAC3 inhibitors. The source code of HDAC3i-Finder is available at https://github.com/jwxia2014/HDAC3i-Finder.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Aprendizado de Máquina , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases/química , Humanos , Modelos Moleculares , Estrutura Molecular
13.
Bioorg Med Chem ; 30: 115961, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360574

RESUMO

Sirtuins (SIRTs) are a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein histone deacetylases (HDACs) that are evolutionarily conserved from bacteria to mammals. This group of enzymes catalyses the reversible deacetylation of lysine residues in the histones or non-histone substrates using NAD+ as a cosubstrate. Numerous studies have demonstrated that the aberrant enzymatic activity of SIRTs has been linked to various diseases like diabetes, cancer, and neurodegenerative disorders. Previously, we performed a pharmacophore-based virtual screening campaign and an aryloxybenzamide derivative (1) displaying SIRT1/2 inhibitory effect was identified as a hit compound. In the current study, the hit-to-lead optimization on the hit compound was explored in order to improve the SIRT binding and inhibition. Fourteen compounds, ten of which were new, have been synthesized and subjected to in vitro biological evaluation for their inhibitory activity against SIRT1-3. By the structural modifications performed, a significant improvement was observed in selective SIRT1 inhibition for ST01, ST02, and ST11 compared to that of the hit compound. The highest SIRT2 inhibitory activity was observed for ST14, which was designed according to compatibility with pharmacophore model developed for SIRT2 inhibitors and thus, providing the interactions required with key residues in SIRT2 active site. Furthermore, ST01, ST02, ST11, and ST14 were subjected to in vitro cytotoxicity assay against MCF-7 human breast cancer cell line to determine the influence of the improvement in SIRT1/2 inhibition along with the structural modifications on the cytotoxic properties of the compounds. The cytotoxicity of the compounds was found to be correlated with their SIRT inhibitory profiles indicating the effects of SIRT1/2 inhibition on cancer cell viability. Overall, this study provides structural insights for further inhibitor improvement.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Sirtuína 3/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Sirtuína 3/metabolismo , Relação Estrutura-Atividade
14.
Mol Inform ; 39(11): e2000163, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32964659

RESUMO

Medicinal plants have widely been used in the traditional treatment of ailments and have been proven effective. Their contribution still holds an important place in modern drug discovery due to their chemical, and biological diversities. However, the poor documentation of traditional medicine, in developing African countries for instance, can lead to the loss of knowledge related to such practices. In this study, we present the Eastern Africa Natural Products Database (EANPDB) containing the structural and bioactivity information of 1870 unique molecules isolated from about 300 source species from the Eastern African region. This represents the largest collection of natural products (NPs) from this geographical region, covering literature data of the period from 1962 to 2019. The computed physicochemical properties and toxicity profiles of each compound have been included. A comparative analysis of some physico-chemical properties like molecular weight, H-bond donor/acceptor, logPo/w , etc. as well scaffold diversity analysis has been carried out with other published NP databases. EANPDB was combined with the previously published Northern African Natural Products Database (NANPDB), to form a merger African Natural Products Database (ANPDB), containing ∼6500 unique molecules isolated from about 1000 source species (freely available at http://african-compounds.org). As a case study, latrunculins A and B isolated from the sponge Negombata magnifica (Podospongiidae) with previously reported antitumour activities, were identified via substructure searching as molecules to be explored as putative binders of histone deacetylases (HDACs).


Assuntos
Produtos Biológicos/farmacologia , Plantas Medicinais/química , África Oriental , Produtos Biológicos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Bases de Dados como Assunto , Inibidores de Histona Desacetilases/química , Ligação de Hidrogênio , Peso Molecular , Tiazolidinas/química , Testes de Toxicidade
15.
Chem Pharm Bull (Tokyo) ; 68(7): 613-617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32611998

RESUMO

Although anthraquinone derivatives possess significant antitumor activity, most of them also displayed those side effects like cardiotoxicity, mainly owing to their inhibition of topoisomerase II of DNA repair mechanisms. Our raised design strategy by switching therapeutic target from topoisomerase II to histone deacetylase (HDAC) has been applied to the design of anthraquinone derivatives in current study. Consequently, a series of novel HDAC inhibitors with a tricylic diketone of anthraquinone as a cap group have been synthesized. After screening and evaluation, compounds 4b, 4d, 7b and 7d have displayed the comparable inhibition in enzymatic activity and cell proliferation than that of Vorinostat (SAHA). Notably, compound 4b showed certain selectivity of antiproliferative effects on cancer cell lines over non-cancer cell lines.


Assuntos
Antraquinonas/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Antraquinonas/síntese química , Antraquinonas/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Reparo do DNA , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
16.
Life Sci ; 256: 117912, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32504755

RESUMO

Histone deacetylase enzymes were prominent chromatin remodeling drug that targets in the pathophysiology of Alzheimer's disease associated with transcriptional dysregulation. In vitro and in vivo models of AD have demonstrated overexpression of HDAC activity. Non-specificity and non-selectivity of HDAC are the major problems of existing HDAC inhibitors. Hence, we aim to set up a methodology describing the rational development of isoform-selective HDAC inhibitor targeting class, I and class IIb. A convenient multistage virtual screening followed by machine learning and IC50 screenings were used to classify the 5064 compounds into inhibitors and non-inhibitors classes retrieved from the ChEMBL database. ADMET analysis identified the pharmacokinetics and pharmacodynamics properties of selected compounds. Molecular docking, along with mutational analysis of eleven compounds, characterized the inhibiting potency. Herein, for the first time, we reported ChEMBL1834473 (2-[[5-(4-chlorophenyl)-1,3,4-thiadiazol-2-yl]amino]-N-hydroxypyrimidine-5-carboxamide) as the isoform-selective HDAC inhibitor, which interact central Zn2+ atom. The negative energy and interacting residue of the ChEMBL1834473 with six HDAC isoform has also been tabulated and mapped. Moreover, our findings concluded histidine, glycine, phenylalanine, and aspartic acid as key residues in protein-ligand interaction and classify 2347 compounds as HDAC inhibitors. Later, a protein-protein interaction network of six HDAC with the key proteins involved in the progression of an AD and signaling pathway, which describes the relationship between ChEMBL1834473 and AD, has been demonstrated using PPI network where the chosen inhibitor will work. Altogether, we conclude that the compound ChEMBL1834473 may be capable of inhibiting all isoforms of class I and class IIb HDAC based on computational analysis for AD therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/uso terapêutico , Pirimidinas/química , Pirimidinas/uso terapêutico , Ácido Aspártico/metabolismo , Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos , Glicina/metabolismo , Histona Desacetilases/metabolismo , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Estrutura Molecular , Terapia de Alvo Molecular , Fenilalanina/metabolismo , Isoformas de Proteínas/química , Termodinâmica , Zinco/metabolismo
17.
Molecules ; 25(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244744

RESUMO

Lung cancer is the leading cause of death in men and women worldwide, affecting millions of people. Between the two types of lung cancers, non-small cell lung cancer (NSCLC) is more common than small cell lung cancer (SCLC). Besides surgery and radiotherapy, chemotherapy is the most important method of treatment for lung cancer. Indole scaffold is considered one of the most privileged scaffolds in heterocyclic chemistry. Indole may serve as an effective probe for the development of new drug candidates against challenging diseases, including lung cancer. In this review, we will focus on discussing the existing indole based pharmacophores in the clinical and pre-clinical stages of development against lung cancer, along with the synthesis of some of the selected anti-lung cancer drugs. Moreover, the basic mechanism of action underlying indole based anti-lung cancer treatment, such as protein kinase inhibition, histone deacetylase inhibition, DNA topoisomerase inhibition, and tubulin inhibition will also be discussed.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Indóis , Animais , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Estrutura Molecular , Terapia de Alvo Molecular , Transdução de Sinais , Relação Estrutura-Atividade
18.
Eur J Med Chem ; 192: 112189, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32151834

RESUMO

Based on fragment-based virtual screening and bioisoterism strategies, novel indazole and pyrazolo[3,4-b] pyridine derivatives as HDACs inhibitors were designed, synthesized and evaluated. Most of these compounds displayed good to excellent inhibitory activities against HDACs, especially compounds 15k and 15m were identified as potent inhibitors of HDAC1 (IC50 = 2.7 nM and IC50 = 3.1 nM), HDAC2 (IC50 = 4.2 nM and IC50 = 3.6 nM) and HDAC8 (IC50 = 3.6 nM and IC50 = 3.3 nM). Further anti-proliferation assays revealed that compounds 15k and 15m showed better anti-proliferative activities against HCT-116 and HeLa cells than positive control SAHA. The western blot analysis results indicated that compounds 15k and 15m noticeably up-regulated the level of acetylated α-tubulin and histone H3. In addition, the two compounds 15k and 15m could arrest cell cycle in G2/M phase and promote cell apoptosis, which was similar as the reference compound SAHA. Through the molecular docking and dynamic studies, the potent HDAC inhibitory activities mainly caused by van der Waals and electrostatic interactions with the HDACs.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Indazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HeLa , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Indazóis/síntese química , Indazóis/química , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade
19.
Eur J Med Chem ; 192: 112193, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32151835

RESUMO

Multitarget agents simultaneously trigger molecules in functionally complementary pathways, and are therefore considered to have potential in effectively treating Alzheimer's disease (AD), which has a complex pathogenetic mechanism. In this study, the HDAC inhibitor core is incorporated into the acetylcholine esterase (ACE) inhibitor acridine-derived moiety and resulted in compounds that exhibited higher class IIa HDAC (4, 5, 7, and 9)- and class IIb HDAC6-inhibiting activity when compared to the pan-HDAC inhibitor SAHA in clinical practice. One of these compounds, 11b, displayed greater selectivity toward HDAC6 than other isoform enzymes. In contrast, the activity of compound 6a was selective toward class IIa HDAC and HDAC6. These two compounds exhibited strong activity against Aß-aggregation as well as significantly disrupted Aß-oligomer. Additionally, 11b and 6a strongly inhibited AChE. These experimental findings demonstrate that compounds 11b and 6a are HDAC-Aß-aggregation-AChE inhibitors. Notably, they can enhance neurite outgrowth, but with no significant neurotoxicity. Further biological evaluation revealed the various cellular effects of multitarget compounds 11b and 6a, which have the potential to treat AD.


Assuntos
Acridinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Acetilcolinesterase/metabolismo , Acridinas/síntese química , Acridinas/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Camundongos , Estrutura Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
J Biomol Struct Dyn ; 38(2): 533-547, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30938574

RESUMO

Histone deacetylases (HDACs), a critical family of epigenetic enzymes, has emerged as a promising target for antitumor drugs. Here, we describe our protocol of virtual screening in identification of novel potential HDAC inhibitors through pharmacophore modeling, 3D-QSAR, molecular docking and molecular dynamics (MD) simulation. Considering the limitation of current virtual screening works, drug repurposing strategy was applied to discover druggable HDAC inhibitor. The ligand-based pharmacophore and 3D-QSAR models were established, and their reliability was validated by different methods. Then, the DrugBank database was screened, followed by molecular docking. MD simulation (100 ns) was performed to further study the stability of ligand binding modes. Finally, results indicated the hit DB03889 with high in silico inhibitory potency was suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma.


Assuntos
Reposicionamento de Medicamentos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Avaliação Pré-Clínica de Medicamentos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA