Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.684
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 322(1): E10-E23, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779255

RESUMO

Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Colecistocinina/administração & dosagem , Ciclo-Oxigenase 2/metabolismo , Hipertermia/induzido quimicamente , Hipertermia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anorexia/induzido quimicamente , Benzodiazepinas/administração & dosagem , Regulação da Temperatura Corporal/efeitos dos fármacos , Colecistocinina/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Febre/induzido quimicamente , Febre/tratamento farmacológico , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Lipopolissacarídeos/efeitos adversos , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptor de Colecistocinina B/antagonistas & inibidores , Resultado do Tratamento
2.
Neurosci Lett ; 768: 136362, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34838926

RESUMO

Glucagon-like peptide (GLP)-1 and GLP-2, proglucagon-derived brain-gut peptides, function as anorexigenic neuropeptides in mammals. We previously showed that central administration of GLP-1 and GLP-2 potently suppressed food intake in chicks. GLP-1 and GLP-2 specifically activate their receptors GLP-1 receptor (GLP1R) and GLP-2 receptor (GLP2R), respectively in chickens. In adult chickens, GLP1R and GLP2R are expressed in different brain regions. These findings raise the hypothesis that both GLP-1 and GLP-2 function as anorexigenic peptides in the chicken brain but the mechanisms underlying the anorexigenic effects are different between them. In the present study, we compared several aspects of GLP-1 and GLP-2 in chicks. GLP1R mRNA levels in the brain stem and optic lobes were significantly higher than in other parts of the brain, whereas GLP2R mRNA was densely expressed in the telencephalon. Intracerebroventricular administration of either GLP-1 or GLP-2 significantly reduced the mRNA levels of corticotrophin releasing factor and AMP-kinase (AMPK) α1. The mRNA level of proopiomelanocortin was significantly increased, and those of AMPKα2 and GLP2R were significantly decreased by GLP-2, whereas the mRNA level of pyruvate dehydrogenase kinase 4 was significantly increased, and that of GLP1R was significantly decreased by GLP-1. Intracerebroventricular administration of either GLP-1 or GLP-2 induced sleep-like behavior in chicks. Our findings suggest that the anorexigenic peptides GLP-1 and GLP-2 induce similar behavioral changes in chicks, but the mechanism may differ between them.


Assuntos
Apetite/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 2 Semelhante ao Glucagon/administração & dosagem , Hipotálamo/efeitos dos fármacos , Sono/efeitos dos fármacos , Animais , Apetite/fisiologia , Galinhas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , Hipotálamo/metabolismo , Injeções Intraventriculares , Sono/fisiologia
3.
Mol Brain ; 14(1): 150, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565419

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) is a trauma-related disorder that is associated with pro-inflammatory activation and neurobiological impairments in the brain and leads to a series of affective-like behaviors. Electroacupuncture (EA) has been proposed as a clinically useful therapy for several brain diseases. However, the potential role of EA treatment in PTSD and its molecular and cellular mechanisms has rarely been investigated. METHODS: We used an established preclinical social defeat stress mouse model to study whether EA treatment modulates PTSD-like symptoms and understand its underlying mechanisms. To this end, male C57BL/6 mice were subjected to repeated social defeat stress (RSDS) for 6 consecutive days to induce symptoms of PTSD and treated with EA at Baihui (GV 20) and Dazhui (GV 14) acupoints. RESULTS: The stimulation of EA, but not needle insertion at Baihui (GV 20) and Dazhui (GV 14) acupoints effectively improved PTSD-like behaviors such as, social avoidance and anxiety-like behaviors. However, EA stimulation at the bilateral Tianzong (SI11) acupoints did not affect the PTSD-like behaviors obtained by RSDS. EA stimulation also markedly inhibited astrocyte activation in both the dorsal and ventral hippocampi of RSDS-treated mice. Using next-generation sequencing analysis, our results showed that EA stimulation attenuated RSDS-enhanced lipocalin 2 expression in the hippocampus. Importantly, using double-staining immunofluorescence, we observed that the increased lipocalin 2 expression in astrocytes by RSDS was also reduced by EA stimulation. In addition, intracerebroventricular injection of mouse recombinant lipocalin 2 protein in the lateral ventricles provoked social avoidance, anxiety-like behaviors, and the activation of astrocytes in the hippocampus. Interestingly, the overexpression of lipocalin 2 in the brain also altered the expression of stress-related genes, including monoamine oxidase A, monoamine oxidase B, mineralocorticoid receptor, and glucocorticoid receptor in the hippocampus. CONCLUSIONS: This study suggests that the treatment of EA at Baihui (GV 20) and Dazhui (GV 14) acupoints improves RSDS-induced social avoidance, anxiety-like behaviors, astrocyte activation, and lipocalin 2 expression. Furthermore, our findings also indicate that lipocalin 2 expression in the brain may be an important biomarker for the development of PTSD-related symptoms.


Assuntos
Terapia por Acupuntura , Ansiedade/prevenção & controle , Eletroacupuntura , Hipocampo/metabolismo , Lipocalina-2/fisiologia , Derrota Social , Interação Social , Transtornos de Estresse Pós-Traumáticos/terapia , Actinas/biossíntese , Actinas/genética , Pontos de Acupuntura , Animais , Ansiedade/etiologia , Teste de Labirinto em Cruz Elevado , Comportamento Exploratório , Injeções Intraventriculares , Lipocalina-2/biossíntese , Lipocalina-2/genética , Lipocalina-2/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Monoaminoxidase/biossíntese , Monoaminoxidase/genética , Receptores de Glucocorticoides/biossíntese , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/biossíntese , Receptores de Mineralocorticoides/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/psicologia
4.
Diabetes ; 70(10): 2237-2249, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34285117

RESUMO

Similar to insulin, central administration of IGF-1 can suppress hepatic glucose production (HGP), but it is unclear whether this effect is mediated via insulin receptors (InsRs) or IGF-1 receptors (IGF-1Rs) in the brain. To this end, we used pharmacologic and genetic approaches in combination with hyperinsulinemic-euglycemic clamps to decipher the role of these receptors in mediating central effects of IGF-1 and insulin on HGP. In rats, we observed that intracerebroventricular (ICV) administration of IGF-1 or insulin markedly increased the glucose infusion rate (GIR) by >50% and suppressed HGP (P < 0.001). However, these effects were completely prevented by preemptive ICV infusion with an IGF-1R and InsR/IGF-1R hybrid (HybridR) blocking antibody. Likewise, ICV infusion of the InsR antagonist, S961, which also can bind HybridRs, interfered with the ability of central insulin, but not IGF-1, to increase the GIR. Furthermore, hyperinsulinemic clamps in mice lacking IGF-1Rs in AgRP neurons revealed ∼30% reduction in the GIR in knockout animals, which was explained by an impaired ability of peripheral insulin to completely suppress HGP (P < 0.05). Signaling studies further revealed an impaired ability of peripheral insulin to trigger ribosomal S6 phosphorylation or phosphatidylinositol (3,4,5)-trisphosphate production in AgRP neurons lacking IGF-1Rs. In summary, these data suggest that attenuation of IGF-1R signaling in the mediobasal hypothalamus, and specifically in AgRP neurons, can phenocopy impaired regulation of HGP as previously demonstrated in mice lacking InsRs in these cells, suggesting a previously unappreciated role for IGF-1Rs and/or HybridRs in the regulation of central insulin/IGF-1 signaling in glucose metabolism.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Neurônios/fisiologia , Adulto , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Células Cultivadas , Técnica Clamp de Glucose , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Insulina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
J Neurochem ; 158(2): 311-327, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33871064

RESUMO

Neuroinflammation is initiated by activation of the brain's innate immune system in response to an inflammatory challenge. Insufficient control of neuroinflammation leads to enhanced or prolonged pathology in various neurological conditions including multiple sclerosis and Alzheimer's disease. Nicotinamide adenine dinucleotide (NAD+ ) plays critical roles in cellular energy metabolism and calcium homeostasis. Our previous study demonstrated that deletion of CD38, which consumes NAD+ , suppressed cuprizone-induced demyelination, neuroinflammation, and glial activation. However, it is still unknown whether CD38 directly affects neuroinflammation through regulating brain NAD+ level. In this study, we investigated the effect of CD38 deletion and inhibition and supplementation of NAD+ on lipopolysaccharide (LPS)-induced neuroinflammation in mice. Intracerebroventricular injection of LPS significantly increased CD38 expression especially in the hippocampus. Deletion of CD38 decreased LPS-induced inflammatory responses and glial activation. Pre-administration of apigenin, a flavonoid with CD38 inhibitory activity, or nicotinamide riboside (NR), an NAD+ precursor, increased NAD+ level, and significantly suppressed induction of cytokines and chemokines, glial activation and subsequent neurodegeneration after LPS administration. In cell culture, LPS-induced inflammatory responses were suppressed by treatment of primary astrocytes or microglia with apigenin, NAD+ , NR or 78c, the latter a specific CD38 inhibitor. Finally, all these compounds suppressed NF-κB signaling pathway in microglia. These results suggest that CD38-mediated neuroinflammation is linked to NAD+ consumption and that boosting NAD+ by CD38 inhibition and NR supplementation directly suppress neuroinflammation in the brain.


Assuntos
ADP-Ribosil Ciclase 1/antagonistas & inibidores , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos , Glicoproteínas de Membrana/antagonistas & inibidores , Microglia/efeitos dos fármacos , Microglia/patologia , NAD/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacologia , Animais , Apigenina/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Deleção de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraventriculares , Lipopolissacarídeos/administração & dosagem , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , NAD/farmacologia , NF-kappa B/genética , Degeneração Neural , Niacinamida/farmacologia
6.
Brain Res Bull ; 172: 89-97, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33892084

RESUMO

OBJECTIVE: The aim of our study is to investigate the change of peroxisomal proteins in the neurodegenerative and oxidative process caused by the neurotoxicity of Aß 1-42 in aged rats supplemented with taurine and to show the possible positive effects of taurine in this process. METHODS: 30 Wistar albino rats were randomly divided into 5 groups as control, sham, Aß 1-42, taurine, and Aß 1-42+taurine. Taurine administration continued for 6 weeks (1000 mg/kg/day with drinking water). Stereotaxic surgery was applied to all groups (intracerebroventricular per lateral ventricle needle only or 5 µl, PBS, or Aß 1-42). Spatial learning and memory performances of the animals were evaluated with Morris water maze and elevated plus maze. The levels of MDA and GSH were measured as oxidative stress parameters in the cerebral cortex and hippocampus. Expressions of CAT, PEX14, PMP70 of peroxisomal membrane proteins were indicated by Western blot analysis. RESULTS: Our results showed that injection of Aß 1-42 decreased the spatial learning and memory performance, cortex CAT and hippocampus PEX14, PMP70 and GSH levels, and increased cortex and hippocampus MDA levels (p < 0.05). Although the administration of taurine partially ameliorated the adverse effects of Aß 1-42 injection, a significant difference was found only at the hippocampus GSH levels (p < 0.05). Also, taurine caused anxiety at this dose (p < 0.05). DISCUSSION: In conclusion, decreased peroxisomal proteins and antioxidant capacity in neurodegenerative and oxidative processes induced by intracerebroventricular Aß 1-42 injection showed that peroxisomes may play a role in this process and taurine supplementation may have positive effects especially in increasing antioxidant capacity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptídeos beta-Amiloides/administração & dosagem , Cognição/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Proteínas Repressoras/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Taurina/administração & dosagem , Envelhecimento/metabolismo , Animais , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraventriculares , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia
7.
Biomed Pharmacother ; 139: 111579, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33845375

RESUMO

Alzheimer's disease (AD) is the most common type of dementia worldwide, characterized by the deposition of neurofibrillary tangles and amyloid-ß (Aß) peptides in the brain. Additionally, increasing evidence demonstrates that a neuroinflammatory state and oxidative stress, iron-dependent, play a crucial role in the onset and disease progression. Besides conventional therapies, the use of natural-based products represents a future medical option for AD treatment and/or prevention. We, therefore, evaluated the effects of a ribonucleotides-based ingredient (Ribodiet®) in a non-genetic mouse model of AD. To this aim, mice were injected intracerebroventricularly (i.c.v.) with Aß1-42 peptide (3 µg/3 µl) and after with Ribodiet® (0.1-10 mg/mouse) orally (p.o.) 3 times weekly for 21 days following the induction of experimental AD. The mnemonic and cognitive decline was then evaluated, and, successively, we have assessed ex vivo the modulation of different cyto-chemokines on mice brain homogenates. Finally, the level of GFAP, S100ß, and iron-related metabolic proteins were monitored as markers of reactive gliosis, neuro-inflammation, and oxidative stress. Results indicate that Ribodiet® lessens oxidative stress, brain inflammation, and amyloid pathology via modulation of iron-related metabolic proteins paving the way for its rationale use for the treatment of AD and other age-related diseases.


Assuntos
Doença de Alzheimer/prevenção & controle , Angiopatia Amiloide Cerebral/prevenção & controle , Suplementos Nutricionais , Encefalite/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Ribonucleotídeos/uso terapêutico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores , Angiopatia Amiloide Cerebral/psicologia , Dieta , Encefalite/psicologia , Gliose/prevenção & controle , Injeções Intraventriculares , Masculino , Camundongos , Ferroproteínas não Heme/metabolismo , Fragmentos de Peptídeos , Desempenho Psicomotor/efeitos dos fármacos , Ribonucleotídeos/farmacologia
8.
Cells ; 10(3)2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800837

RESUMO

Central actions of leptin and insulin on hepatic lipid metabolism can be opposing and the mechanism underlying this phenomenon remains unclear. Both hormones can modulate the central somatostatinergic system that has an inhibitory effect on growth hormone (GH) expression, which plays an important role in hepatic metabolism. Using a model of chronic central leptin infusion, we evaluated whether an increase in central leptin bioavailability modifies the serum lipid pattern through changes in hepatic lipid metabolism in male rats in response to an increase in central insulin and the possible involvement of the GH axis in these effects. We found a rise in serum GH in leptin plus insulin-treated rats, due to an increase in pituitary GH mRNA levels associated with lower hypothalamic somatostatin and pituitary somatostatin receptor-2 mRNA levels. An augment in hepatic lipolysis and a reduction in serum levels of non-esterified fatty acids (NEFA) and triglycerides were found in leptin-treated rats. These rats experienced a rise in lipogenic-related factors and normalization of serum levels of NEFA and triglycerides after insulin treatment. These results suggest that an increase in insulin in leptin-treated rats can act on the hepatic lipid metabolism through activation of the GH axis.


Assuntos
Hipotálamo/efeitos dos fármacos , Insulina/farmacologia , Leptina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Animais , Ácidos Graxos não Esterificados/sangue , Regulação da Expressão Gênica , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Injeções Intravenosas , Injeções Intraventriculares , Insulina/metabolismo , Leptina/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Transdução de Sinais , Triglicerídeos/sangue
9.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799501

RESUMO

The growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is involved in metabolic control. Malnutrition reduces IGF-I and modifies the thermogenic capacity of brown adipose tissue (BAT). Leptin has effects on the GH/IGF-I axis and the function of BAT, but its interaction with IGF-I and the mechanisms involved in the regulation of thermogenesis remains unknown. We studied the GH/IGF-I axis and activation of IGF-I-related signaling and metabolism related to BAT thermogenesis in chronic central leptin infused (L), pair-fed (PF), and control rats. Hypothalamic somatostatin mRNA levels were increased in PF and decreased in L, while pituitary GH mRNA was reduced in PF. Serum GH and IGF-I concentrations were decreased only in PF. In BAT, the association between suppressor of cytokine signaling 3 and the IGF-I receptor was reduced, and phosphorylation of the IGF-I receptor increased in the L group. Phosphorylation of Akt and cyclic AMP response element binding protein and glucose transporter 4 mRNA levels were increased in L and mRNA levels of uncoupling protein-1 (UCP-1) and enzymes involved in lipid anabolism reduced in PF. These results suggest that modifications in UCP-1 in BAT and changes in the GH/IGF-I axis induced by negative energy balance are dependent upon leptin levels.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Leptina/farmacologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hormônio do Crescimento/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
10.
Metab Brain Dis ; 36(6): 1259-1266, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33826055

RESUMO

Alzheimer's disease is the most common neurodegenerative disease associated with deposition of amyloid-beta and the increased oxidative stress. High free radical scavenging ability of selenium nanoparticles (SeNPs) has been acknowledged, so in the present study, the effects of treatment with SeNPs on Streptozotocin (STZ)-induced neurotoxicity were evaluated in the male rats. Learning and memory impairment was induced by intraventricular injection of STZ. Following induction of memory impairment, the rats received 0.4 mg/kg of SeNPs daily for one month. Memory function, antioxidant capacity, and deposition of Amyloid ß (Aß) were assessed using the shuttle box task, biochemical methods, and Congo red staining. Injection of STZ caused memory impairment, a decrease in the level of total thiol group (TTG), and an increase in the malondialdehyde (MDA) content and deposition of Aß. Administration of SeNPs reversed the neurotoxicity induced by STZ. It seems that SeNPs likely had neuroprotective effects on the animal model of Alzheimer's disease through increasing antioxidants҆ capacity.


Assuntos
Antibacterianos/toxicidade , Antioxidantes/uso terapêutico , Nanopartículas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Selênio/uso terapêutico , Estreptozocina/toxicidade , Peptídeos beta-Amiloides/metabolismo , Animais , Antibacterianos/administração & dosagem , Antioxidantes/administração & dosagem , Aprendizagem da Esquiva/efeitos dos fármacos , Injeções Intraventriculares , Deficiências da Aprendizagem/induzido quimicamente , Deficiências da Aprendizagem/psicologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Fármacos Neuroprotetores/administração & dosagem , Síndromes Neurotóxicas/psicologia , Ratos , Ratos Wistar , Selênio/administração & dosagem , Estreptozocina/administração & dosagem
11.
Mol Neurobiol ; 58(8): 3603-3613, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33770339

RESUMO

Dehydroeffusol, a phenanthrene isolated from Juncus effusus, is a Chinese medicine. To explore an efficacy of dehydroeffusol administration for prevention and cure of Alzheimer's disease, here we examined the effect of dehydroeffusol on amyloid ß1-42 (Aß1-42)-mediated hippocampal neurodegeneration. Dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 6 days and then human Aß1-42 was injected intracerebroventricularly followed by oral administration for 12 days. Neurodegeneration in the dentate granule cell layer, which was determined 2 weeks after Aß1-42 injection, was rescued by dehydroeffusol administration. Aß staining (uptake) was not reduced in the dentate granule cell layer by pre-administration of dehydroeffusol for 6 days, while increase in intracellular Zn2+ induced with Aß1-42 was reduced, suggesting that pre-administration of dehydroeffusol prior to Aß1-42 injection is effective for Aß1-42-mediated neurodegeneration that was linked with intracellular Zn2+ toxicity. As a matter of fact, pre-administration of dehydroeffusol rescued Aß1-42-mediated neurodegeneration. Interestingly, pre-administration of dehydroeffusol increased synthesis of metallothioneins, intracellular Zn2+-binding proteins, in the dentate granule cell layer, which can capture Zn2+ from Zn-Aß1-42 complexes. The present study indicates that pre-administration of dehydroeffusol protects Aß1-42-mediated neurodegeneration in the hippocampus by reducing intracellular Zn2+ toxicity, which is linked with induced synthesis of metallothioneins. Dehydroeffusol, a novel inducer of metallothioneins, may protect Aß1-42-induced pathogenesis in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Hipocampo/efeitos dos fármacos , Líquido Intracelular/efeitos dos fármacos , Doenças Neurodegenerativas/prevenção & controle , Fragmentos de Peptídeos/toxicidade , Fenantrenos/uso terapêutico , Zinco/toxicidade , Peptídeos beta-Amiloides/administração & dosagem , Animais , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hipocampo/metabolismo , Humanos , Injeções Intraventriculares , Líquido Intracelular/metabolismo , Masculino , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/administração & dosagem , Fenantrenos/isolamento & purificação , Fenantrenos/farmacologia
12.
Neurosci Lett ; 751: 135797, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727127

RESUMO

Insulin-like growth factor (IGF)-2 is a multifunctional hormone with structural and functional similarity to IGF-1 in mammals and chickens. We previously showed that intracerebroventricular administration of IGF-1 suppresses food intake in chicks. Also, central administration of IGF-2 suppresses food intake in rats. In the present study, we evaluated whether IGF-2 is involved in the regulation of food intake in chicks. We also examined the effects of fasting on the mRNA levels of IGF binding proteins (IGFBPs) in the liver and hypothalamus, because IGFBPs bind IGF-1 and -2 in plasma and block their binding to the receptors, and locally expressed IGFBPs also influence IGFs binding to the receptors in mammals. Intracerebroventricular administration of IGF-2 significantly suppressed food intake in chicks. The mRNA levels of IGFBPs in the hypothalamus were not affected by six hours of fasting. On the other hand, six hours of fasting markedly increased the mRNA levels of hepatic IGFBP-1 and -2 (5.47- and 6.95-fold, respectively). The mRNA levels of IGFBP-3 were also significantly increased (1.36-fold) by six hours of fasting, whereas the mRNA levels of IGF-2, IGFBP-4, and -5 were unchanged. These findings suggest that circulating IGF-2 may be involved in satiety signals, but its physiological role may be regulated by IGFBPs production in the liver in chicks.


Assuntos
Galinhas/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Fator de Crescimento Insulin-Like II/farmacologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Jejum/metabolismo , Hipotálamo/metabolismo , Injeções Intraventriculares , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like II/administração & dosagem , Fígado/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Mol Pharm ; 18(2): 610-626, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584043

RESUMO

Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.


Assuntos
Portadores de Fármacos/química , Doença de Huntington/tratamento farmacológico , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Peptídeos/antagonistas & inibidores , Ataxias Espinocerebelares/tratamento farmacológico , Administração Intranasal , Administração Oral , Animais , Animais Geneticamente Modificados , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Loci Gênicos/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Injeções Intraperitoneais , Injeções Intravenosas , Injeções Intraventriculares , Injeções Espinhais , Fármacos Neuroprotetores/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacocinética , Peptídeos/genética , Peptídeos/metabolismo , Permeabilidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Distribuição Tecidual , Expansão das Repetições de Trinucleotídeos
14.
Mol Pharm ; 18(2): 593-609, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926630

RESUMO

Deferoxamine mesylate (DFO) is an FDA-approved, hexadentate iron chelator routinely used to alleviate systemic iron burden in thalassemia major and sickle cell patients. Iron accumulation in these disease states results from the repeated blood transfusions required to manage these conditions. Iron accumulation has also been implicated in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD), and secondary injury following intracerebral hemorrhage (ICH). Chelation of brain iron is thus a promising therapeutic strategy for improving behavioral outcomes and slowing neurodegeneration in the aforementioned disease states, though the effectiveness of DFO treatment is limited on several accounts. Systemically administered DFO results in nonspecific toxicity at high doses, and the drug's short half-life leads to low patient compliance. Mixed reports of DFO's ability to cross the blood-brain barrier (BBB) also appear in literature. These limitations necessitate novel DFO formulations prior to the drug's widespread use in managing neurodegeneration. Herein, we discuss the various dosing regimens and formulations employed in intranasal (IN) or systemic DFO treatment, as well as the physiological and behavioral outcomes observed in animal models of AD, PD, and ICH. The clinical progress of chelation therapy with DFO in managing neurodegeneration is also evaluated. Finally, the elimination of intranasally administered particles via the glymphatic system and efflux transporters is discussed. Abundant preclinical evidence suggests that intranasal DFO treatment improves memory retention and behavioral outcome in rodent models of AD, PD, and ICH. Several other biochemical and physiological metrics, such as tau phosphorylation, the survival of tyrosine hydroxylase-positive neurons, and infarct volume, are also positively affected by intranasal DFO treatment. However, dosing regimens are inconsistent across studies, and little is known about brain DFO concentration following treatment. Systemic DFO treatment yields similar results, and some complex formulations have been developed to improve permeability across the BBB. However, despite the success in preclinical models, clinical translation is limited with most clinical evidence investigating DFO treatment in ICH patients, where high-dose treatment has proven dangerous and dosing regimens are not consistent across studies. DFO is a strong drug candidate for managing neurodegeneration in the aging population, but before it can be routinely implemented as a therapeutic agent, dosing regimens must be standardized, and brain DFO content following drug administration must be understood and controlled via novel formulations.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Desferroxamina/administração & dosagem , Portadores de Fármacos/química , Doença de Parkinson/tratamento farmacológico , Sideróforos/administração & dosagem , Administração Intranasal , Doença de Alzheimer/patologia , Animais , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Desferroxamina/farmacocinética , Modelos Animais de Doenças , Meia-Vida , Humanos , Injeções Intramusculares , Injeções Intraventriculares , Injeções Espinhais , Injeções Subcutâneas , Ferro/metabolismo , Adesão à Medicação , Nanopartículas/química , Mucosa Nasal/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/patologia , Permeabilidade , Sideróforos/farmacocinética , Distribuição Tecidual
15.
Neurobiol Dis ; 149: 105224, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359140

RESUMO

The TATA-box binding protein associated factor 1 (TAF1) is part of the TFIID complex that plays a key role during the initiation of transcription. Variants of TAF1 are associated with neurodevelopmental disorders. Previously, we found that CRISPR/Cas9 based editing of the TAF1 gene disrupts the morphology of the cerebral cortex and blunts the expression as well as the function of the CaV3.1 (T-type) voltage gated calcium channel. Here, we tested the efficacy of SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate), a T-type calcium channel enhancer, in an animal model of TAF1 intellectual disability (ID) syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21, the rat pups were given SAK3 (0.25 mg/kg, p.o.) or vehicle for 14 days (i.e. till post-natal day 35) and then subjected to behavioral, morphological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued locomotion abnormalities associated with TAF1 gene editing. SAK3 treatment prevented the loss of cortical neurons and GFAP-positive astrocytes observed after TAF1 gene editing. In addition, SAK3 protected cells from apoptosis. SAK3 also restored the Brain-derived neurotrophic factor/protein kinase B/Glycogen Synthase Kinase 3 Beta (BDNF/AKT/GSK3ß) signaling axis in TAF1 edited animals. Finally, SAK3 normalized the levels of three GSK3ß substrates - CaV3.1, FOXP2, and CRMP2. We conclude that the T-type calcium channel enhancer SAK3 is beneficial against the deleterious effects of TAF1 gene-editing, in part, by stimulating the BDNF/AKT/GSK3ß signaling pathway.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Modelos Animais de Doenças , Histona Acetiltransferases/deficiência , Imidazóis/administração & dosagem , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Compostos de Espiro/administração & dosagem , Fatores Associados à Proteína de Ligação a TATA/deficiência , Fator de Transcrição TFIID/deficiência , Animais , Animais Recém-Nascidos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Histona Acetiltransferases/genética , Injeções Intraventriculares , Deficiência Intelectual/genética , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética
16.
J Endocrinol ; 248(2): 221-235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33337347

RESUMO

Bone morphogenetic proteins (BMPs) are secreted ligands that belong to the transforming growth factor-ß (TGF-ß) superfamily. BMP7 has been reported to play a role in reversing obesity and regulating appetite in the hypothalamus. Whether BMP9 plays a central role in regulating glucose metabolism and insulin sensitivity remains unclear. Here, we investigated the impact of central BMP9 signaling and possible route of transmission. We performed intracerebroventricular (ICV) surgery and injected adenovirus expressing BMP9 (Ad-BMP9) into the cerebral ventricle of mice. Metabolic analysis, hyperinsulinemic-euglycemic clamp test, and analysis of phosphatidylinositol 3,4,5-trisphosphate (PIP3) formation were then performed. Real-time PCR and Western blotting were performed to detect gene expression and potential pathways involved. We found that hypothalamic BMP9 expression was downregulated in obese and insulin-resistant mice. Overexpression of BMP9 in the mediobasal hypothalamus reduced food intake, body weight, and blood glucose level, and elevated the energy expenditure in high-fat diet (HFD)-fed mice. Importantly, central treatment with BMP9 improved hepatic insulin resistance (IR) and inhibited hepatic glucose production in HFD-fed mice. ICV BMP9-induced increase in hepatic insulin sensitivity and related metabolic effects were blocked by ICV injection of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) signaling. In addition, ICV BMP9 promoted the ability of insulin to activate the insulin receptor/phosphoinositide 3-kinase (PI3K)/Akt pathway in the hypothalamus. Thus, this study provides insights into the potential mechanism by which central BMP9 ameliorates hepatic glucose metabolism and IR via activating the mTOR/PI3K/Akt pathway in the hypothalamus.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Animais , Injeções Intraventriculares , Fígado/metabolismo , Masculino , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Epilepsia ; 61(12): 2825-2835, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098125

RESUMO

OBJECTIVE: The role of α2A adrenergic receptors (α2A ARs) in absence epilepsy is not well characterized. Therefore, we investigated the outcomes of the specific antagonism of α2A ARs on the spike-and-wave discharges (SWDs) in genetic absence epilepsy rats from Strasbourg (GAERSs), together with its influence on the behavior and second messenger systems, which may point to the mechanisms to which a possible SWD modulation can be related. METHODS: Atipamezole, an α2A AR antagonist, was administered intracerebroventricularly to the adult GAERSs, and electroencephalography (EEG) was conducted. The cumulative duration and number of SWDs, and the mean duration of each SWD complex were counted. The relative power of the EEG frequency bands and behavioral activity after the acute application of two doses (12 and 31 µg/5 µL) of atipamezole were evaluated. The levels of cyclic adenosine monophosphate and calcium/calmodulin-dependent kinase II (CaMKII) were measured in the cortex, thalamus, and hippocampus of naive Wistar rats and GAERSs, administered with artificial cerebrospinal fluid (aCSF) as a vehicle, or either acute or chronic atipamezole (12 µg), the latter being administered for 5 consecutive days. RESULTS: Atipamezole significantly suppressed SWDs dose-dependently, without affecting the relative power values of EEG frequency spectrum. The stereotypic activity was significantly lower in both naive Wistar rats and GAERSs receiving the highest dose (31 µg) of atipamezole compared to GAERSs receiving aCSF. In GAERSs, CaMKII levels were found to be higher in the thalamus after the acute and chronic application of SWD-suppressing doses of atipamezole (12 and 31 µg) compared to aCSF. SIGNIFICANCE: This study emphasizes the α2 AR-related modulation of absence epilepsy and particularly the significance of α2 AR antagonism in suppressing SWDs. Atipamezole's SWD-suppressive actions may be through CaMKII-mediated second messenger systems in the thalamus.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Anticonvulsivantes/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Epilepsia Tipo Ausência/tratamento farmacológico , Imidazóis/farmacologia , Tálamo/efeitos dos fármacos , Animais , Anticonvulsivantes/administração & dosagem , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Ensaio de Imunoadsorção Enzimática , Epilepsia Tipo Ausência/enzimologia , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Imidazóis/administração & dosagem , Injeções Intraventriculares , Masculino , Ratos , Ratos Endogâmicos , Ratos Wistar , Tálamo/fisiopatologia
18.
Neuromolecular Med ; 22(4): 542-556, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926328

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss in memory as one of the cardinal features. 5-N-ethyl carboxamidoadenosine (NECA), an agonist of adenosine-2b receptor, exerts neuroprotective activity against several experimental conditions. Further, NECA activates mitogen-activated protein kinase (MAPK) and also attenuates mitochondrial toxicity in mammalian tissues other than brain. Moreover, there is no report on the role of A2b/MAPK-mediated signaling pathway in Aß-induced mitochondrial toxicity in the brain of the experimental animals. Therefore, the present study evaluated the neuroprotective activity of NECA with or without MAPK inhibitor against Aß-induced cognitive deficit and mitochondrial toxicity in the experimental rodents. Further, the effect of NECA with or without MAPK inhibitor was evaluated on Aß-induced mitochondrial toxicity in the memory-sensitive mice brain regions. Intracerebroventricular (ICV) injection of Aß 1-42 was injected to healthy male mice through Hamilton syringe via polyethylene tube to induce AD-like behavioral manifestations. NECA attenuated Aß-induced cognitive impairments in the rodents. In addition, NECA ameliorated Aß-induced Aß accumulation and cholinergic dysfunction in the selected memory-sensitive mouse HIP, PFC, and AMY. Further, NECA significantly attenuated Aß-induced mitochondrial toxicity in terms of decrease in the mitochondrial function, integrity, and bioenergetics in the brain regions of these animals. However, MAPKI diminished the therapeutic effects of NECA on behavioral, biochemical, and molecular observations in AD-like animals. Therefore, it can be speculated that NECA exhibits neuroprotective activity perhaps through MAPK activation in AD-like rodents. Moreover, A2b-mediated MAPK activation could be a promising target in the management of AD.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Adenosina-5'-(N-etilcarboxamida)/uso terapêutico , Doença de Alzheimer , Peptídeos beta-Amiloides/toxicidade , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Nootrópicos/uso terapêutico , Fragmentos de Peptídeos/toxicidade , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Donepezila/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazóis/farmacologia , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto , Camundongos , Mitocôndrias/fisiologia , Teste do Labirinto Aquático de Morris , Nootrópicos/farmacologia , Fragmentos de Peptídeos/administração & dosagem , Piridinas/farmacologia , Distribuição Aleatória , Organismos Livres de Patógenos Específicos
19.
J Steroid Biochem Mol Biol ; 204: 105750, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920127

RESUMO

Ghrelin is a 28-amino acid peptide hormone that regulates ovarian steroid hormone synthesis; however, there is limited evidence regarding the regulation of this pathway by ghrelin in mice ovary. Thus, we aimed to investigate whether central ghrelin action plays a role in murine reproductive health by inhibiting steroid synthesis. Further, we sought to examine the mechanism of central ghrelin action in ovarian steroid hormone synthesis. After the administration of intracerebroventricular ghrelin (1 nmol), we found reduced serum concentrations of oestradiol and progesterone and reduced secretion of follicle-stimulating hormone and luteinising hormone. Although ghrelin reduced 3ß-hydroxysteroid dehydrogenase mRNA and protein levels in the hypothalamus, it did not affect the expression of steroidogenic acute regulatory protein and cytochrome P450 17A1. In the ovary, central ghrelin regulation indirectly inhibited the mRNA and protein levels of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3ß-hydroxysteroid dehydrogenase. Moreover, no changes were observed in the expression of proliferating cell nuclear antigen and phosphorylation of extracellular signal-regulated kinase. We hypothesised that central ghrelin regulation suppressed serum oestradiol and progesterone levels by indirectly inhibiting the expression of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3ß-hydroxysteroid dehydrogenase in the ovary. In this regulation, the suppressed secretion of the follicle-stimulating hormone and luteinising hormone in the pituitary by ghrelin could be involved. Furthermore, hypothalamic 3ß-hydroxysteroid dehydrogenase expression is reduced by ghrelin injection.


Assuntos
Grelina/metabolismo , Hormônios/sangue , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Injeções Intraventriculares , Camundongos Endogâmicos C57BL , Ovário/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Reprodução , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo
20.
Nat Metab ; 2(10): 1025-1033, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895577

RESUMO

We recently showed that perineuronal nets (PNNs) enmesh glucoregulatory neurons in the arcuate nucleus (Arc) of the mediobasal hypothalamus (MBH)1, but whether these PNNs play a role in either the pathogenesis of type 2 diabetes (T2D) or its treatment remains unclear. Here we show that PNN abundance within the Arc is markedly reduced in the Zucker diabetic fatty (ZDF) rat model of T2D, compared with normoglycaemic rats, correlating with altered PNN-associated sulfation patterns of chondroitin sulfate glycosaminoglycans in the MBH. Each of these PNN-associated changes is reversed following a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) at a dose that induces sustained diabetes remission in male ZDF rats. Combined with previous work localizing this FGF1 effect to the Arc area2-4, our finding that enzymatic digestion of Arc PNNs markedly shortens the duration of diabetes remission following icv FGF1 injection in these animals identifies these extracellular matrix structures as previously unrecognized participants in the mechanism underlying diabetes remission induced by the central action of FGF1.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Matriz Extracelular , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Hipotálamo/fisiopatologia , Neurônios , Idoso , Animais , Glicemia , Peso Corporal , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ingestão de Alimentos , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Humanos , Injeções Intraventriculares , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Wistar , Ratos Zucker , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA