Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Pharmacol Ther ; 108(6): 1254-1264, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32558923

RESUMO

In vitro, esomeprazole is a time-dependent inhibitor of CYP2C19. Additionally, racemic omeprazole induces CYP1A2 and omeprazole and its metabolites inhibit CYP3A4 in vitro. In this 5-phase study, 10 healthy volunteers ingested 20 mg pantoprazole, 0.5 mg midazolam, and 50 mg caffeine as respective index substrates for CYP2C19, 3A4, and 1A2 before and 1, 25, 49 (pantoprazole only), and 73 hours after an 8-day pretreatment with 80 mg esomeprazole twice daily. The area under the plasma concentration-time curve (AUC) of R-pantoprazole increased 4.92-fold (90% confidence interval (CI) 3.55-6.82), 2.31-fold (90% CI 1.85-2.88), and 1.33-fold (90% CI 1.06-1.68) at the 1-hour, 25-hour, and 73-hour phases, respectively, consistent with a substantial and persistent inhibition of CYP2C19. The AUC of midazolam increased up to 1.44-fold (90% CI 1.22-1.72) and the paraxanthine/caffeine metabolic ratio up to 1.19-fold (90% CI 1.04-1.36), when the index substrates were taken 1 hour after esomeprazole. Based on the recovery of R-pantoprazole oral clearance, the turnover half-life of CYP2C19 was estimated to average 53 hours. Pharmacokinetic simulation based on the observed concentrations of esomeprazole and its metabolites as well as their published CYP2C19 inhibitory constants was well in line with the observed changes in R-pantoprazole pharmacokinetics during the course of the study. Extrapolations assuming linear pharmacokinetics of esomeprazole suggested weak to moderate inhibition at 20 and 40 mg twice daily dosing. In conclusion, high-dose esomeprazole can cause strong inhibition of CYP2C19, but only weakly inhibits CYP3A4 and leads to minor induction of CYP1A2. The enzymatic activity of CYP2C19 recovers gradually in ~ 3-4 days after discontinuation of esomeprazole treatment.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Inibidores do Citocromo P-450 CYP2C19/farmacologia , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Esomeprazol/farmacologia , Administração Oral , Cafeína/farmacocinética , Estudos Cross-Over , Indutores do Citocromo P-450 CYP1A2/farmacologia , Citocromo P-450 CYP2C19/genética , Inibidores do Citocromo P-450 CYP2C19/administração & dosagem , Inibidores do Citocromo P-450 CYP2C19/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Esomeprazol/administração & dosagem , Esomeprazol/farmacocinética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Midazolam/farmacocinética , Modelos Biológicos , Pantoprazol/farmacocinética , Variantes Farmacogenômicos
2.
Med Sci Monit ; 23: 3824-3830, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28783717

RESUMO

BACKGROUND In recent years, genetic factors have attracted research interest as important predisposing factors for cardiovascular susceptibility. This study aimed to investigate the influences of dual-dose clopidogrel, clopidogrel combined with tongxinluo, and ticagrelor on the platelet activity and MACE events of patients with CYP2C19*2 gene function deficiency and poor clopidogrel response after PCI. MATERIAL AND METHODS We selected 458 patients with coronary heart disease undergoing PCI, and the genotype of CYP2C19*2 was detected by TaqMan real-time PCR. We finally enrolled 212 patients and divided them into 4 groups: a standard anti-platelet group of 46 patients, a clopidogrel double-dose group of 50 cases, a clopidogrel combined with tongxinluo group of 59 cases, and a ticagrelor group of 57. The platelet inhibition rate was detected by TEG. We analyzed and compared differences in platelet activity and the occurrence of MACE events in these 4 groups at different follow-up times. RESULTS The results showed that inhibition of platelet aggregation was better in the double-dose clopidogrel group, the clopidogrel combined with tongxinluo group, and the ticagrelor group than in the regular-dose clopidogrel group, and ticagrelor was the best. We also found that the total incidence of MACE was much lower in the double-dose clopidogrel group, the clopidogrel combined with tongxinluo group, and the ticagrelor group, while the incidence of hemorrhage in the ticagrelor group was higher. CONCLUSIONS Adjusting the dose or combining with other drugs improves the efficacy of anti-platelet therapy and reduces the incidence of ischemic events after PCI.


Assuntos
Adenosina/análogos & derivados , Doença das Coronárias/tratamento farmacológico , Doença das Coronárias/cirurgia , Citocromo P-450 CYP2C19/genética , Medicamentos de Ervas Chinesas/uso terapêutico , Intervenção Coronária Percutânea/métodos , Ticlopidina/análogos & derivados , Adenosina/uso terapêutico , Idoso , Plaquetas/efeitos dos fármacos , Clopidogrel , Doença das Coronárias/enzimologia , Doença das Coronárias/genética , Citocromo P-450 CYP2C19/metabolismo , Inibidores do Citocromo P-450 CYP2C19/farmacologia , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Intervenção Coronária Percutânea/efeitos adversos , Inibidores da Agregação Plaquetária/uso terapêutico , Ticagrelor , Ticlopidina/uso terapêutico
3.
Drug Metab Dispos ; 43(12): 1891-904, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26400396

RESUMO

The cytochrome P450 2C19 (CYP2C19) enzyme plays an important role in the metabolism of many commonly used drugs. Relatively little is known about CYP2C19 inhibitors, including compounds of natural origin, which could inhibit CYP2C19, potentially causing clinically relevant metabolism-based drug interactions. We evaluated a series (N = 49) of structurally related plant isoquinoline alkaloids for their abilities to interact with CYP2C19 enzyme using in vitro and in silico methods. We examined several common active alkaloids found in herbal products such as apomorphine, berberine, noscapine, and papaverine, as well as the previously identified mechanism-based inactivators bulbocapnine, canadine, and protopine. The IC50 values of the alkaloids ranged from 0.11 to 210 µM, and 42 of the alkaloids were confirmed to be time-dependent inhibitors of CYP2C19. Molecular docking and three-dimensional quantitative structure-activity relationship analysis revealed key interactions of the potent inhibitors with the enzyme active site. We constructed a comparative molecular field analysis model that was able to predict the inhibitory potency of a series of independent test molecules. This study revealed that many of these isoquinoline alkaloids do have the potential to cause clinically relevant drug interactions. These results highlight the need for studying more profoundly the potential interactions between drugs and herbal products. When further refined, in silico methods can be useful in the high-throughput prediction of P450 inhibitory potential of pharmaceutical compounds.


Assuntos
Alcaloides/química , Simulação por Computador , Inibidores do Citocromo P-450 CYP2C19/química , Citocromo P-450 CYP2C19/metabolismo , Isoquinolinas/química , Extratos Vegetais/química , Alcaloides/farmacologia , Inibidores do Citocromo P-450 CYP2C19/farmacologia , Humanos , Isoquinolinas/farmacologia , Extratos Vegetais/farmacologia , Relação Quantitativa Estrutura-Atividade , Fatores de Tempo
4.
Chem Biol Interact ; 230: 1-8, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25686904

RESUMO

OBJECTIVES: This study aimed to investigate the effects of five tanshinones, the lipophilic components from Danshen (Salvia miltiorrhiza), on CYP2C19 activity in pooled human liver microsomes (HLMs). METHODS: The effects of tanshinones on CYP2C19 activity were compared by enzyme inhibition study using omeprazole 5-hydroxylation in pooled HLMs. The inhibition constant (Ki) values and inhibition modes of effective tanshinones were evaluated by enzyme kinetic study. Molecular docking analysis was used to simulate the binding conformations of tanshinones to the active cavity of human CYP2C19. RESULTS: Dihydrotanshinone and miltirone showed potent inhibitory effects on CYP2C19 activity in a concentration-dependent manner. Tanshinone I showed weaker inhibitory effect, whereas tanshinone IIA and cryptotanshinone had no inhibitory effect. Further enzyme kinetic study showed that the inhibition by dihydrotanshinone and miltirone was a mixed type. The effects of tanshinones were also confirmed by a molecular docking study. Besides, the ethanol extract of Danshen also showed a mixed type of inhibition, whereas the water extract had no inhibitory effect. CONCLUSIONS: The current findings demonstrate the inhibition of CYP2C19 activity by the ethanol extract of Danshen and its components tanshinones, implicating the potential herb-drug interactions between Danshen and therapeutic agents metabolized by CYP2C19 in clinical practice.


Assuntos
Abietanos/farmacologia , Inibidores do Citocromo P-450 CYP2C19/farmacologia , Citocromo P-450 CYP2C19/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Salvia miltiorrhiza/química , Domínio Catalítico , Simulação por Computador , Citocromo P-450 CYP2C19/química , Inibidores do Citocromo P-450 CYP2C19/química , Inibidores do Citocromo P-450 CYP2C19/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Etanol , Interações Ervas-Drogas , Humanos , Hidroxilação , Cinética , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Fenantrenos/química , Fenantrenos/metabolismo , Fenantrenos/farmacologia
5.
Drug Metab Lett ; 9(1): 48-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25600201

RESUMO

Kalanchoe crenata popularly known as "dog's liver" is used in most African countries for the treatment of chronic diseases such as diabetes, asthma and HIV/AIDS related infections. The evaluation of K. crenata for herb-drug interactions has not been reported. This study therefore aims to evaluate the risk of K. crenata for herb-drug interaction in vitro. Crude methanol and fractions of K. crenata were incubated and preincubated with recombinant human CYP2C19 and CYP3A4. Comparative studies were conducted in both human liver microsomes and recombinant human CYP to ascertain the inhibition profile of the crude extract and the various fractions. The cocktail approach of recombinant human CYPs was conducted to confirm the inhibition potential of the fractions in the presence of other CYPs. The results showed significant time-dependent inhibition of tested samples on CYP3A4 with crude methanol (39KC), fractions 45A, 45B and 45D given IC50 fold decrease of 3.29, 2.26, 1.91 and 1.49, respective. Time dependent kinetic assessment of 39KC and 45D showed KI and kinact values for 39KC as 1.77 µg/mL and 0.091 min(-1) while that of 45D were 6.45 µg/mL and 0.024 min(-1), respectively. Determination of kinact based on IC50 calculations yielded 0.015 and 0.04 min(-1) for 39KC and 45D, respectively. Cocktail approach exhibited fold decreases in IC50 for all test fractions on CYP3A4 within the ranges of 2.10 - 4.10. At least one phytoconstituent in the crude methanol extract of Kalanchoe crenata is a reversible and time-dependent inhibitor of CYP3A4.


Assuntos
Inibidores do Citocromo P-450 CYP2C19/farmacologia , Citocromo P-450 CYP2C19/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Kalanchoe , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Inibidores do Citocromo P-450 CYP2C19/isolamento & purificação , Inibidores do Citocromo P-450 CYP3A/isolamento & purificação , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Interações Ervas-Drogas , Humanos , Kalanchoe/química , Cinética , Fígado/enzimologia , Metanol/química , Microssomos Hepáticos/enzimologia , Modelos Biológicos , NADP/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Recombinantes/metabolismo , Medição de Risco , Solventes/química , Testosterona/metabolismo
6.
Fitoterapia ; 98: 130-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25073096

RESUMO

Genipin is obtained from the fruit of Gardenia jasminoides Ellis and acts as an herbal medicine or functional food in East Asia. In addition to produce natural colorant, it possesses widely antiinflammatory, antithrombotic, antidepressive and anticarcinogenic activities. However, little research focuses on the potential of genipin for drug-drug interactions. In this study, effects of genipin on mRNA and protein expression of cytochrome P450 (CYP) 2C19, CYP2D6 and CYP3A4 were detected by real-time reverse-transcription polymerase chain reaction (real-time RT-PCR) and Western blot, respectively, in human hepatoma HepG2 cells. Enzyme activities of which were detected by luminogenic CYP assay in vitro. Moreover, effect of genipin on P-glycoprotein expression was analyzed by Western blot. Results showed that genipin possessed a significant induction on CYP2D6 and a remarkable inhibition on CYP2C19 and CYP3A4 not only from the expression of mRNA and protein (P<0.05 or P<0.01), but the level of enzyme activity. Moreover, a concentration-dependent induction of genipin on P-glycoprotein expression was observed. In conclusion, caution should be exercised with respect to the induction or inhibition of genipin on CYP isoenzymes and the strong induction on P-glycoprotein.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Iridoides/farmacologia , Inibidores do Citocromo P-450 CYP2C19/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Gardenia/química , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA