Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171812, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508267

RESUMO

Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.


Assuntos
Inoculantes Agrícolas , Microalgas , Salvia miltiorrhiza , Rizosfera , Antioxidantes/metabolismo , Salvia miltiorrhiza/metabolismo , Carvão Vegetal/metabolismo , Solo , Cobre/toxicidade , Cobre/metabolismo
2.
BMC Plant Biol ; 24(1): 131, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383294

RESUMO

Early blight (EB), caused by Alternaria solani, is a serious problem in tomato production. Plant growth-promoting rhizobacteria promote plant growth and inhibit plant disease. The present study explored the bio-efficacy of synergistic effect of rhizobacterial isolates and ginger powder extract (GPE) against tomato EB disease, singly and in combination. Six fungal isolates from symptomatic tomato plants were identified as A. solani on the basis of morphological features i.e., horizontal septation (6.96 to 7.93 µm), vertical septation (1.50 to 2.22 µm), conidia length (174.2 to 187.6 µm), conidial width (14.09 to 16.52 µm), beak length (93.06 to 102.26 µm), and sporulation. Five of the twenty-three bacterial isolates recovered from tomato rhizosphere soil were nonpathogenic to tomato seedlings and were compatible with each other and with GPE. Out of five isolates tested individually, three isolates (St-149D, Hyd-13Z, and Gb-T23) showed maximum inhibition (56.3%, 48.3%, and 42.0% respectively) against mycelial growth of A. solani. Among combinations, St-149D + GPE had the highest mycelial growth inhibition (76.9%) over the untreated control. Bacterial strains molecularly characterized as Pseudomonas putida, Bacillus subtilis, and Bacillus cereus and were further tested in pot trials through seed bacterization for disease control. Seeds treated with bacterial consortia + GPE had the highest disease suppression percentage (78.1%), followed by St-149D + GPE (72.2%) and Hyd-13Z + GPE (67.5%). Maximum seed germination was obtained in the bacterial consortia + GPE (95.0 ± 2.04) followed by St-149D + GPE (92.5 ± 1.44) and Hyd-13Z + GPE (90.0 ± 2.04) over control (73.8 ± 2.39) and chemical control as standard treatment (90.0 ± 2). Ginger powder extracts also induce the activation of defence-related enzymes (TPC, PO, PPO, PAL, and CAT) activity in tomato plants. These were highly significant in the testing bacterial inoculants against A. solani infection in tomato crops.


Assuntos
Inoculantes Agrícolas , Extratos Vegetais , Solanum lycopersicum , Zingiber officinale , Animais , Pós , Alternaria , Bactérias , Doenças das Plantas/microbiologia
3.
Environ Sci Pollut Res Int ; 31(13): 19871-19885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368297

RESUMO

This study aimed to access the impact of soil polluted with petroleum (5, 10 g petroleum kg-1 soil) on Bermuda grass (Cynodon dactylon L.) with and without applied bacterial inoculants (Arthrobacter oxydans ITRH49 and Pseudomonas sp. MixRI75). Both soil and seed were given bacterial inoculation. The evaluated morphological parameters of Bermuda grass were fresh and dry weight. The results demonstrated that applied bacterial inoculants enhanced 5.4%, 20%, 28% and 6.4%, 21%, and 29% shoot and root fresh/dry weights in Bermuda grass under controlled environment. The biochemical analysis of shoot and root was affected deleteriously by the 10 g petroleum kg-1 soil pollution. Microbial inoculants enhanced the activities of enzymatic (catalase, peroxidase, glutathione reductase, ascorbate peroxidase, superoxide dismutase) and non-enzymatic (ɑ-tocopherols, proline, reduced glutathione, ascorbic acid) antioxidant to mitigate the toxic effects of ROS (H2O2) under hydrocarbon stressed condition. The maximum hydrocarbon degradation (75%) was recorded by Bermuda grass at 5 g petroleum kg-1 soil contamination. Moreover, bacterial persistence and alkane hydroxylase gene (alkB) abundance and expression were observed more in the root interior than in the rhizosphere and shoot interior of Bermuda grass. Subsequently, the microbe used a biological tool to propose that the application of plant growth-promoting bacteria would be the most favorable choice in petroleum hydrocarbon polluted soil to conquer the abiotic stress in plants and the effective removal of polyaromatic hydrocarbons in polluted soil.


Assuntos
Inoculantes Agrícolas , Petróleo , Poluentes do Solo , Cynodon , Peróxido de Hidrogênio/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Petróleo/análise , Inoculantes Agrícolas/metabolismo , Solo , Expressão Gênica , Poluentes do Solo/análise
4.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 111-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37602531

RESUMO

Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants. In this study, two small bunker silos were filled with autumn grass. One was treated with 20 g/kg DM HT extract (TAN) (TannoSan-L), the other with 8 mg/kg DM inoculant containing lactic acid bacteria (INO) (Bonsilage Fit G). Secondly, micro-silos (2.75 L) were filled with four treatments; (1) grass without additive (CON) (n = 5); (2) TAN (n = 5); (3) INO (n = 5); and (4) TAN + INO (n = 5). The bunker silos were used in a cross-over feeding experiment with periods of 4 weeks involving 22 lactating Holstein cows (average ± SD: 183 ± 36.3 days in milk, 665 ± 71.0 kg body weight, and 33.8 ± 3.91 kg/day milk yield). The HT dose was insufficient to reduce proteolysis or alter chemical composition and nutritional value in the micro- and bunker silages. Including grass silage added with TAN (3.2 g HT/kg DM) in the diet, did not affect feed intake nor fat and protein corrected milk yield in comparison to feeding the grass silage added with INO in a similar diet. The TAN-fed cows had an increased faecal N excretion and decreased apparent total-tract N and organic matter digestibility, but no improvement in the cows' N utilization could be confirmed in milk and blood urea levels. Overall, feeding an autumn grass silage treated with 20 g/kg chestnut HT extract did not affect the performance of dairy cows in comparison to feeding an autumn grass silage treated with a lactic acid bacteria inoculant.


Assuntos
Inoculantes Agrícolas , Lactobacillales , Feminino , Bovinos , Animais , Poaceae/metabolismo , Silagem/análise , Taninos/farmacologia , Lactação , Inoculantes Agrícolas/metabolismo , Fermentação , Ácido Láctico/metabolismo , Digestão , Leite/química , Dieta/veterinária , Taninos Hidrolisáveis/análise , Taninos Hidrolisáveis/metabolismo , Taninos Hidrolisáveis/farmacologia , Rúmen/metabolismo , Extratos Vegetais/farmacologia , Ruminantes , Valor Nutritivo , Zea mays/metabolismo
5.
Sci Total Environ ; 912: 169371, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104809

RESUMO

The constraint of phosphorus (P) fixation on crop production in alkaline calcareous soils can be alleviated by applying bioinoculants. However, the impact of bacterial inoculants on this process remains inadequately understood. Here, a field study was conducted to investigate the effect of a high-concentration, cost-effective, and slow-release granular bacterial inoculant (GBI) on maize (Zea mays L.) plant growth. Additionally, we explored the effects of GBI on rhizosphere soil aggregate physicochemical properties, rhizosphere soil P fraction, and microbial communities within aggregates. The outcomes showed a considerable improvement in plant growth and P uptake upon application of the GBI. The application of GBI significantly enhanced the AP, phoD gene abundance, alkaline phosphatase activity, inorganic P fractions, and organic P fractions in large macroaggregates. Furthermore, GBI impacted soil aggregate fractionation, leading to substantial alterations in the composition of fungal and bacterial communities. Notably, key microbial taxa involved in P-cycling, such as Saccharimonadales and Mortierella, exhibited enrichment in the rhizosphere soil of plants treated with GBI. Overall, our study provides valuable insight into the impact of GBI application on microbial distributions and P fractions within aggregates of alkaline calcareous soils, crucial for fostering healthy root development and optimal crop growth potential. Subsequent research endeavors should delve into exploring the effects of diverse GBIs and specific aggregate types on P fraction and community composition across various soil profiles.


Assuntos
Inoculantes Agrícolas , Microbiota , Solo/química , Zea mays , Rizosfera , Fósforo , Microbiologia do Solo
6.
Sci Total Environ ; 891: 164608, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286002

RESUMO

The conversion of organic matter and P in the waste composting process affects the efficiency of the composted product. However, the addition of microbial inoculants may improve the conversion characteristics of organic matter and P. In this study, straw-decomposing microbial inoculant (SDMI) was added to investigate its effects on the organic matter stabilization and phosphorus activation during the composting of vegetable waste (VWs). Aliphatic carboxyl-containing compounds were degraded during composting, but the stability of the organic matter and P was improved. The addition of SDMI promoted the degradation of dissolved organic carbon by 81.7 % and improved P stability and thermal stability of organic matter. Hedley sequential P fractionation showed a decrease in the H2O-P proportion by >12 % and increased in the HCl-P proportion by >4 % by the end of composting. Stable forms of P, such as AlPO4 and iron-containing phosphate, were the main forms of P in the final compost. The results provide a basis for producing high-quality vegetable compost products and improving the reutilization potential of VWs.


Assuntos
Inoculantes Agrícolas , Compostagem , Compostagem/métodos , Fósforo/metabolismo , Verduras/metabolismo , Inoculantes Agrícolas/metabolismo , Solo
7.
Sci Total Environ ; 885: 163971, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37150466

RESUMO

The challenge of managing agricultural phosphorus (P) in saline regions entails both reducing leaching for environmental protection and maintaining soil available P levels for crop production, which could be achieved through functional microorganisms that can facilitate P transformation processes like P assimilation, inorganic P solubilization, and organic P mineralization. In this study, we proposed an integrated utilization of phosphorus-accumulating bacteria (PAB) and phosphorus-solubilizing bacteria (PSB) to reach the goal of alleviating P leaching while improving soil available P levels. The study conducted a microcosm experiment that combined a soil column test, soil incubation, and pot experiment to evaluate the effect of bacterial inoculants on soil P leaching, soil P availability, and plant P accumulation. The results showed that the application of PAB reduced 22.6 % of dissolved P leaching through the absorption of labile phosphate in the soil, and 17.3 % of particulate P leaching through the promoted soil aggregation. The integrated inoculation of PSB and PAB synergistically improved soil available P content by 18.3 % through the mineralization of soil organic P, and remarkably boosted wheat growth and its P accumulation. Microbial community analysis revealed that the integrated microbial treatment decreased the diversity of soil bacterial community and increased the abundance of native microbial species, i.g. Lysobacter and Ramlibacter, which were positively correlated with soil available P content and alkaline phosphatase level. In conclusion, the integrated microbial strategy based on halotolerant PAB and PSB has great potential for sustainable P management in saline areas and agricultural activities.


Assuntos
Inoculantes Agrícolas , Fósforo , Fósforo/análise , Solo , Bactérias , Fosfatos/análise
8.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724266

RESUMO

AIMS: Although phosphate solubilizing bacteria (PSB) have been globally reported to improve soil phosphorus (P) availability and plant growth, technical gaps such as the lack of an ideal screening approach, is yet to be addressed. The potential of non-halo-forming PSB remains underestimated because of the currently adopted screening protocols that exclusively consider halo-forming and PSB with high phosphorus solubilization (PS) capacities. Yet, caution should be taken to properly assess PSB with contrasting PS rates regardless of the presence or absence of the solubilization halo. METHODS AND RESULTS: This study sought to examine the PS rate and plant growth promotion ability of 12 PSB categorized as high PSB (H-PSB), medium PSB (M-PSB), and low PSB (L-PSB) based on their PS rates of rock phosphate (RP). The non-halo-forming PSB Arthrobacter pascens was categorized as H-PSB, which might have been eliminated during the classical screening process. In addition, induction of organic acids and phosphatase activity in rhizosphere soils by H-, M-, and L-PSB was proportional to increased wheat P content by 143.22, 154.21, and 77.76 mg P g-1 compared to uninoculated plants (18.1 mg P g-1). CONCLUSIONS: Isolates considered as M- and L-PSB could positively influence wheat above-ground physiology and root traits as high as H-PSB. In addition, non-halo-forming PSB revealed significant PS rates along with positive effects on plant growth as high as halo-forming PSB.


Assuntos
Inoculantes Agrícolas , Fosfatos , Fósforo , Bactérias , Solo , Triticum
9.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3357-3363, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38511375

RESUMO

We analyzed the particle size distribution of soil aggregates in 0-20 and 20-40 cm soil layers of rice-wheat rotation field based on a field plot test with two treatments, conventional straw returning (CK) and straw returning with the addition of straw decomposition promoting microbial inoculants (IT). We evaluated the water stability indices of soil aggregates (the number of soil water stable large aggregates R0.25, the average weight diameter MWD, and the geometric average diameter GMD), and measured the contents of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) in the soil aggregates of <0.053, 0.053-0.25, 0.25-1, >1 mm. The results showed that: 1) The number of aggregates <0.053, 0.053-0.25, >0.25 mm in the 0-20 and 20-40 cm soil layers under IT decreased by 10.0% and 6.8%, increased by 3.0% and 5.7%, and 17.9% and 26.1% compared with CK, respectively. IT effectively increased R0.25, MWD, and GMD by 26.4%, 20.0%, 18.2% and 18.2%, 10.5%, 10.0% in 0-20 and 20-40 cm soil, respectively. 2) Compared to CK, the TP content of 0.25-1 mm aggregates in 0-20 and 20-40 cm soil under IT was significantly increased by 40.3% and 37.5%, respectively, without difference in TN and SOC contents. There was no significant difference in nutrient contents of the other aggregates between the treatments. The contents of SOC and TN in large aggregates (>0.25 mm) were higher than those in silty aggregates (<0.053 mm). Compared to CK, the cumulative contribution rates of SOC, TN and TP of <0.053 mm aggregates under IT were decreased in two soil layers. There was no significant difference in the nutrient cumulative contribution rates of 0.053-0.25 mm aggregates between treatments. The cumulative contribution rates of SOC, TN, and TP of large aggregates (>0.25 mm) under IT were 32.1%, 19.6%, 52.8% and 22.8%, 11.8%, 42.9% higher than those under CK in 0-20 and 20-40 cm soils, respectively. 3) The number of <0.053 mm aggregates was significantly negatively correlated with SOC and TP contents, while that of 0.053-0.25 mm aggregates was negatively correlated with nutrient content. The number of large aggregates (>0.25 mm) were significantly positively correlated with SOC, TN, and TP contents. In conclusion, straw returning with microbial-inoculant addition could promote the formation of soil macroaggregates (>0.25 mm), and improve the water stability of soil aggregates, increasing nutrient contents in soil macroaggregates, with the nutrients transferring from silty aggregates to macroaggregates.


Assuntos
Inoculantes Agrícolas , Solo , Carbono/análise , Nitrogênio/análise , Nutrientes , Fósforo , Água , Agricultura/métodos , China
10.
Bioresour Technol ; 362: 127823, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029985

RESUMO

The main objective of this research was to investigate the effects of Phosphorus-Solubilizing Bacterial (PSB) inoculant on the bacterial structure and phosphorus transformation during kitchen waste composting. High throughput sequencing, topological roles, and multiple analysis methods were conducted to explain the links between phosphorus fractions, enzyme contents, and microbial community structure and function. The findings indicated that bacterial inoculant improved environmental parameters and increased the concentration of total phosphorus, Olsen phosphorus, citric acid phosphorus, OM decomposition, and bacterial diversity. Network analysis concluded that the inoculation treatment was more complex (nodes and edges) and contained more positive links than the control, implying the inoculation effect. The structural equation model also displayed that pH and enzyme activity directly enhanced the phosphorus conversion and bacterial structure. Overall, these results suggest that bacterial inoculation may considerably increase enzyme activity, thus improving biological phosphorus transformation and nutrient content in composting products.


Assuntos
Inoculantes Agrícolas , Compostagem , Microbiota , Bactérias , Fósforo , Solo/química
11.
Microbes Environ ; 37(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35598988

RESUMO

Phosphorus (P) is abundant in soil and is essential for plant growth and development; however, it is easily rendered insoluble in complexes of different types of phosphates, which may lead to P deficiency. Therefore, increases in the amount of P released from phosphate minerals using microbial inoculants is an important aspect of agriculture. The present study used inorganic phosphate solubilizing bacteria (iPSB) in paddy field soils to develop microbial inoculants. Soils planted with rice were collected from different regions of Japan. Soil P was sequentially fractionated using the Hedley method. iPSB were isolated using selective media supplemented with tricalcium phosphate (Ca-P), aluminum phosphate (Al-P), or iron phosphate (Fe-P). Representative isolates were selected based on the P solubilization index and soil sampling site. Identification was performed using 16S rRNA and rpoB gene sequencing. Effectiveness was screened based on rice cultivar Koshihikari growth supplemented with Ca-P, Al-P, or Fe-P as the sole P source. Despite the relatively homogenous soil pH of paddy field sources, three sets of iPSB were isolated, suggesting the influence of fertilizer management and soil types. Most isolates were categorized as ß-Proteobacteria (43%). To the best of our knowledge, this is the first study to describe the genera Pleomorphomonas, Rhodanobacter, and Trinickia as iPSB. Acidovorax sp. JC5, Pseudomonas sp. JC11, Burkholderia sp. JA6 and JA10, Sphingomonas sp. JA11, Mycolicibacterium sp. JF5, and Variovorax sp. JF6 promoted plant growth in rice supplemented with an insoluble P source. The iPSBs obtained may be developed as microbial inoculants for various soil types with different P fixation capacities.


Assuntos
Inoculantes Agrícolas , Burkholderia , Oryza , Inoculantes Agrícolas/genética , Burkholderia/genética , Japão , Fosfatos , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
12.
Bioresour Technol ; 351: 126976, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35278620

RESUMO

The combined effects of microbial inoculants (MI) and magnesium ammonium phosphate (MAP; struvite) on organic matter (OM) biodegradation and nutrients stabilization during biowaste composting have not yet been investigated. Therefore, the effects of MI and MAP on OM stability and P species during swine manure composting were investigated using geochemical and spectroscopic techniques. MI promoted the degradation of carbohydrates and aliphatic compounds, which improved the degree of OM mineralization and humification. MI and MAP promoted the redistribution of P fractions and species during composting. After composting, the portion of water-soluble P decreased from 50.0% to 23.0%, while the portion of HCl-P increased from 18.5% to 33.5%, which mean that MI and MAP can stabilize P and mitigate its potential loss during composting. These findings indicate that MI can be recommended for enhancing OM biodegradation and stabilization of P during biowastes composting, as a novel trial for the biological waste treatment.


Assuntos
Inoculantes Agrícolas , Compostagem , Animais , Esterco , Fósforo , Solo , Estruvita , Suínos
13.
J Sci Food Agric ; 102(2): 540-549, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34146349

RESUMO

BACKGROUND: Pasture farming in south-western Australia is challenged by nutrient-poor soils. We assessed the impact of microbial consortium inoculant (MI) and rock mineral fertiliser (MF) on growth, nutrient uptake, root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation in three pasture grasses - tall fescue (Festuca arundinacea L.), veldt grass (Ehrharta calycina Sm.) and tall wheatgrass (Thinopyrum ponticum L.) grown in low-phosphorus (P) sandy soil in a glasshouse for 30 and 60 days after sowing (DAS). RESULTS: Veldt grass produced the highest specific root length and smallest average root diameter in both growth periods, and had similar shoot weight, root surface area and fine root length (except at 30 DAS) to tall fescue. Compared with the control, MI alone or combined with MF significantly increased shoot and root biomass (except root biomass at 30 DAS), likely due to the significant increases in root surface area and fine root length. Plants supplied with MI + MF had higher shoot N and P contents than those in the MI and the control treatments at 60 DAS. Malate, citrate and trans-aconitate were the major rhizosphere carboxylates exuded at both 30 and 60 DAS. Malate exudation varied among species and treatments in both growth periods, but citrate exudation was consistently higher in the low-P treatments (control and MI) than the MF and MI + MF treatments. CONCLUSION: Microbial consortium inoculant can positively influence pasture production in low-P soil by increasing root surface area and fine root length, whereas exudation of nutrient-mobilising carboxylates (citrate) is dependent more on soil P supply than microbial consortium inoculant. © 2021 Society of Chemical Industry.


Assuntos
Inoculantes Agrícolas/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Fósforo/análise , Exsudatos de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/microbiologia , Ácidos Carboxílicos/análise , Ácidos Carboxílicos/metabolismo , Fertilizantes/análise , Consórcios Microbianos , Fósforo/metabolismo , Exsudatos de Plantas/análise , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Poaceae/química , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Rizosfera , Solo/química
14.
mSphere ; 6(4): e0013021, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378980

RESUMO

Understanding the effectiveness and potential mechanism of action of agricultural biological products under different soil profiles and crops will allow more precise product recommendations based on local conditions and will ultimately result in increased crop yield. This study aimed to use bulk soil and rhizosphere microbial composition and structure to evaluate the potential effect of a Bacillus amyloliquefaciens inoculant (strain QST713) on potatoes and to explore its relationship with crop yield. We implemented next-generation sequencing (NGS) and bioinformatics approaches to assess the bacterial and fungal biodiversity in 185 soil samples, distributed over four different time points-from planting to harvest-from three different geographical locations in the United States. In addition to location and sampling time (which includes the difference between bulk soil and rhizosphere) as the main variables defining the microbiome composition, the microbial inoculant applied as a treatment also had a small but significant effect in fungal communities and a marginally significant effect in bacterial communities. However, treatment preserved the native communities without causing a detectable long-lasting effect on the alpha- and beta-diversity patterns after harvest. Using information about the application of the microbial inoculant and considering microbiome composition and structure data, we were able to train a Random Forest model to estimate if a bulk soil or rhizosphere sample came from a low- or high-yield block with relatively high accuracy (84.6%), concluding that the structure of fungal communities gives us more information as an estimator of potato yield than the structure of bacterial communities. IMPORTANCE Our results reinforce the notion that each cultivar on each location recruits a unique microbial community and that these communities are modulated by the vegetative growth stage of the plant. Moreover, inoculation of a Bacillus amyloliquefaciens strain QST713-based product on potatoes also changed the abundance of specific taxonomic groups and the structure of local networks in those locations where the product caused an increase in the yield. The data obtained, from in-field assays, allowed training a predictive model to estimate the yield of a certain block, identifying microbiome variables-especially those related to microbial community structure-even with a higher predictive power than the geographical location of the block (that is, the principal determinant of microbial beta-diversity). The methods described here can be replicated to fit new models in any other crop and to evaluate the effect of any agricultural input in the composition and structure of the soil microbiome.


Assuntos
Inoculantes Agrícolas/metabolismo , Produtos Agrícolas , Microbiota/genética , Rizosfera , Microbiologia do Solo , Solanum tuberosum/microbiologia , Agricultura/métodos , Bactérias/genética , Bactérias/metabolismo , Produtos Biológicos/farmacologia , Fungos/genética , Fungos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/fisiologia , RNA Ribossômico 16S , Solo/química , Estados Unidos
15.
J Microbiol Biotechnol ; 31(9): 1218-1230, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34261854

RESUMO

Cold-adapted plant growth-promoting bacteria (PGPB) with multiple functions are an important resource for microbial fertilizers with low-temperature application. In this study, culturable cold-adapted PGPB strains with nitrogen fixation and phosphorus solubilization abilities were isolated. They were screened from root and rhizosphere of four dominant grass species in nondegraded alpine grasslands of the Qilian Mountains, China. Their other growth-promoting characteristics, including secretion of indole-3-acetic acid (IAA), production of siderophores and ACC deaminase, and antifungal activity, were further studied by qualitative and quantitative methods. In addition, whether the PGPB strains could still exert plant growth-promoting activity at 4°C was verified. The results showed that 67 isolates could maintain one or more growth-promoting traits at 4°C, and these isolates were defined as cold-adapted PGPB. They were divided into 8 genera by 16S rRNA gene sequencing and phylogenetic analysis, of which Pseudomonas (64.2%) and Serratia (13.4%) were the common dominant genera, and a few specific genera varied among the plant species. A test-tube culture showed that inoculation of Elymus nutans seedlings with cold-adapted PGPB possessing different functional characteristics had a significant growth-promoting effect under controlled low-temperature conditions, including the development of the roots and aboveground parts. Pearson correlation analysis revealed that different growth-promoting characteristics made different contributions to the development of the roots and aboveground parts. These cold-adapted PGPB can be used as excellent strain resources suitable for the near-natural restoration of degraded alpine grasslands or agriculture stock production in cold areas.


Assuntos
Aclimatação/fisiologia , Bactérias/isolamento & purificação , Temperatura Baixa , Desenvolvimento Vegetal , Inoculantes Agrícolas , Antifúngicos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , China , Pradaria , Fixação de Nitrogênio , Fósforo/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Sideróforos/metabolismo
16.
Sci Rep ; 11(1): 9081, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907268

RESUMO

Phosphorus-solubilizing microorganisms is a microbial fertilizer with broad application potential. In this study, 7 endophytic phosphate solubilizing bacteria were screened out from Chinese fir, and were characterized for plant growth-promoting traits. Based on morphological and 16S rRNA sequence analysis, the endophytes were distributed into 5 genera of which belong to Pseudomonas, Burkholderia, Paraburkholderia, Novosphingobium, and Ochrobactrum. HRP2, SSP2 and JRP22 were selected based on their plant growth-promoting traits for evaluation of Chinese fir growth enhancement. The growth parameters of Chinese fir seedlings after inoculation were significantly greater than those of the uninoculated control group. The results showed that PSBs HRP2, SSP2 and JRP22 increased plant height (up to 1.26 times), stem diameter (up to 40.69%) and the biomass of roots, stems and leaves (up to 21.28%, 29.09% and 20.78%) compared to the control. Total N (TN), total P (TP), total K (TK), Mg and Fe contents in leaf were positively affected by PSBs while showed a significant relationship with strain and dilution ratio. The content of TN, TP, TK, available phosphorus (AP) and available potassium (AK) in the soil increased by 0.23-1.12 mg g-1, 0.14-0.26 mg g-1, 0.33-1.92 mg g-1, 5.31-20.56 mg kg-1, 15.37-54.68 mg kg-1, respectively. Treatment with both HRP2, SSP2 and JRP22 increased leaf and root biomass as well as their N, P, K uptake by affecting soil urease and acid phosphatase activities, and the content of available nutrients in soil. In conclusion, PSB could be used as biological agents instead of chemical fertilizers for agroforestry production to reduce environmental pollution and increase the yield of Chinese fir.


Assuntos
Inoculantes Agrícolas/fisiologia , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/microbiologia , Fosfatos/metabolismo , Plântula/crescimento & desenvolvimento , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Cunninghamia/metabolismo , Endófitos/fisiologia , Ácidos Indolacéticos/metabolismo , Nitrogenase/metabolismo , Fósforo/metabolismo , RNA Ribossômico 16S , Plântula/metabolismo , Plântula/microbiologia , Sideróforos/metabolismo , Solo/química
17.
Environ Sci Pollut Res Int ; 28(18): 23036-23047, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33438124

RESUMO

Irrational application of chemical fertilizers causes soil nutrient imbalance, reduced microbial diversity, soil diseases, and other soil quality problems and is one of the main sources of non-point pollution. The application of microbial inoculant (MI) can improve the soil environment and crop growth to reduce problems caused by irrational application of chemical fertilizers. Field experiments were carried out in high-phosphorus soils to study the effects of the addition of various MIs combined with chemical fertilizers on soil properties, wheat growth, and soil microbial composition and structure. The MIs consisted of one fungal agent: Trichoderma compound agent (TC) and five bacterial agents, namely soil remediation agent (SR), anti-repeat microbial agent (AM), microbial agent (MA), plant growth-promoting rhizobacteria (PG), and biological fertilizer agent (BF). The wheat yield increased by 15.2-33.4% with the addition of MIs, and PG with Bacillus subtilis as the core microorganism had the most obvious effect on increasing the production (p < 0.05). For the entire growth period of wheat, all MIs applied significantly increased the available nitrogen (AN) (p < 0.05) but did not significantly affect the available phosphorus (AP). BF has the best effect on increasing AN in the soil. The 16S rRNA sequencing results indicated that the dominant phyla of soil bacteria were Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia. The addition of MIs increased the relative abundance of Acidobacteria, Actinobacteria, Chloroflexi and decreased Proteobacteria and Bacteroidetes. The diversity of soil bacterial community (Chao1) was significantly higher in the soil added with TC than that added with BF (p < 0.05). All bacterial agents significantly enriched various genera (p < 0.05), while the fungal agent (TC) did not enrich the genera significantly. pH and AN, but not TP, were closely related to the dominant bacteria phylum in high-P soil. The application of MIs improved AN in soil, increased the wheat yield, and changed the relative abundance of the soil dominant phylum, and these changes were closely related to the type of MIs. The results provide a scientific basis for rational use of different types of MIs in high-P soil.


Assuntos
Inoculantes Agrícolas , Microbiota , Fertilizantes/análise , Nitrogênio/análise , Fósforo , RNA Ribossômico 16S , Solo , Microbiologia do Solo , Triticum
18.
J Appl Microbiol ; 130(6): 1935-1948, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32902082

RESUMO

AIMS: Phosphorus (P) is a finite resource and inoculation of phosphorus-mobilizing bacteria (PMB) is a promising approach for the enhancement of soil P availability and plant P uptake. This drives scientists to search for the microbes effective in mobilizing legacy P in soils. METHODS AND RESULTS: The current incubation and greenhouse pot experiments were conducted to investigate P mobilization and pepper P uptake as affected by a new biocontrol and bioremediation bacterium Burkholderia cepacia CQ18. This bacterium converted Ca3 (PO4 )2 , FePO4 , AlPO4 , and lecithin into soluble inorganic P in the culture solutions and increased available P (including water-soluble P and Olsen P) in the soil. There were positive correlations between the soluble inorganic phosphorus and the exudates (protons, organic acids (oxalate and gluconate), siderophores and phosphatases) in culture solutions. Pepper plant biomass, fruit yield and P uptake changed in the sequence: chemical fertilizers plus bacterial inoculant >only chemical fertilizers >only bacterial inoculant >blank control. CONCLUSIONS: Taking into account the wide spectrums of P mobilization and simultaneous production of acid, neutral and alkaline phosphatases at a given pH, B.cepacia CQ18 may be a potential PMB used in soils with wide pH ranges. The mechanisms employed by this bacterium in the solubilization of recalcitrant inorganic P could be the efflux of protons, organic acids (oxalate and gluconate) and siderophores. Phosphatases could be of utmost importance in the mineralization of the organic P. The production of siderophores and phosphatases by of B.cepacia CQ18 could thus be crucial for not only the antagonism against plant pathogens but also the mobilization of soil sparingly available P. SIGNIFICANCE AND IMPACT OF THE STUDY: Burkholderia cepacia CQ18 could be potentially developed into a biofertilizer.


Assuntos
Inoculantes Agrícolas/metabolismo , Burkholderia cepacia/metabolismo , Capsicum/metabolismo , Fósforo/farmacocinética , Biodegradação Ambiental , Disponibilidade Biológica , Capsicum/crescimento & desenvolvimento , Fertilizantes/análise , Fósforo/análise , Exsudatos de Plantas/metabolismo , Solo/química , Microbiologia do Solo
19.
J Appl Microbiol ; 130(4): 1208-1216, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32916018

RESUMO

AIMS: To suggest microbial inoculation as a tool to shorten organic residues stabilization and increase rock phosphate (RP) solubilization through vermicomposting, thus increasing nutrient content in plants and making it more appealing to farmers. Two Trichoderma strains were inoculated alone or combined in a RP apatite-enriched vermicompost. Stability and plant-available phosphorus levels were monitored for 120 days. METHODS AND RESULTS: Observable higher total organic carbon reduction in the treatment with the combined Trichoderma strains, followed by the inoculation with T. asperellum and T. virens. Combined Trichoderma and inoculation with T. virens increased humic acids (HA) content in 38·2 and 25·0%, respectively; non-inoculated vermicompost with T. asperellum increased it by 15·0%. The combined Trichoderma strains and T. virens achieved the stability index based on the humic/fulvic acids (HA/FA) ratio after 120 days. T. asperellum, combined Trichoderma and T. virens increased the citric acid soluble-P content in 83·2, 62·2 and 49·5%, respectively, compared to the non-inoculated vermicompost. CONCLUSIONS: Inoculation with combined T. asperellum and T. virens efficiently accelerated vermicompost stabilization; T. asperellum increased the citric acid soluble-P in the final product. SIGNIFICANCE AND IMPACT OF THE STUDY: Combined Trichoderma inoculation and RP enrichment improves the vermicompost quality, increasing HA and citric acid soluble-P, recycling organic waste nutrients and reducing agricultural dependence on phosphate fertilizers.


Assuntos
Inoculantes Agrícolas/metabolismo , Compostagem/métodos , Fosfatos/metabolismo , Fósforo/farmacocinética , Trichoderma/metabolismo , Agricultura/métodos , Disponibilidade Biológica , Fertilizantes/análise , Fertilizantes/microbiologia , Substâncias Húmicas/análise , Nutrientes/análise , Fósforo/análise
20.
Folia Microbiol (Praha) ; 66(1): 115-125, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33099750

RESUMO

Mineral nutrition of crop plants is one of the major challenges faced by modern agriculture, particularly in arid and semi-arid regions. In alkaline calcareous soils, the availability of phosphorus and zinc is critically less due to their fixation and precipitation as complexes. Farmers use fertilizers to fulfill crop requirements, but their efficacy is less, which increases production costs. Plant growth-promoting rhizobacteria (PGPR) can improve the availability of crop nutrients through solubilizing the insoluble compounds of phosphorus and zinc in soil. In the present study, a total of 40 rhizobacterial isolates were isolated from cotton rhizosphere and screened for improving cotton growth through the solubilization of phosphorus and zinc. Out of these 40 isolates, seven isolates (IA2, IA3, IA6, IA7, IA8, IA13, and IA14) efficiently solubilized insoluble rock phosphate while seven isolates (IA10, IA16, IA20, IA23, IA24, IA28, and IA30) were more efficient in solubilizing insoluble zinc oxide. In liquid media, strain IA7 (2.75 µg/mL) solubilized the highest amount of phosphate while the highest concentration of soluble zinc was observed in the broth inoculated with strain IA20 (3.94 µg/mL). Seven phosphate-solubilizing and seven zinc-solubilizing strains were evaluated using jar trial to improve the growth of cotton seedlings, and the results were quite promising. All the inoculated treatments showed improvement in growth parameters in comparison with control. Best results were shown by the combined application of IA6 and IA16, followed by the combination of strains IA7 and IA20. Based on the jar trial, the selected isolates were further characterized by plant growth-promoting characters such as siderophores production, HCN production, ammonia production, and exopolysaccharides production. These strains were identified through 16S rRNA sequencing as Bacillus subtilis IA6 (accession # MN005922), Paenibacillus polymyxa IA7 (accession # MN005923), Bacillus sp. IA16 (accession # MN005924), and Bacillus aryabhattai IA20 (accession # MN005925). It is hence concluded that the integrated use of phosphate-solubilizing and zinc-solubilizing strains as potential inoculants can be a promising approach for improving cotton growth under semi-arid conditions.


Assuntos
Bacillus/metabolismo , Gossypium/crescimento & desenvolvimento , Fosfatos/metabolismo , Zinco/metabolismo , Inoculantes Agrícolas/classificação , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/isolamento & purificação , Inoculantes Agrícolas/metabolismo , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Gossypium/microbiologia , Paenibacillus polymyxa/classificação , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/isolamento & purificação , Paenibacillus polymyxa/metabolismo , Fósforo/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA