Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Comb Chem High Throughput Screen ; 26(9): 1737-1745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36093820

RESUMO

BACKGROUND AND OBJECTIVE: Traditional Chinese medicines that have inhibitory effects on the CYP3A4 enzymes were screened and their inhibitory effects were verified with in vitro bioassay. METHODS: The computer virtual screening methods, including the CYP3A4 enzyme pharmacophore model and the molecular docking method, were used to rapidly screen the potential CYP3A4 inhibitors in the Traditional Chinese Medicine Database (TCMD), and then in vitro experiments were conducted to validate the computational data. RESULTS: A total of 413 chemical components in TCMD that have potential inhibitory effects on the CYP3A4 enzyme were screened, and four kinds of traditional Chinese medicines (Abrus precatorius, Andrographis paniculata, Angelica pubescens f. biserrata and Lithospermum erythrorhizon) contained the most potential CYP3A4 inhibitors; The results of the in vitro experiments showed that these four traditional Chinese medicine extracts all had certain degrees of inhibition on the CYP3A4 enzyme, with IC50 values of 5.15, 14.97, 15.2, and 24.21 µg/ml, respectively. CONCLUSION: The extracts of Abrus precatorius, Andrographis paniculata, Angelica pubescens f. biserrata and Lithospermum erythrorhizon had certain inhibitory effects on the CYP3A4 enzyme, and attention should be paid to the possible adverse reactions when they were used in combination with the CYP3A4 enzyme-substrate drugs. A combination of computational approaches might be a useful tool to identify potential inhibitors of the CYP3A4 enzyme from traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química
2.
J Ethnopharmacol ; 303: 116005, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516906

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a traditional Chinese medicine, Euodiae Fructus (EF) has been used to treat stomachache, belching, and emesis for more than a thousand years. Ancient records and modern research have shown that EF has mild toxicity, which needs to be processed with licorice juice to reduce its toxicity. Research suggested that the toxicity of EF can be caused by in vivo metabolism, but whether its metabolites are related to hepatotoxicity and whether licorice can affect the metabolism of EF have not been reported, which needed an effective strategy to clarify the correlation between metabolites and toxicity and the attenuation mechanism of licorice processing. AIM OF THE STUDY: The poisonous substances and metabolic pathways were clarified by comparing the mechanism in vivo process of the main alkaloids of EF in normal rats and rats treated with dexamethasone (DXMS), ketoconazole (KTC), and EF processed with licorice (EFP). MATERIALS AND METHODS: Rats were given EF and EFP by oral administration, respectively. The EF + DXMS and EF + KTC groups were pretreated with DXMS and KTC, respectively, by i. p. for seven days, and their toxicity differences were compared. The comprehensive strategy based on UPLC-Q-Exactive-MS and Orthogonal Partial Least Squares Discriminant Analysis was developed to compare the types and contents of metabolites and clarify the metabolic pathways of alkaloids among EF, EFP, EF + KTC, and EF + DXMS groups. RESULTS: EF + DXMS group significantly increased the hepatotoxicity, whereas the EF + KTC and EFP groups reduced the hepatotoxicity compared with the EF group. One hundred and thirty-five metabolites were detected, and the metabolic pathways of the main alkaloid components related to toxicity were inferred in the plasma, urine, feces, and bile of rats. KTC and licorice similarly inhibited the production of toxic metabolites, changed metabolism in vivo, and produced many new II and a few phases I metabolites, while the contents of toxic metabolites increased in the DXMS group. CONCLUSION: Licorice and KTC could inhibit the production of metabolites of EF related to toxicity, increase the production of other metabolites and promote the excretion of alkaloids, which may be why licorice and KTC can minimize EF toxicity.


Assuntos
Alcaloides , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Glycyrrhiza , Ratos , Animais , Inibidores do Citocromo P-450 CYP3A , Indutores do Citocromo P-450 CYP3A , Alcaloides/toxicidade , Medicamentos de Ervas Chinesas/toxicidade , Cetoconazol , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Cromatografia Líquida de Alta Pressão
3.
Phytother Res ; 36(10): 3988-4001, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35778986

RESUMO

Dietary polyphenols such as quercetin and curcumin have been extensively administered to patients with cancer in the form of herbal supplements. They may have a synergistic anticancer effect; however, a risk of pharmacokinetic interactions with selective CDK-4/6 inhibitors that are metabolized by the CYP3A4 enzyme exists. Considering these pharmacokinetic aspects, the current study examined the effects of curcumin and quercetin on human CYP3A4 to ascertain CYP3A4-mediated herb-drug interactions with CDK inhibitors. In this study, using in silico methods and CYP3A4 inhibition kinetics in human liver microsomes and recombinant CYP3A4 enzymes, the effects of concentration-dependent inhibition of CYP3A4 by quercetin and curcumin on CDK inhibitors metabolism were examined. Based on our in-silico docking findings, curcumin and quercetin were considerably bound to CYP3A4 protein and displace CDK inhibitors from the CYP3A4 substrate binding domain. The IC50 values of curcumin and quercetin were 16.10 and 0.05 µM, respectively, for CYP3A4-mediated 1'-hydroxylation of midazolam. The dietary polyphenols prolonged the in vitro half-life of palbociclib and ribociclib by 6.4-fold and decreased their intrinsic microsomal clearance by approximately 4.6 times. Our findings indicate that curcumin and quercetin effectively cause herb-drug interactions and should be cautiously used to avoid therapeutic failure.


Assuntos
Neoplasias da Mama , Curcumina , Inibidores do Citocromo P-450 CYP3A , Interações Ervas-Drogas , Neoplasias da Mama/metabolismo , Curcumina/farmacologia , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Feminino , Humanos , Microssomos Hepáticos , Midazolam/farmacologia , Simulação de Dinâmica Molecular , Polifenóis/farmacologia , Quercetina/farmacologia
4.
J Ethnopharmacol ; 282: 114643, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34534597

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: With the features of multiple-components and targets as well as multifunction, traditional Chinese medicine (TCM) has been widely used in the prevention and treatment of various diseases for a long time. During the application of TCM, the researches about bioavailability enhancement of the bioactive constituents in formula are flourishing. Bushen-Yizhi formula (BSYZ), a TCM prescription with osthole (OST) as one of the main bioactive ingredients, have been widely used to treat kidney deficiency, mental retardation and Alzheimer's disease. However, the underlying biological mechanism and compound-enzyme interaction mediated bioavailability enhancement of OST are still not clearly illuminated. AIM OF THE STUDY: The aim of this study is to explore the material basis and molecular mechanism from BSYZ in the bioavailability enhancement of OST. Screening the potential CYP3A4 inhibitors using theoretical prediction and then verifying them in vitro, and pharmacokinetics study of OST in rat plasma under co-administrated of screened CYP3A4 inhibitors and BSYZ were also scarcely reported. MATERIALS AND METHODS: Screening of CYP3A4 inhibitors from BSYZ was performed with molecular docking simulation from systems pharmacology database. The screened compounds were verified by using P450-Glo Screening Systems. A multiple reaction monitoring (MRM) mass spectrometry method was established for OST quantification. Male Sprague-Dawley rats divided into four groups and six rats in each group were employed in the pharmacokinetics study of OST. The administrated conditions were group I, OST (20 mg/kg); group II, BSYZ (containing OST 1 mg/mL, at the dose of 20 mg/kg OST in BSYZ); group III, co-administration of ketoconazole (Ket, 75 mg/kg) and OST (20 mg/kg); group IV, co-administration of CYP3A4 inhibitor (10 mg/kg) and OST (20 mg/kg). They were determined by using HPLC-MS/MS (MRM) and statistical analysis was performed using student's t-test with p < 0.05 as the level of significance. RESULTS: 21 potential CYP3A4 inhibitors were screened from BSYZ compounds library. From the results of verification in vitro, we found 4 compounds with better CYP3A4 inhibition efficiency including Oleic acid, 1,2,3,4,6-O-Pentagalloylglucose, Rutin, and Schisantherin B. Under further verification, Schisantherin B exhibited the best inhibitory effect on CYP3A4 (IC50 = 0.339 µM), and even better than the clinically used drug (Ket) at the concentration of 5 µM. In the study of pharmacokinetics, the area under the curve (AUC, ng/L*h) of OST after oral administration of BSYZ, Ket and Schisantherin B (2196.23 ± 581.33, 462.90 ± 92.30 and 1053.03 ± 263.62, respectively) were significantly higher than that of pure OST treatment (227.89 ± 107.90, p < 0.01). CONCLUSIONS: Schisantherin B, a profoundly effective CYP3A4 inhibitor screened from BSYZ antagonized the metabolism of CYP3A4 on OST via activity inhibition, therefore significantly enhanced the bioavailability of OST in rat plasma. The results of this study will be helpful to explain the rationality of the compatibility in TCM formula, and also to develop new TCM formula with more reasonable drug compatibility.


Assuntos
Cumarínicos/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Medicamentos de Ervas Chinesas/química , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Disponibilidade Biológica , Cumarínicos/administração & dosagem , Cumarínicos/sangue , Ciclo-Octanos/administração & dosagem , Ciclo-Octanos/farmacocinética , Dioxóis/administração & dosagem , Dioxóis/farmacocinética , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Interações Ervas-Drogas , Cetoconazol/administração & dosagem , Cetoconazol/farmacocinética , Lignanas/administração & dosagem , Lignanas/farmacocinética , Masculino , Compostos Policíclicos/administração & dosagem , Compostos Policíclicos/farmacocinética , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
5.
J Clin Pharm Ther ; 47(2): 200-210, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34708436

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Tacrolimus (Tac) is an immunosuppressant that is widely used to prevent allograft rejection in patients after liver transplantation. Its metabolism mainly depends on the cytochrome P450 3A5 (CYP3A5), which has genetic polymorphisms. Recently, a Chinese herbal medicine known as Wuzhi Capsule (WZC) was shown to increase Tac blood concentrations by inhibiting the activity of CYP3A in animal studies in rats. To date, it remains unexplored whether WZC can be efficiently used to enhance the blood concentration of Tac in liver transplant patients with different donor-recipient CYP3A5 genotypes. METHODS: A total of 185 liver transplant patients were enrolled and two-way ANOVA was carried out, then they were divided into four groups according to the combinations of donor-recipient CYP3A5 phenotypes. WZC was given to patients when the dose of Tac was ≥4 mg, and the dose-adjusted C0 (C0 /D) of Tac measured twice in succession was ≤1 ng/ml/mg. The blood trough concentration of Tac (C0 ), C0 /D, and dose- and body weight-adjusted C0 (C0 /D/W) was analysed on days 7 and 14 after liver transplantation. RESULTS: The genotypes of donor and recipient or WZC had significant effects on C0, C0/D and C0/D/W. There were significant differences in the Tac blood concentrations between the groups. The recipient expression (*1)/donor expression (*1) (R+/D+) group had the lowest C0 , C0 /D and C0 /D/W among the four groups. Furthermore, a larger proportion of patients in the CYP3A5 expression groups required Tac dose adjustment to achieve a therapeutic effect and were given Tac with WZC. Notably, the use of WZC significantly increased the blood concentrations of Tac in the CYP3A5 expression groups and greater increases in the C0 /D and C0 /D/W were significantly associated with higher doses of WZC in the CYP3A5 expression groups. What is more, WZC reduced the hospitalization cost of patients to a certain extent. WHAT IS NEW AND CONCLUSION: WZC significantly increased the C0 , C0 /D and C0 /D/W in the CYP3A5 expression groups and reduced the hospitalization expenses of patients to a certain extent. What is more, greater increases in the C0 /D and C0 /D/W were significantly associated with higher doses of WZC.


Assuntos
Citocromo P-450 CYP3A/genética , Medicamentos de Ervas Chinesas/farmacologia , Imunossupressores/farmacocinética , Transplante de Fígado , Tacrolimo/farmacocinética , Adulto , Idoso , Inibidores do Citocromo P-450 CYP3A/farmacologia , Feminino , Genótipo , Preços Hospitalares , Humanos , Imunossupressores/sangue , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade , Tacrolimo/sangue
6.
Acta Pharmacol Sin ; 43(4): 1072-1081, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34183756

RESUMO

Jingyin granules, a marketed antiviral herbal medicine, have been recommended for treating H1N1 influenza A virus infection and Coronavirus disease 2019 (COVID-19) in China. To fight viral diseases in a more efficient way, Jingyin granules are frequently co-administered in clinical settings with a variety of therapeutic agents, including antiviral drugs, anti-inflammatory drugs, and other Western medicines. However, it is unclear whether Jingyin granules modulate the pharmacokinetics of Western drugs or trigger clinically significant herb-drug interactions. This study aims to assess the inhibitory potency of the herbal extract of Jingyin granules (HEJG) against human drug-metabolizing enzymes and to clarify whether HEJG can modulate the pharmacokinetic profiles of Western drug(s) in vivo. The results clearly demonstrated that HEJG dose-dependently inhibited human CES1A, CES2A, CYPs1A, 2A6, 2C8, 2C9, 2D6, and 2E1; this herbal medicine also time- and NADPH-dependently inhibited human CYP2C19 and CYP3A. In vivo tests showed that HEJG significantly increased the plasma exposure of lopinavir (a CYP3A-substrate drug) by 2.43-fold and strongly prolonged its half-life by 1.91-fold when HEJG (3 g/kg) was co-administered with lopinavir to rats. Further investigation revealed licochalcone A, licochalcone B, licochalcone C and echinatin in Radix Glycyrrhizae, as well as quercetin and kaempferol in Folium Llicis Purpureae, to be time-dependent CYP3A inhibitors. Collectively, our findings reveal that HEJG modulates the pharmacokinetics of CYP substrate-drug(s) by inactivating CYP3A, providing key information for both clinicians and patients to use herb-drug combinations for antiviral therapy in a scientific and reasonable way.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus da Influenza A Subtipo H1N1 , Animais , Antivirais/farmacologia , Inibidores do Citocromo P-450 CYP3A , Interações Ervas-Drogas , Humanos , Microssomos Hepáticos , Ratos
7.
Pharm Biol ; 59(1): 1528-1532, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34726569

RESUMO

CONTEXT: The interaction between nobiletin and anemarsaponin BII could affect the pharmacological activity of these two drugs during their combination. OBJECTIVE: The co-administration of nobiletin and anemarsaponin BII was investigated to explore the interaction and the potential mechanism. MATERIALS AND METHODS: Male Sprague-Dawley rats were only orally administrated with 50 mg/kg nobiletin as the control and another six rats were pre-treated with 100 mg/kg anemarsaponin BII for 7 d followed by the administration of nobiletin. The transport and metabolic stability of nobiletin were evaluated in vitro, and the effect of anemarsaponin BII on the activity of CYP3A4 was also assessed to explore the potential mechanism underlying the interaction. RESULTS: The increasing Cmax (2309.67 ± 68.06 µg/L vs. 1767.67 ± 68.86 µg/L), AUC (28.84 ± 1.34 mg/L × h vs. 19.57 ± 2.76 mg/L × h), prolonged t1/2 (9.80 ± 2.33 h vs. 6.24 ± 1.53 h), and decreased clearance rate (1.46 ± 0.26 vs. 2.42 ± 0.40) of nobilein was observed in rats. Anemarsaponin BII significantly enhanced the metabolic stability of nobiletin in rat liver microsomes (half-life increased from 31.56 min to 39.44 min) and suppressed the transport of nobiletin in Caco-2 cells (efflux rate decreased from 1.57 ± 0.04 to 1.30 ± 0.03). The inhibitory effect of anemarsaponin BII on CYP3A4 was also found with an IC50 value of 10.23 µM. DISCUSSION AND CONCLUSIONS: The interaction between anemarsaponin BII and nobiletin was induced by the inhibition of CYP3A4, which should draw special attention in their clinical co-administration.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/efeitos dos fármacos , Flavonas/farmacocinética , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Área Sob a Curva , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Interações Medicamentosas , Flavonas/administração & dosagem , Meia-Vida , Humanos , Concentração Inibidora 50 , Masculino , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Saponinas/administração & dosagem , Triterpenos/administração & dosagem
8.
Artigo em Inglês | MEDLINE | ID: mdl-34800750

RESUMO

Euodiae Fructus (EF), the dried unripe scented fruit of Euodia rutaecarpa (Juss.) Benth., was reported to show anti-hypertensive, antitumor, and anti-obesity effects. The main alkaloids of EF were reported as the reason for toxicity of EF by metabolic activation majority through CYP3A. Up till the present moment, the cytotoxicity mechanisms of EF have not yet to be fully clarified. For the purposes of this article, the influence of CYP3A inducer and inhibitor on cytotoxicity of EF and metabolism in L02 cells of five alkaloids related to toxicity of EF were evaluated. The results indicated that CYP3A inducer aggravated the toxicity and CYP3A inhibitor alleviated the toxicity. UPLC-Q-Exactive-MS was used for the identification of five alkaloids of EF in L02 cells. A total of 13 metabolites were detected in L02 cells. In general, five alkaloids were widely metabolized in L02 cells such as oxygenation, demethylation, dehydrogenation, and etc. In addition, oxygenation was the main metabolic pathway. It was inferred that the toxicity of EF was closely related to the CYP3A and the metabolic intermediate might be one of the reasons for the toxicity of EF. Hence, the choice of optimal dose might be critical to avoid the adverse reactions owing to combination of EF and CYP3A inducer.


Assuntos
Alcaloides/química , Inibidores do Citocromo P-450 CYP3A/toxicidade , Medicamentos de Ervas Chinesas/toxicidade , Evodia/toxicidade , Fígado/efeitos dos fármacos , Alcaloides/metabolismo , Alcaloides/toxicidade , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Evodia/química , Evodia/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/toxicidade , Humanos , Fígado/enzimologia , Espectrometria de Massas
9.
Sci Rep ; 11(1): 19443, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593846

RESUMO

CYP3A7 is a member of the cytochrome P450 (CYP) 3A enzyme sub-family that is expressed in the fetus and neonate. In addition to its role metabolizing retinoic acid and the endogenous steroid dehydroepiandrosterone sulfate (DHEA-S), it also has a critical function in drug metabolism and disposition during the first few weeks of life. Despite this, it is generally ignored in the preclinical testing of new drug candidates. This increases the risk for drug-drug interactions (DDI) and toxicities occurring in the neonate. Therefore, screening drug candidates for CYP3A7 inhibition is essential to identify chemical entities with potential toxicity risks for neonates. Currently, there is no efficient high-throughput screening (HTS) assay to assess CYP3A7 inhibition. Here, we report our testing of various fluorescent probes to assess CYP3A7 activity in a high-throughput manner. We determined that the fluorescent compound dibenzylfluorescein (DBF) is superior to other compounds in meeting the criteria considered for an efficient HTS assay. Furthermore, a preliminary screen of an HIV/HCV antiviral drug mini-library demonstrated the utility of DBF in a HTS assay system. We anticipate that this tool will be of great benefit in screening drugs that may be used in the neonatal population in the future.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Fluoresceínas/química , Antivirais , Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , Fígado/metabolismo
10.
PLoS One ; 16(9): e0257984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34570813

RESUMO

Prostate cancer is the second leading cause of cancer related death in American men. Several therapies have been developed to treat advanced prostate cancer, but these therapies often have severe side effects. To improve the outcome with fewer side effects we focused on the furanocoumarin bergamottin, a natural product found in grapefruit juice and a potent CYP3A inhibitor. Our recent studies have shown that CYP3A5 inhibition can block androgen receptor (AR) signaling, critical for prostate cancer growth. We observed that bergamottin reduces prostate cancer (PC) cell growth by decreasing both total and nuclear AR (AR activation) reducing downstream AR signaling. Bergamottin's role in reducing AR activation was confirmed by confocal microscopy studies and reduction in prostate specific antigen (PSA) levels, which is a marker for prostate cancer. Further studies revealed that bergamottin promotes cell cycle block and accumulates G0/G1 cells. The cell cycle block was accompanied with reduction in cyclin D, cyclin B, CDK4, P-cdc2 (Y15) and P-wee1 (S642). We also observed that bergamottin triggers apoptosis in prostate cancer cell lines as evident by TUNEL staining and PARP cleavage. Our data suggests that bergamottin may suppress prostate cancer growth, especially in African American (AA) patients carrying wild type CYP3A5 often presenting aggressive disease.


Assuntos
Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A/uso terapêutico , Furocumarinas/uso terapêutico , Fase G1/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Western Blotting , Fracionamento Celular , Linhagem Celular Tumoral , Citrus paradisi/química , Regulação para Baixo , Sucos de Frutas e Vegetais/análise , Humanos , Masculino , Microscopia Confocal , Receptores Androgênicos/efeitos dos fármacos
11.
J Ethnopharmacol ; 279: 114344, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34147617

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Bupleuri (RB), traditionally used to treat inflammatory disorders and infectious diseases, represents one of the most successful and widely used herbal drugs in Asia over the past 2000 years. Being realized the role in regulating metabolism and controlling Yin/Yang, RB is not only chosen specifically for treating liver meridian and the corresponding organs, but also believed to have liver meridian guiding property and help potentiate the therapeutic effects of liver. However, the ingredients in RB with liver meridian guiding property and the underly mechanism have not been comprehensively investigated. AIM OF STUDY: Considering the important role of CYP3A4 in first-pass metabolism and the liver exposure of drugs, the present study aimed to determine whether saikosaponins (SSs) and the corresponding saikogenins (SGs) have a role in inhibiting the catalytic activity of CYP3A4 in human liver microsomes and HepG2 hepatoma cells and whether they could suppress CYP3A4 expression by PXR-mediated pathways in HepG2 hepatoma cells. MATERIALS AND METHODS: The effect of SSs and SGs on CYP3A4-mediated midazolam1'-hydroxylation activities in pooled human liver microsomes (HLMs) was first studied. Dose-dependent experiments were performed to obtain the half inhibit concentration (IC50) values. HepG2 cells were used to assay catalytic activity of CYP3A4, reporter function, mRNA levels, and protein expression. The inhibitory effects of SSa and SSd on CYP3A4 activity are negligible, while the corresponding SGs (SGF and SGG) have obvious inhibitory effects on CYP3A4 activity, with IC50 values of 0.45 and 1.30 µM. The similar results were obtained from testing CYP3A4 catalytic activity in HepG2 cells, which correlated well with the suppression of the mRNA and protein levels of CYP3A4. Time-dependent testing of CYP3A4 mRNA and protein levels, as well as co-transfection experiments using the CYP3A4 promoter luciferase plasmid, further confirmed that SSs and SGs could inhibit the expression of CYP3A4 at the transcription level. Furthermore, PXR protein expression decreased in a concentration- and time-dependent manner after cells were exposed to SSs and SGs. PXR overexpression and RNA interference experiments further showed that SSs and SGs down-regulate the catalytic activity and expression of CYP3A4 in HepG2 may be mainly through PXR-dependent manner. CONCLUSION: SSs and SGs inhibit the catalytic activity and expression of CYP3A4 in a PXR-dependent manner, which may be highly related to the liver meridian guiding property of RB.


Assuntos
Bupleurum/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Ácido Oleanólico/análogos & derivados , Receptor de Pregnano X/efeitos dos fármacos , Saponinas/farmacologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/isolamento & purificação , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Meridianos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Receptor de Pregnano X/metabolismo , Saponinas/administração & dosagem , Saponinas/isolamento & purificação , Fatores de Tempo
12.
Drug Metab Rev ; 53(4): 491-507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33905669

RESUMO

Herbal plants typically have complex compositions and diverse mechanisms. Among them, bioactive constituents with relatively high exposure in vivo are likely to exhibit therapeutic efficacy. On the other hand, their bioavailability may be influenced by the synergistic effects of different bioactive components. Cytochrome P450 3A (CYP3A) is one of the most abundant CYP enzymes, responsible for the metabolism of 50% of approved drugs. In recent years, many therapeutic herbal constituents have been identified as CYP3A substrates. It is more evident that CYP3A inhibition derived from the herbal formula plays a critical role in improving the oral bioavailability of therapeutic constituents. CYP3A inhibition may be the mechanism of the synergism of herbal formula. In this review, we explored the multiplicity of CYP3A, summarized herbal monomers with CYP3A inhibitory effects, and evaluated herb-mediated CYP3A inhibition, thereby providing new insights into the mechanisms of CYP3A inhibition-mediated oral herb bioavailability.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Preparações de Plantas/farmacocinética , Disponibilidade Biológica , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Humanos
13.
Fitoterapia ; 152: 104858, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677011

RESUMO

Traditional Chinese medicines (TCMs), have been widely used for the prevention, treatment, and cure of various diseases for thousands of years in China and Asian countries. It is usually applied either alone or in combination with synthetic drugs or other herbs to be more effective. However, the evaluation of TCMs against the main phase I metabolic enzyme CYP3A4 in vitro was limited. In the present study, a high throughput method based on an isoform-specific probe was applied to evaluate the inhibitory effect of 225 frequently-used TCMs on CYP3A4 activity. The results showed that 25 TCM herbs possessed inhibition effect with residual activity below 50%, and four TCMs (Curcumae Rhizoma, Piperis Longi Fructus, Dalbergiae Odoriferae Lignum, Arisaematis Rhizoma Preparatum) had fairly strong inhibition effect with residual activity below 20%. In an attempt to validate the results obtained from isoform-specific probe, the Curcumae Rhizoma with lowest residual activity was further tested to screen main bioactive constituents which possessed significant inhibitive effect. The crude extract of Curcumae Rhizoma was fractionated to investigate the inhibition effect of each fraction, the results showed that fractions 9-13 exhibited obvious inhibitory effect, and the main constituent (curdione) was identified with standard reference. The molecular docking results verified that the inhibiting effect of curdione could be explained that curdione was interacted with 7 amino acid residues to generate the hydrophobic interaction, and also interacted with imidazole to form hydrogen bond. It is anticipated that the results could be used as reference data to avoid drug-drug interaction and guide the clinical application of TCM or prescriptions.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Curcuma/química , Citocromo P-450 CYP3A , Humanos , Medicina Tradicional Chinesa , Microssomos Hepáticos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Rizoma/química
14.
J Ethnopharmacol ; 271: 113914, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33571617

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai San (SMS) has been commonly used as a traditional Chinese medicine for the treatment of cardiovascular disorders, of which drug interactions need to be assessed for the safety concern. There is little evidence for the alterations of hepatic and intestinal drug-metabolizing enzymes after repeated SMS treatments to assess drug interactions. AIM OF THE STUDY: The studies aim to illustrate the effects of repeated treatments with SMS on cytochrome P450s (CYPs), reduced nicotinamide adenine dinucleotide (phosphate)-quinone oxidoreductase (NQO), uridine diphosphate-glucuronosyltransferase (UGT), and glutathione S-transferase (GST) using in vivo rat model. MATERIALS AND METHODS: The SMS was prepared using Schisandrae Fructus, Ginseng Radix, and Ophiopogonis Radix (OR) (1:2:2). Chromatographic analyses of decoctions were performed using ultra-performance liquid chromatography (UPLC) and LC-mass spectrometry. Sprague-Dawley rats were orally treated with the SMS and its component herbal decoctions for 2 or 3 weeks. Hepatic and intestinal enzyme activities were determined. CYP3A expression and the kinetics of intestinal nifedipine oxidation (NFO, a CYP3A marker reaction) were determined. RESULTS: Schisandrol A, schisandrin B, ginsenoside Rb1 and ophiopogonin D were identified in SMS. SMS selectively suppressed intestinal, but not hepatic, NFO activity in a dose- and time-dependent manner. Hepatic and intestinal UGT, NQO and GST activities were not affected. A 3-week SMS treatment decreased the maximal velocity of intestinal NFO by 50%, while the CYP3A protein level remained unchanged. Among SMS component herbs, the decoction of OR decreased intestinal NFO activity. CONCLUSIONS: These findings demonstrate that 3-week treatment with SMS and OR suppress intestinal, but not hepatic CYP3A function. It suggested that the potential interactions of SMS with CYP 3A drug substrates should be noticed, especially the drugs whose bioavailability depends heavily on intestinal CYP3A.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Intestinos/enzimologia , Fígado/enzimologia , Animais , Biomarcadores/sangue , Ciclo-Octanos/análise , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/análise , Inibidores do Citocromo P-450 CYP3A/uso terapêutico , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/uso terapêutico , Ginsenosídeos/análise , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Interações Ervas-Drogas , Intestinos/efeitos dos fármacos , Lignanas/análise , Fígado/efeitos dos fármacos , Masculino , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Nifedipino/metabolismo , Oxirredução/efeitos dos fármacos , Compostos Policíclicos/análise , Ratos Sprague-Dawley , Saponinas/química , Espirostanos/química
15.
Nat Prod Res ; 35(3): 521-524, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31305140

RESUMO

Investigations were performed on the determination of the main components in Berchemia lineata (L.) DC. (BL) and its metabolism with human liver microsomes (HLM). A total of 35 compounds were detected in BL extracts and 25 of them including 6 naphthopyrones, 10 flavonoids, 2 phenolic acids, 2 phenols, 4 fatty acids and 1 quinone were unambiguously or tentatively identified by UPLC-QTOF-MS/MS. Among them, naphthopyrones were first identified in BL extracts and labelled in chromatography. In addition, the weak inhibitory effects of BL extracts (IC50=149.25 µg/mL) and rubrofusarin-6-O-α-L-rhamnosyl-(1-6)-O-ß-D-glu-copyranside (the main component of BL extracts, M0; IC50=82.14 µM) on CYP3A4 were also proved using testosterone as specific probe drug. The main metabolic pathway of M0 by HLM was hydroxylation in its aglycone, the metabolite was tentatively identified as 10-hydroxy-rubrofusarin-6-O-α-L-rhamnosyl-(1-6)-O-ß-D-glucopyranside. Components characterisation and the metabolism with HLM could help the further development and application of BL.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Rhamnaceae/química , Cromatografia Líquida de Alta Pressão/métodos , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Flavonoides/análise , Humanos , Microssomos Hepáticos/metabolismo , Fenóis/análise , Plantas Medicinais/química , Espectrometria de Massas em Tandem/métodos , Testosterona/farmacocinética
16.
Eur Arch Psychiatry Clin Neurosci ; 271(5): 847-856, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31907614

RESUMO

Buprenorphine is a partial µ-opioid agonist widely used for opioid maintenance therapy (OMT). It is mainly metabolized to pharmacologically active norbuprenorphine by the cytochrome P450 (CYP) isozyme 3A4. This may give rise to drug-drug interactions under combinations with inhibitors or inducers of CYP3A4. Cannabis is a potential inhibitor of CYP3A4, and there is a large degree of concomitant cannabis use among OMT patients. We performed a retrospective analysis on liver healthy OMT patients substituted with buprenorphine, either with (n = 15) or without (n = 17) concomitant use of cannabis. Patients with additional illicit drugs or medications affecting CYP3A were excluded. Measured blood concentrations of buprenorphine and norbuprenorphine were compared between the two groups. Cannabis users and non-users received similar doses, but users had 2.7-fold higher concentrations of buprenorphine (p < 0.01) and 1.4-fold for norbuprenorphine (1.4-fold, p = 0.07). Moreover, the metabolite-to-parent drug ratio was 0.98 in non-users and 0.38 in users (p = 0.02). Female gender did not produce significant effects. These findings indicate that cannabis use decreases the formation of norbuprenorphine and elevates buprenorphine and norbuprenorphine concentrations in blood most probably by inhibition of CYP3A4. The pharmacokinetic interaction may give rise to enhanced or altered opioid activity and risk of intoxications. Physicians should inform patients about this risk and supervise cannabis users by regular control of buprenorphine blood levels, i.e., by therapeutic drug monitoring.


Assuntos
Buprenorfina , Maconha Medicinal , Tratamento de Substituição de Opiáceos , Transtornos Relacionados ao Uso de Opioides , Buprenorfina/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Feminino , Humanos , Masculino , Maconha Medicinal/farmacologia , Antagonistas de Entorpecentes/farmacologia , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Estudos Retrospectivos
17.
Phytomedicine ; 81: 153416, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33321412

RESUMO

BACKGROUND: Bulbine natalensis is an African-folk medicinal plant used as a dietary supplement for enhancing sexual function and muscle strength in males by presumably boosting testosterone levels, but no scientific information is available about the possible herb-drug interaction (HDI) risk when bulbine-containing supplements are concomitantly taken with prescription drugs. PURPOSE: This study was aimed to investigate the HDI potential of B. natalensis in terms of the pregnane X receptor (PXR)-mediated induction of major drug-metabolizing cytochrome P450 enzyme isoforms (i.e., CYP3A4 and CYP2C9) as well as inhibition of their catalytic activity. RESULTS: We found that a methanolic extract of B. natalensis activated PXR (EC50 6.2 ± 0.6 µg/ml) in HepG2 cells resulting in increased mRNA expression of CYP3A4 (2.40 ± 0.01 fold) and CYP2C9 (3.37 ± 0.3 fold) at 30 µg/ml which was reflected in increased activites of the two enzymes. Among the constituents of B. natalensis, knipholone was the most potent PXR activator (EC50 0.3 ± 0.1 µM) followed by bulbine-knipholone (EC50 2.0 ± 0.5 µM), and 6'-methylknipholone (EC50 4.0 ± 0.5 µM). Knipholone was also the most effective in increasing the expression of CYP3A4 (8.47 ± 2.5 fold) and CYP2C9 (2.64 ± 0.3 fold) at 10 µM. Docking studies further confirmed the unique structural features associated with knipholones for their superior inductive potentials in the activation of PXR compared to other anthraquinones. In a CYP inhibition assay, the methanolic extract as well as the anthraquinones strongly inhibited the catalytic activity of CYP2C9 while, inhibition of CYP3A4 was weak. CONCLUSIONS: These results suggest that consumption of B. natalensis may pose a potential risk for HDI if taken with conventional medications that are substrates of CYP3A4 and CYP2C9 and may contribute to unanticipated adverse reactions or therapeutic failures. Further studies are warranted to validate these findings and establish their clinical relevancy.


Assuntos
Asphodelaceae/química , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Suplementos Nutricionais , Interações Ervas-Drogas , Inibidores do Citocromo P-450 CYP2C9/química , Inibidores do Citocromo P-450 CYP2C9/farmacologia , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Suplementos Nutricionais/efeitos adversos , Células Hep G2 , Humanos , Masculino , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Receptor de Pregnano X/química , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo
18.
Arch Toxicol ; 94(11): 3931-3934, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33025068

RESUMO

On the basis of official Finnish Medicines Authority (Fimea)-approved drug monographs, less than half of the approved small-molecule drugs between 2007 and 2016 were substrates, inhibitors or inducers of CYP enzymes, predominantly of CYP3A4. No significant unexpected, life-threatening, CYP-associated drug-drug interactions (CYP-DDIs) of newly approved drug entities have been observed in the last 10-15 years. The present analysis seems to suggest that tools to study and predict potentially significant CYP-DDIs are working and efficient.


Assuntos
Indutores do Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Interações Medicamentosas , Animais , Antirretrovirais , Antineoplásicos , Avaliação Pré-Clínica de Medicamentos , Finlândia , Humanos , Preparações Farmacêuticas
19.
Phytomedicine ; 77: 153287, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32739573

RESUMO

BACKGROUND: Styrax, one of the most famous folk medicines, has been frequently used for the treatment of cardiovascular diseases and skin problems in Asia and Africa. It is unclear whether Styrax or Styrax-related herbal medicines may trigger clinically relevant herb-drug interactions. PURPOSE: This study was carried out to investigate the inhibitory effects of Styrax on human cytochrome P450 enzymes (CYPs) and to clarify whether this herb may modulate the pharmacokinetic behavior of the CYP-substrate drug warfarin when co-administered. STUDY DESIGN: The inhibitory effects of Styrax on CYPs were assayed in human liver microsomes (HLM), while the pharmacokinetic interactions between Styrax and warfarin were investigated in rats. The bioactive constituents in Styrax with strong CYP3A inhibitory activity were identified and their inhibitory mechanisms were carefully investigated. METHODS: The inhibitory effects of Styrax on human CYPs were assayed in vitro, while the pharmacokinetic interactions between Styrax and warfarin were studied in rats. Fingerprinting analysis of Styrax coupled with LC-TOF-MS/MS profiling and CYP inhibition assays were used to identify the constituents with strong CYP3A inhibitory activity. The inhibitory mechanism of oleanonic acid (the most potent CYP3A inhibitor occurring in Styrax) against CYP3A4 was investigated by a panel of inhibition kinetics analyses and in silico analysis. RESULTS: In vitro assays demonstrated that Styrax extract strongly inhibited human CYP3A and moderately inhibited six other tested human CYPs, as well as potently inhibited warfarin 10-hydroxylation in liver microsomes from both humans and rats. In vivo assays demonstrated that compared with warfarin given individually in rats, Styrax (100 mg/kg) significantly prolonged the plasma half-life of warfarin by 2.3-fold and increased the AUC(0-inf) of warfarin by 2.7-fold when this herb was co-administrated with warfarin (2 mg/kg) in rats. Two LC fractions were found with strong CYP3A inhibitory activity and the major constituents in these fractions were characterized by LC-TOF-MS/MS. Five pentacyclic triterpenoid acids (including epibetulinic acid, betulinic acid, betulonic acid, oleanonic acid and maslinic acid) present in Styrax were potent CYP3A inhibitors, and oleanonic acid was a competitive inhibitor against CYP3A-mediated testosterone 6ß-hydroxylation. CONCLUSION: Styrax and the pentacyclic triterpenoid acids occurring in this herb strongly modulate the pharmacokinetic behavior of warfarin via inhibition of CYP3A.


Assuntos
Interações Ervas-Drogas , Microssomos Hepáticos/efeitos dos fármacos , Extratos Vegetais/farmacocinética , Styrax/química , Varfarina/farmacocinética , Animais , Anticoagulantes/farmacocinética , Cromatografia de Fase Reversa , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Hidroxilação/efeitos dos fármacos , Masculino , Microssomos Hepáticos/metabolismo , Triterpenos Pentacíclicos/análise , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais/química , Plantas Medicinais/química , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Triterpenos/análise , Triterpenos/farmacologia , Ácido Betulínico
20.
Drug Metab Dispos ; 48(10): 1084-1091, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32719085

RESUMO

Commercial formulations of 29 commonly used herbal supplements (HSs) and grapefruit juice were evaluated for drug interaction potential via quantification of their CYP3A inhibitory potential in two in vitro experimental models of human small intestine, cryopreserved human intestinal mucosa (CHIM), and cryopreserved human enterocytes (CHEs). Two CYP3A substrates were used-in the studies with CHIM, CYP3A activity was quantified via liquid chromatography tandem mass spectrometry quantification of midazolam 1'-hydroxylation, whereas in CHE, luciferin-IPA metabolism to luciferin was quantified by luminescence. Upon treatment of CHIM with the estimated lumen concentration of the HS upon each oral administration (manufacturers' recommended dosage dissolved in 200 ml of culture medium), >80% CYP3A inhibition was observed for green tea extract, St. John's wort, valerian root, horehound, and grapefruit juice. Less than 50% inhibition was observed for fenugreek, aloe vera, guarana, soy isoflavone, maca, echinacea, spirulina, evening primrose, milk thistle, cranberry, red yeast rice, rhodiola, ginkgo biloba, turmeric, curcumin, white kidney bean, garlic, cinnamon, saw palmetto berries, panax ginseng, black elderberry, wheat grass juice, flaxseed oil, black cohosh, and ginger root. The results were confirmed in a a dose-response study with HSs obtained from three suppliers for the four inhibitory HSs (green tea extract, horehound, St. John's wort, valerian root) and three representative noninhibitory HSs (black cohosh, black elderberry, echinacea). Similar results were obtained with the inhibitory HSs in CHE. The results illustrate that CHIM and CHE represent physiologically relevant in vitro experimental models for the evaluation of drug interaction potential of herbal supplements. Based on the results, green tea extract, horehound, St. John's wort, and valerian root may cause drug interactions with orally administered drugs that are CYP3A substrates, as was observed for grapefruit juice. SIGNIFICANCE STATEMENT: In vitro evaluation of 29 popular herbal supplements in cryopreserved human intestinal mucosa identified green tea extract, horehound, St. John's wort, and valerian root to have CYP3A inhibitory potential similar to that for grapefruit juice, suggesting their potential to have clinically significant pharmacokinetic interaction with orally administered drugs that are CYP3A substrates. The results suggest that cryopreserved human intestinal mucosa can be used for in vitro evaluation of drug interactions involving enteric drug metabolism.


Assuntos
Citrus paradisi/química , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Suplementos Nutricionais/efeitos adversos , Sucos de Frutas e Vegetais/efeitos adversos , Acetais/administração & dosagem , Acetais/farmacocinética , Administração Oral , Adulto , Criopreservação , Citocromo P-450 CYP3A/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Enterócitos , Feminino , Luciferina de Vaga-Lumes/administração & dosagem , Luciferina de Vaga-Lumes/análogos & derivados , Luciferina de Vaga-Lumes/farmacocinética , Interações Alimento-Droga , Interações Ervas-Drogas , Humanos , Mucosa Intestinal , Masculino , Midazolam/administração & dosagem , Midazolam/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA