Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nutr ; 61(7): 3571-3583, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35622138

RESUMO

PURPOSE: Autoimmune thyroiditis (AIT) is one of the most common autoimmune endocrine diseases. The currently recognized causes are genetic susceptibility, environmental factors and immune disorders. It is important to clarify the pathogenesis for the prevention, diagnosis, treatment of AIT and scientific iodine supplementation. This study analyzed the DNA methylation levels of PRKAA2, ITGA6, PRL and THEM4 genes related to PI3K-AKT signaling pathway, compared the DNA methylation levels between cases and controls from different water iodine levels in Shandong Province of China, and evaluated the contribution of PI3K-AKT signaling pathway-related genes in AIT. METHODS: A total of 176 adult AIT patients were included from three different water iodine areas, and 176 healthy controls were included according to gender, age and BMI. According to the results of the Illumina Methylation 850 K BeadChip in our previous research, the significant methylation differences of genes on the PI3K-AKT signaling pathway related to AIT were determined. The MethylTarget™ assay was used to detect the methylation levels of the target genes, and real-time PCR experiments were used to verify the mRNA expression levels. RESULTS: Compared with the control group, PRKAA2_3 and 15 CpG sites were hyper-methylated. ITGA6 gene and 2 CpG sites were hypo-methylated in AIT cases. The mRNA expression of ITGA6 gene was negatively correlated with the DNA methylation levels of ITGA6 gene and 2 CpG sites. Compared with cases and controls in areas with different water iodine levels, methylation differences were mainly in PRKAA2 and ITGA6 genes. The methylation levels of PRKAA2_1 and PRKAA2_3 were positively correlated with age. The methylation levels of PRL and THEM4 genes were negatively correlated with age. The methylation level of PRKAA2_3 was positively correlated with FT4. CONCLUSION: In summary, we identified aberrant DNA methylation levels of PRKAA2 and ITGA6 genes related to PI3K-AKT signaling pathway in the blood of AIT patients. Both iodine supplementation after long-term iodine deficiency and iodine excess can affect the DNA methylation levels of PRKAA2 and ITGA6 genes, and the former affects more obviously. In ITGA6 gene, this aberrant epigenetic modification is associated with the increased mRNA expression.


Assuntos
Doença de Hashimoto , Iodo , Tireoidite Autoimune , Adulto , Metilação de DNA , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Tireoidite Autoimune/genética , Tireoidite Autoimune/patologia , Água
2.
Stem Cells ; 39(5): 551-563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33470497

RESUMO

Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their derivation methods, and maintenance culture conditions. This poses significant challenges for establishing reproducible in vitro models of human gametogenesis. Here, we investigated the influence of activin A (ActA) during derivation and maintenance on the propensity of hESCs to differentiate into PGCLCs. We show that continuous ActA supplementation during hESC derivation (from blastocyst until the formation of the post-inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover, comparing isogenic primed and naïve states prior to differentiation, we showed that conversion of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alkaline phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers associated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (laminin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting that the large numbers of PGCLCs obtained may be suitable to differentiate further into more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-state. Our work provides insights into the differences in differentiation propensity of hESCs and delivers an optimized protocol to support efficient human germ cell derivation.


Assuntos
Ativinas/genética , Diferenciação Celular/genética , Células Germinativas/citologia , Células-Tronco Embrionárias Humanas/citologia , Blastocisto/citologia , Caderinas/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/crescimento & desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Integrina alfa6/genética , Laminina/genética , Proteínas de Ligação a RNA/genética , Receptores CXCR4/genética , Fatores de Transcrição SOXF/genética , Transdução de Sinais/genética , Fator de Transcrição AP-2/genética
3.
PLoS One ; 11(10): e0164799, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27736988

RESUMO

Aloe has been used as a folk medicine because it has several important therapeutic properties. These include wound and burn healing, and Aloe is now used in a variety of commercially available topical medications for wound healing and skin care. However, its effects on epidermal keratinocytes remain largely unclear. Our data indicated that both Aloe vera gel (AVG) and Cape aloe extract (CAE) significantly improved wound healing in human primary epidermal keratinocytes (HPEKs) and a human skin equivalent model. In addition, flow cytometry analysis revealed that cell surface expressions of ß1-, α6-, ß4-integrin, and E-cadherin increased in HPEKs treated with AVG and CAE. These increases may contribute to cell migration and wound healing. Treatment with Aloe also resulted in significant changes in cell-cycle progression and in increases in cell number. Aloe increased gene expression of differentiation markers in HPEKs, suggesting roles for AVG and CAE in the improvement of keratinocyte function. Furthermore, human skin epidermal equivalents developed from HPEKs with medium containing Aloe were thicker than control equivalents, indicating the effectiveness of Aloe on enhancing epidermal development. Based on these results, both AVG and CAE have benefits in wound healing and in treatment of rough skin.


Assuntos
Aloe/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Aloe/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proteínas Ricas em Prolina do Estrato Córneo/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Extratos Vegetais/química , Cicatrização
4.
PLoS Biol ; 10(10): e1001409, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109907

RESUMO

Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies.


Assuntos
Distrofias Musculares/metabolismo , NAD/biossíntese , Peixe-Zebra/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Adesão Celular , Modelos Animais de Doenças , Distroglicanas/genética , Distroglicanas/metabolismo , Distrofina/metabolismo , Matriz Extracelular/metabolismo , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Integrina alfa6/genética , Integrina alfa6/metabolismo , Laminina/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Paxilina/genética , Paxilina/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
JAMA ; 302(19): 2127-34, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19920237

RESUMO

CONTEXT: Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. OBJECTIVE: To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. DESIGN, SETTING, AND PARTICIPANTS: Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin-coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. MAIN OUTCOME MEASURES: Propagation of spermatogonial stem cells over time. RESULTS: Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and increased 18,450-fold within 64 days in the germline stem cell subculture. CONCLUSION: Long-term culture and propagation of human spermatogonial stem cells in vitro is achievable.


Assuntos
Espermatogônias/citologia , Espermatogônias/transplante , Transplante de Células-Tronco , Células-Tronco/citologia , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Animais , Técnicas de Cultura de Células , Células Cultivadas , Criopreservação , Meios de Cultura , Imunofluorescência , Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Integrina alfa6/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição Kruppel-Like/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Proteína com Dedos de Zinco da Leucemia Promielocítica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogônias/fisiologia , Células-Tronco/fisiologia , Testículo/citologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA