Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 19304-19315, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37963269

RESUMO

Metamorphosis is a critical process in the life cycle of most marine benthic invertebrates, determining their transition from plankton to benthos. It affects dispersal and settlement and therefore decisively influences the dynamics of marine invertebrate populations. An extended period of metamorphic competence is an adaptive feature of numerous invertebrate species that increases the likelihood of finding a habitat suitable for settlement and survival. We found that crude oil and residues of burnt oil rapidly induce metamorphosis in two different marine invertebrate larvae, a previously unknown sublethal effect of oil pollution. When exposed to environmentally realistic oil concentrations, up to 84% of tested echinoderm larvae responded by undergoing metamorphosis. Similarly, up to 87% of gastropod larvae metamorphosed in response to burnt oil residues. This study demonstrates that crude oil and its burned residues can act as metamorphic inducers in marine planktonic larvae, short-circuiting adaptive metamorphic delay. Future studies on molecular pathways and oil-bacteria-metamorphosis interactions are needed to fully understand the direct or indirect mechanisms of oil-induced metamorphosis in marine invertebrates. With 90% of chronic oiling occurring in coastal areas, this previously undescribed impact of crude oil on planktonic larvae may have global implications for marine invertebrate populations and biodiversity.


Assuntos
Petróleo , Animais , Petróleo/toxicidade , Invertebrados/fisiologia , Metamorfose Biológica , Ecossistema , Estágios do Ciclo de Vida , Larva/metabolismo
2.
Sci Total Environ ; 846: 157346, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35842162

RESUMO

Anthropogenic activities have increasingly subjected freshwater ecosystems globally to various pressures. Increasing land use activities have been highly linked to deteriorating freshwater ecosystems and dwindling biodiversity. For sound management and conservation policies to be implemented, relations between land use, environmental, and biotic components need to be widely documented. To evaluate the impacts of land use on biotic components, this study analyzed the diatom and macroinvertebrate community composition of the Eastern Highlands (Zimbabwe) streams to assess the main spatial diatom and macroinvertebrate community variances and how environmental variables and spatial factors influence community composition. Diatom and macroinvertebrate sampling was done in 16 streams in protected areas (national parks) and impacted sites (timber plantation and communal areas). Water (pH, phosphorus, and ammonium) and sediment (nitrogen, phosphorus, calcium, magnesium, manganese, and zinc) and habitat (substrate embeddedness, and habitat) variables differed significantly with land use. Principal Component Analysis (PCA) showed that the protected area had the best water quality, particularly marked by high pH levels and low phosphorus concentrations among environment types. Heavy metals were high in the communal areas, although mercury was higher in the national park. Significant differences were observed in diatom metrics, specifically dominance and evenness, with no significant differences observed in macroinvertebrate metrics across land uses. Diatoms differed in terms of composition in response to land use. Results provide an important scientific reference for land use optimization and guidance for the formulation of policies to protect freshwater resources in African Highland streams. Management and conservation initiatives in the Eastern Highlands are further recommended as this study detected high levels of mercury in the protected area, implying high levels of illegal mining.


Assuntos
Diatomáceas , Mercúrio , Animais , Ecossistema , Monitoramento Ambiental/métodos , Invertebrados/fisiologia , Fósforo , Rios/química , Qualidade da Água
3.
Nat Commun ; 12(1): 5383, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508091

RESUMO

The function-optimized properties of biominerals arise from the hierarchical organization of primary building blocks. Alteration of properties in response to environmental stresses generally involves time-intensive processes of resorption and reprecipitation of mineral in the underlying organic scaffold. Here, we report that the load-bearing shells of the brachiopod Discinisca tenuis are an exception to this process. These shells can dynamically modulate their mechanical properties in response to a change in environment, switching from hard and stiff when dry to malleable when hydrated within minutes. Using ptychographic X-ray tomography, electron microscopy and spectroscopy, we describe their hierarchical structure and composition as a function of hydration to understand the structural motifs that generate this adaptability. Key is a complementary set of structural modifications, starting with the swelling of an organic matrix on the micron level via nanocrystal reorganization and ending in an intercalation process on the molecular level in response to hydration.


Assuntos
Adaptação Fisiológica , Exoesqueleto/fisiologia , Invertebrados/fisiologia , Estado de Hidratação do Organismo/fisiologia , Exoesqueleto/anatomia & histologia , Exoesqueleto/ultraestrutura , Animais , Invertebrados/anatomia & histologia , Invertebrados/ultraestrutura , Microscopia Eletrônica
4.
Biol Rev Camb Philos Soc ; 96(6): 2617-2637, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34173704

RESUMO

Human-driven changes in nitrogen (N) and phosphorus (P) inputs are modifying biogeochemical cycles and the trophic state of many habitats worldwide. These alterations are predicted to continue to increase, with the potential for a wide range of impacts on invertebrates, key players in ecosystem-level processes. Here, we present a meta-analysis of 1679 cases from 207 studies reporting the effects of N, P, and combined N + P enrichment on the abundance, biomass, and richness of aquatic and terrestrial invertebrates. Nitrogen and phosphorus additions decreased invertebrate abundance in terrestrial and aquatic ecosystems, with stronger impacts under combined N + P additions. Likewise, N and N + P additions had stronger negative impacts on the abundance of tropical than temperate invertebrates. Overall, the effects of nutrient enrichment did not differ significantly among major invertebrate taxonomic groups, suggesting that changes in biogeochemical cycles are a pervasive threat to invertebrate populations across ecosystems. The effects of N and P additions differed significantly among invertebrate trophic groups but N + P addition had a consistent negative effect on invertebrates. Nutrient additions had weaker or inconclusive impacts on invertebrate biomass and richness, possibly due to the low number of case studies for these community responses. Our findings suggest that N and P enrichment affect invertebrate community structure mainly by decreasing invertebrate abundance, and these effects are dependent on the habitat and trophic identity of the invertebrates. These results highlight the important effects of human-driven nutrient enrichment on ecological systems and suggest a potential driver for the global invertebrate decline documented in recent years.


Assuntos
Nitrogênio , Fósforo , Animais , Biomassa , Ecossistema , Humanos , Invertebrados/fisiologia
5.
PLoS One ; 15(12): e0242331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296368

RESUMO

The Toarcian Oceanic Anoxic Event (TOAE; Early Jurassic, ca. 182 Ma ago) represents one of the major environmental disturbances of the Mesozoic and is associated with global warming, widespread anoxia, and a severe perturbation of the global carbon cycle. Warming-related dysoxia-anoxia has long been considered the main cause of elevated marine extinction rates, although extinctions have been recorded also in environments without evidence for deoxygenation. We addressed the role of warming and disturbance of the carbon cycle in an oxygenated habitat in the Iberian Basin, Spain, by correlating high resolution quantitative faunal occurrences of early Toarcian benthic marine invertebrates with geochemical proxy data (δ18O and δ13C). We find that temperature, as derived from the δ18O record of shells, is significantly correlated with taxonomic and functional diversity and ecological composition, whereas we find no evidence to link carbon cycle variations to the faunal patterns. The local faunal assemblages before and after the TOAE are taxonomically and ecologically distinct. Most ecological change occurred at the onset of the TOAE, synchronous with an increase in water temperatures, and involved declines in multiple diversity metrics, abundance, and biomass. The TOAE interval experienced a complete turnover of brachiopods and a predominance of opportunistic species, which underscores the generality of this pattern recorded elsewhere in the western Tethys Ocean. Ecological instability during the TOAE is indicated by distinct fluctuations in diversity and in the relative abundance of individual modes of life. Local recovery to ecologically stable and diverse post-TOAE faunal assemblages occurred rapidly at the end of the TOAE, synchronous with decreasing water temperatures. Because oxygen-depleted conditions prevailed in many other regions during the TOAE, this study demonstrates that multiple mechanisms can be operating simultaneously with different relative contributions in different parts of the ocean.


Assuntos
Distribuição Animal , Organismos Aquáticos/fisiologia , Extinção Biológica , Aquecimento Global/história , Invertebrados/fisiologia , Animais , Ciclo do Carbono , Fósseis , Geografia , Sedimentos Geológicos , História Antiga , Temperatura Alta/efeitos adversos , Oceanos e Mares , Espanha
6.
Sci Total Environ ; 692: 1291-1303, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539961

RESUMO

Pesticides are important contributors to the global freshwater biodiversity crisis. Among pesticides, neonicotinoids are the best-selling class of agricultural insecticides and are suspected to represent significant risks to freshwater and terrestrial ecosystems worldwide. Despite growing recognition that neonicotinoid impacts may be modified by the presence of additional stressors, there is limited information about their interactions with other agricultural stressors in freshwater ecosystems. We conducted an outdoor pond-mesocosm experiment to investigate the individual and interactive effects of nutrients, fine sediment, and imidacloprid (a neonicotinoid insecticide) inputs on freshwater community structure (density, diversity, and composition of zooplankton and benthic invertebrates) and ecosystem functioning (ecosystem metabolism, primary production, and organic matter decomposition). We hypothesized antagonistic nutrient-imidacloprid, and synergistic sediment-imidacloprid interactions, affecting aquatic invertebrate communities. The three stressors had significant individual and interactive effects on pond ecosystems. The insecticide neutralized the positive effects of nutrient additions on benthic invertebrate richness and mitigated the negative effects of sediment on zooplankton communities (antagonistic interactions). Moreover, we observed compensatory responses of tolerant benthic invertebrates, which resulted in reversal interactions between sediment and imidacloprid. Furthermore, our observations suggest that imidacloprid has the potential to increase net ecosystem production at environmentally relevant concentrations. Our findings support the hypothesis that the impacts of imidacloprid may be modified by other agricultural stressors. This has important implications on a global scale, given the widespread use of these pesticides in intensive agricultural landscapes and the growing body of literature suggesting that traditional pesticide assessment frameworks, based on laboratory toxicity tests alone, may be insufficient to adequately predict effects to complex freshwater ecosystems.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Poluentes Químicos da Água/toxicidade , Agricultura , Animais , Biodiversidade , Monitoramento Ambiental , Água Doce , Inseticidas/análise , Invertebrados/fisiologia , Neonicotinoides/análise , Nitrogênio , Fósforo , Poluentes Químicos da Água/análise , Zooplâncton
7.
Environ Pollut ; 253: 474-487, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31330340

RESUMO

Anthropogenic activities including coastal industries, urbanization, extensive agriculture and aquaculture as well as their cumulative impacts represent major sources of perturbation of marine coastal systems. Macrobenthic communities are useful ecological indicators for monitoring the health status of marine environments (or polluted environments). The present study reports, for the first time, the response of benthic macrofauna sampled during two years survey (2015-2016) to multiple anthropogenic pressures on the coastal zone south of Sfax (Tunisia). A total of 12 stations were monitored seasonally at locations downstream from the main potential sources of disturbance. 106 macrobenthos taxa, belonging to six animal phyla and 70 families, were identified with a dominance of polychaetes (42%), crustaceans (35%) and molluscs (18%). We used an ANOVA test and cluster analysis to identify spatial gradient linked to environmental and anthropogenic factors, including depth, sedimentary texture and anthropogenic activities (i.e. phosphogypsum discharges).The macrofauna present lowest species number and abundance on stations undergoing anthropogenic inputs, which are extremely polluted by heavy metals (Cd, Cu, F and N) and excess of organic matter. Univariate parameters reveal a general trend of increasing species diversity with increasing distance from the pollution source. The polluted stations are strongly dominated by carnivores, and selective deposit feeders, and more closely linked to the availability of trophic resources than to anthropogenic constraints. The seasonal changes in macrobenthic abundance, diversity indices and community structure are mainly linked to the biological cycle (e.g. recruitment events) of the dominant species. Biotic indices (AMBI and BO2A) classified the coastal zone south of Sfax as moderate and good ecological status. This study suggests that initiating a long-term monitoring programme would improve our understanding of the temporal changes of macrobenthic communities of this ecosystem, contributing to the assessment of effective management and conservation measures in this disturbed area.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Invertebrados/fisiologia , Poluição da Água/análise , Animais , Aquicultura , Sulfato de Cálcio , Crustáceos , Ecologia , Ecossistema , Poluentes Ambientais , Mar Mediterrâneo , Metais Pesados/análise , Moluscos , Fósforo , Tunísia
8.
Ecotoxicol Environ Saf ; 182: 109354, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31272025

RESUMO

Selenium (Se) is a contaminant of concern in many aquatic ecosystems due to its narrow range between essentiality and toxicity in oviparous (yolk-bearing) vertebrates. The objective of the present study was to determine the effects of Se, experimentally added to in situ limnocorrals as selenite, on invertebrate communities and fathead minnow (Pimephales promelas) at environmentally realistic Se concentrations. Nine limnocorrals were deployed in a mesotrophic lake at the International Institute for Sustainable Development - Experimental Lakes Area in Ontario, Canada in May 2017. From June 1 to August 17, 2017, selenite was added to six enclosures to attain mean measured aqueous Se concentrations of 1.0 ±â€¯0.10 or 8.9 ±â€¯2.7 µg/L Se (in triplicate) and three limnocorrals were untreated controls (background mean aqueous Se = 0.12 ±â€¯0.03 µg/L). Benthic macroinvertebrates were collected throughout and at the end of the exposure period using artificial substrates to determine density, dry biomass, diversity, and taxa richness at the family level. Reproductively mature female fathead minnows (added on d 33 of the study) were collected throughout and at the end of the exposure period. After 77 d, Chironomidae and Gammaridae densities and biomass were significantly lower in the 8.9 µg/L Se treatment relative to the 1.0 µg/L Se treatment and the control. Invertebrate diversity (measured as Shannon's and Simpson's indices) significantly declined in the 1.0 µg/L and 8.9 µg/L Se treatments relative to the control (0.12 µg/L Se group). Fulton's condition factor for fathead minnow was significantly less in the 8.9 µg/L treatment compared to 0.12 and 1.0 µg/L Se experimental groups. The results of this study indicated that exposure to relatively low aqueous selenite concentrations can negatively affect invertebrate density and biomass, as well as fish condition. More research is necessary to characterize the risk of selenite exposure to aquatic invertebrates under realistic field conditions, and future risk assessments may need to consider reduced food availability as a factor that may impair the health of higher trophic level organisms in areas with elevated selenite.


Assuntos
Ecossistema , Selênio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/fisiologia , Chironomidae , Cyprinidae/fisiologia , Feminino , Invertebrados/fisiologia , Lagos , Ontário , Reprodução/efeitos dos fármacos , Ácido Selenioso/toxicidade
9.
Sci Total Environ ; 684: 381-389, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31154211

RESUMO

Subterranean environments contain a diverse and unique obligate fauna: either aquatic living in the groundwater or terrestrial living in voids above the water table. In the arid region of the western part of the Australian continent, a particularly rich subterranean fauna coincides with a concentration of natural resource extraction operations. Since the inclusion of subterranean fauna in assessments of environmental impact in the mid-1990s, taxonomic research in Australia on this group of mainly invertebrates has grown exponentially. However, remaining knowledge gaps continue to frustrate both environmental regulators and development proponents due to high uncertainty in the decision-making process. In early 2017, the Western Australian Biodiversity Science Institute was tasked with leading the development of a research program to improve on the current state of knowledge of subterranean fauna. To balance the diverse environmental, economic and social needs of a range of stakeholders, transdisciplinary principles were applied to program development. A clear consensus on five broad focus areas to progress include: (1) data consolidation; (2) resilience to disturbance; (3) survey and sampling protocols; (4) abiotic and biotic habitat requirements; and (5) species delineation. In the context of these focus areas; we describe the research program development, reviewing the status of knowledge within each focus area, and the research initiatives to close the gaps in knowledge. We argue that, by adopting a transdisciplinary approach, the likelihood of success of the research program, as measured by the effective translation and adoption of research findings, will be maximized. This review is timely given the ever-increasing demand on groundwater systems for water extraction worldwide. A holistic understanding of the influence of anthropogenic activities on these ecosystems, and the functional role of organisms within them, will help to ensure that their health is not compromised.


Assuntos
Ecossistema , Água Subterrânea , Invertebrados/fisiologia , Características de História de Vida , Animais , Austrália , Cavernas , Pesquisa Interdisciplinar , Invertebrados/classificação
10.
Commun Biol ; 2: 164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069273

RESUMO

Phylogenomic studies have greatly improved our understanding of the animal tree of life but the relationships of many clades remain ambiguous. Here we show that the rare soft-bodied animal Amiskwia from the Cambrian of Canada and China, which has variously been considered a chaetognath, a nemertine, allied to molluscs, or a problematica, is related to gnathiferans. New specimens from the Burgess Shale (British Columbia, Canada) preserve a complex pharyngeal jaw apparatus composed of a pair of elements with teeth most similar to gnathostomulids. Amiskwia demonstrates that primitive spiralians were large and unsegmented, had a coelom, and were probably active nekto-benthic scavengers or predators. Secondary simplification and miniaturisation events likely occurred in response to shifting ecologies and adaptations to specialised planktonic habitats.


Assuntos
Fósseis/anatomia & histologia , Invertebrados/classificação , Arcada Osseodentária/anatomia & histologia , Filogenia , Dente/anatomia & histologia , Animais , Colúmbia Britânica , China , Ecossistema , Extinção Biológica , Cadeia Alimentar , Fósseis/história , História Antiga , Invertebrados/anatomia & histologia , Invertebrados/fisiologia , Arcada Osseodentária/fisiologia , Filogeografia , Plâncton/fisiologia , Dente/fisiologia
11.
Sci Total Environ ; 683: 9-20, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128565

RESUMO

Freshwaters worldwide are affected by multiple stressors. Timing of inputs and pathways of delivery can influence the impact stressors have on freshwater communities. In particular, effects of point versus diffuse nutrient inputs on stream macroinvertebrates are poorly understood. Point-source inputs tend to pose a chronic problem, whereas diffuse inputs tend to be acute with short concentration spikes. We manipulated three key agricultural stressors, phosphorus (ambient, chronic, acute), nitrogen (ambient, chronic, acute) and fine sediment (ambient, high), in 112 stream mesocosms (26 days colonisation, 18 days of manipulations) and determined the individual and combined effects of these stressors on stream macroinvertebrate communities (benthos and drift). Chronic nutrient treatments continuously received high concentrations of P and/or N. Acute channels received the same continuous enrichment, but concentrations were doubled during two 3-hour periods (day 6, day 13) to simulate acute nutrient inputs during rainstorms. Sediment was the most pervasive stressor in the benthos, reducing total macroinvertebrate abundance and richness, EPT (mayflies, stoneflies, caddisflies) abundance and richness. By contrast, N or P enrichment did not affect any of the six studied community-level metrics. In the drift assemblage, enrichment effects became more prevalent the longer the experiment went on. Sediment was the dominant driver of drift responses at the beginning of the experiment. After the first acute nutrient pulse, sediment remained the most influential stressor but its effects started to fade. After the second pulse, N became the dominant stressor. In general, impacts of either N or P on the drift were due to chronic exposure, with acute nutrient pulses having no additional effects. Overall, our findings imply that cost-effective management should focus on mitigating sediment inputs first and tackle chronic nutrient inputs second. Freshwater managers should also take into account the length of exposure to high nutrient concentrations, rather than merely the concentrations themselves.


Assuntos
Sedimentos Geológicos/análise , Invertebrados/efeitos dos fármacos , Nitrogênio/análise , Fósforo/análise , Rios/química , Animais , Biota/efeitos dos fármacos , Biota/fisiologia , Invertebrados/fisiologia , Irlanda , Nutrientes/análise , Fatores de Tempo
12.
Sci Total Environ ; 642: 937-945, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929145

RESUMO

Wastewater discharges into fluvial ecosystems represent a significant and continuous source of fine particles and nutrients that can severely modify stream community composition and functionality. Depending on both wastewater and stream features (e.g., nutrient removal treatments and stream dilution capacity), the ecological effects can be more or less severe. To determine how hyporheic habitat and hyporheos are affected, we analysed eight Mediterranean streams both upstream and downstream of a wastewater effluent. The results demonstrated that environmental factors associated with clogging, such as the quantity of fine particulate and organic matter in sediment, were magnified downstream of the wastewater inputs. Likewise, dissolved nutrients also increased but depended to a greater extent on the presence of a wastewater treatment plant and on the nitrogen and phosphorus removal treatments. The hyporheic invertebrates were more affected by clogging than by eutrophication. Both richness and diversity parameters were negatively correlated with clogging features but were not correlated with eutrophication. The most affected taxa were Macrocrustaceans, Hydrachnidia and several insect species, which decreased or were not detected downstream of the effluents. On the contrary, other taxa such as Naididae (Oligochaeta), Orthocladiinae (Chironomidae) and Potamopyrgus antipodarum (Gastropoda) benefited from the wastewater inputs.


Assuntos
Invertebrados/fisiologia , Águas Residuárias/toxicidade , Animais , Ecossistema , Monitoramento Ambiental , Eutrofização , Região do Mediterrâneo , Fósforo
13.
Sci Total Environ ; 637-638: 577-587, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29754091

RESUMO

Multiple stressors affect stream ecosystems worldwide and their interactions are of particular concern, with gaps existing in understanding stressor impacts on stream communities. Addressing these knowledge gaps will aid in targeting and designing of appropriate mitigation measures. In this study, the agricultural stressors fine sediment (ambient, low, medium, high), phosphorus (ambient, enriched) and nitrogen (ambient, enriched) were manipulated simultaneously in 64 streamside mesocosms to determine their individual and combined effects on the macroinvertebrate community (benthos and drift). Stressor levels were chosen to reflect those typically observed in European agricultural streams. A 21-day colonisation period was followed by a 14-day manipulative period. Results indicate that added sediment had the most pervasive effects, significantly reducing total macroinvertebrate abundance, total EPT abundance and abundances of three common EPT taxa. The greatest effect was at high sediment cover (90%), with decreasing negative impacts at medium (50%) and low (30%) covers. Added sediment also led to higher drift propensities for nine of the twelve drift variables. The effects of nitrogen and phosphorus were relatively weak compared to sediment. Several complex and unpredictable 2-way or 3-way interactions among stressors were observed. While sediment addition generally reduced total abundance at high levels, this decrease was amplified by P enrichment at low sediment, whereas the opposite effect occurred at medium sediment and little effect at high sediment. These results have direct implications for water management as they highlight the importance of managing sediment inputs while also considering the complex interactions which can occur between sediment and nutrient stressors.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Invertebrados/fisiologia , Nitrogênio/análise , Fósforo/análise , Poluentes da Água/análise , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Rios/química
14.
Environ Pollut ; 239: 359-366, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29674214

RESUMO

Uranium mining is an environmental concern because of runoff and the potential for toxic effects on the biota. To investigate uranium toxicity to freshwater invertebrates, we conducted a 96-h acute toxicity test to determine lethal concentrations (testing concentrations up to 262 mg L-1) for three stream invertebrates: a shredder caddisfly, Schizopelex festiva Rambur (Trichoptera, Sericostomatidae); a detritivorous isopod, Proasellus sp. (Isopoda, Asellidae); and a scraper gastropod, Theodoxus fluviatilis (Gastropoda, Neritidae). Next, we ran a chronic-toxicity test with the most tolerant species (S. festiva) to assess if uranium concentrations found in some local streams (up to 25 µg L-1) affect feeding, growth and respiration rates. Finally, we investigated whether S. festiva takes up uranium from the water and/or from ingested food. In the acute test, S. festiva survived in all uranium concentrations tested. LC50-96-h for Proasellus sp and T. fluviatilis were 142 mg L-1 and 24 mg L-1, respectively. Specimens of S. festiva exposed to 25 µg L-1 had 47% reduced growth compared with specimens under control conditions (21.5 ±â€¯2.9 vs. 40.6 ±â€¯4.9 µg of mass increase animal-1·day-1). Respiration rates (0.40 ±â€¯0.03 µg O2·h-1·mg animal-1) and consumption rates (0.54 ±â€¯0.05 µg µg animal-1·day-1; means ±â€¯SE) did not differ between treatments. Under laboratory conditions S. festiva accumulated uranium from both the water and the ingested food. Our results indicate that uranium can be less toxic than other metals or metalloids produced by mining activities. However, even at the low concentrations observed in streams affected by abandoned mines, uranium can impair physiological processes, is bioaccumulated, and is potentially transferred through food webs.


Assuntos
Organismos Aquáticos/fisiologia , Invertebrados/fisiologia , Testes de Toxicidade Crônica , Urânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Bioensaio , Cadeia Alimentar , Água Doce , Insetos , Invertebrados/efeitos dos fármacos , Isópodes , Mineração , Urânio/análise , Poluentes Químicos da Água/análise
15.
Water Res ; 130: 69-78, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29202343

RESUMO

Ecological degradation of streams remains a major environmental concern worldwide. While stream restoration has received considerable attention, mitigation efforts focused on the improvement of physical habitat have not proven completely effective. Several small-scale studies have emphasized that effective restoration strategies require a more holistic understanding of the variables at play, although the generalization of the findings based on the small-scale studies remains unclear. Using a comprehensive statewide stream monitoring database from West Virginia (WV), a detailed landscape dataset, and a machine learning algorithm, this study explores the interactive impacts of water quality and physical habitat on stream ecosystem health as indicated by benthic macroinvertebrate scores. Given the long history of energy extraction in this region (i.e., coal mining and oil/gas production), investigation of energy extraction influences is highlighted. Our results demonstrate that a combination of good habitat and low specific conductance is generally associated with favorable benthic macroinvertebrate scores, whereas poor habitat combined with water quality conditions typically indicative of high ionic strength are associated with impaired stream status. In addition, streams impacted by both energy extraction and residential development had a higher percentage of impairment compared to those impacted predominantly by energy extraction or residential development alone. While water quality played a more important role in the ecosystem health of streams impacted primarily by energy extraction activities, habitat seems to be more influential in streams impacted by residential development. Together, these findings emphasize that stream restoration strategies should consider interactive effects of multiple environmental stressors tailored to specific sites or site types - as opposed to considering a single stressor or multiple stressors separately.


Assuntos
Ecossistema , Qualidade da Água , Animais , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Invertebrados/fisiologia , Rios/química
16.
Parasit Vectors ; 10(1): 530, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089046

RESUMO

BACKGROUND: The isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and, to a lesser extent, of inhibitory glutamate-gated chloride channels (GluCls). Lotilaner (Credelio™), a novel representative of this chemical class, is currently evaluated for its excellent ectoparasiticide properties. METHODS: In this study, we investigated the molecular mode of action and pharmacology of lotilaner. We report the successful gene identification, cDNA cloning and functional expression in Xenopus oocytes of Drosohpila melanogaster (wild type and dieldrin/fipronil-resistant forms), Lepeophtheirus salmonis (an ectoparasite copepod crustacean of salmon), Rhipicephalus microplus and Canis lupus familiaris GABACls. Automated Xenopus oocyte two-electrode voltage clamp electrophysiology was used to assess GABACls functionality and to compare ion channel inhibition by lotilaner with that of established insecticides addressing GABACls as targets. RESULTS: In these assays, we demonstrated that lotilaner is a potent non-competitive antagonist of insects (fly) GABACls. No cross-resistance with dieldrin or fipronil resistance mutations was detected, suggesting that lotilaner might bind to a site at least partly different from the one bound by known GABACl blockers. Using co-application experiments, we observed that lotilaner antagonism differs significantly from the classical open channel blocker fipronil. We finally confirmed for the first time that isoxazoline compounds are not only powerful antagonists of GABACls of acari (ticks) but also of crustaceans (sea lice), while no activity on a dog GABAA receptor was observed up to a concentration of 10 µM. CONCLUSIONS: Together, these results demonstrate that lotilaner is a non-competitive antagonist specific to invertebrate's γ-aminobutyric acid-gated chloride channels (GABACls). They contribute to our understanding of the mode of action of this new ectoparasiticide compound.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/química , Inseticidas/farmacologia , Invertebrados/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Canais de Cloreto/genética , Clonagem Molecular , Copépodes/efeitos dos fármacos , Copépodes/fisiologia , DNA Complementar , Drosophila melanogaster/fisiologia , Insetos , Inseticidas/química , Inseticidas/metabolismo , Invertebrados/genética , Invertebrados/fisiologia , Oócitos , Técnicas de Patch-Clamp , Pirazóis/farmacologia , Rhipicephalus/efeitos dos fármacos , Rhipicephalus/fisiologia , Xenopus
17.
Arch Environ Contam Toxicol ; 73(1): 40-46, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28695259

RESUMO

Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds in oil. Phototoxicity is observed as a twofold to greater than 1000-fold increase in chemical toxicity to aquatic organisms that also have been exposed to light sources containing sufficient quantity and quality of ultraviolet radiation (UV). When tested under natural sunlight or laboratory sources of UV, fresh, and weathered middle distillates, crudes and heavy oils can exhibit photoenhanced toxicity. These same products do not exhibit phototoxicity in standard test protocols because of low UV irradiance in laboratory lighting. Fresh, estuarine, and marine waters have been shown to have sufficient solar radiation exposure to elicit photoenhanced toxicity, and a diversity of aquatic invertebrate and fish species can exhibit photoenhanced toxicity when exposed to combinations of oil and UV. Risks of photoenhanced toxicity will be greatest to early life stages of aquatic organisms that are translucent to UV and that inhabit the photic zone of the water column and intertidal areas exposed to oil.


Assuntos
Peixes/fisiologia , Invertebrados/fisiologia , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/fisiologia , Processos Fotoquímicos , Luz Solar , Testes de Toxicidade , Raios Ultravioleta , Tempo (Meteorologia)
18.
Ecology ; 97(12): 3460-3471, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27912023

RESUMO

The metabolic theory of ecology (MTE) and ecological stoichiometry (ES) are both prominent frameworks for understanding energy and nutrient budgets of organisms. We tested their separate and joint power to predict nitrogen (N) and phosphorus (P) excretion rates of ectothermic aquatic invertebrate and vertebrate animals (10,534 observations worldwide). MTE variables (body size, temperature) performed better than ES variables (trophic guild, vertebrate classification, body N:P) in predicting excretion rates, but the best models included variables from both frameworks. Size scaling coefficients were significantly lower than predicted by MTE (<0.75), were lower for P than N, and varied greatly among species. Contrary to expectations under ES, vertebrates excreted both N and P at higher rates than invertebrates despite having more nutrient-rich bodies, and primary consumers excreted as much nutrients as carnivores despite having nutrient-poor diets. Accounting for body N:P hardly improved upon predictions from treating vertebrate classification categorically. We conclude that basic data on body size, water temperature, trophic guild, and vertebrate classification are sufficient to make general estimates of nutrient excretion rates for any animal taxon or aquatic ecosystem. Nonetheless, dramatic interspecific variation in size-scaling coefficients and counter-intuitive patterns with respect to diet and body composition underscore the need for field data on consumption and egestion rates. Together, MTE and ES provide a powerful conceptual basis for interpreting and predicting nutrient recycling rates of aquatic animals worldwide.


Assuntos
Ecossistema , Invertebrados/fisiologia , Modelos Biológicos , Nitrogênio/metabolismo , Fósforo/metabolismo , Vertebrados/fisiologia , Animais , Metabolismo Energético , Água Doce , Nitrogênio/química , Oceanos e Mares , Fósforo/química
19.
Ecol Appl ; 26(7): 2116-2129, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755727

RESUMO

Stream ecosystems are affected by multiple abiotic stressors, and species responses to simultaneous stressors may differ from those predicted based on single-stressor responses. Using 12 semi-natural stream channels, we examined the individual and interactive effects of flow level (low or high flow) and addition of fine sediments (grain size <2 mm) on key ecosystem processes (leaf breakdown, algal biomass accrual) and benthic macroinvertebrate and fungal communities. Both stressors had mostly independent effects on biological responses, with sand addition being the more influential of the two. Sand addition decreased algal biomass and microbe-mediated leaf breakdown significantly, whereas invertebrate shredder-mediated breakdown only responded to flow level. Macroinvertebrate community composition responded significantly to both stressors. Fungal biomass decreased and shredder abundance increased when sand was added; thus, organisms at different trophic levels can exhibit highly variable responses to the same stressor. Terrestrial endophytic fungi were abundant in low-flow flumes where leaf mass loss was also highest, indicating that terrestrial endophytes may contribute importantly to leaf decomposition in the aquatic environment. Leaf breakdown rates depended on the identity and abundance of the dominant decomposer species, suggesting that the effects of anthropogenic activities on ecosystem processes may be driven by changes in the abundance of a few key species. The few observed interactive effects were all antagonistic (i.e., less than the sum of the individual effects); for example, increased flow stimulated algal biomass accumulation but this effect was largely cancelled by sand. While our finding that sand and stream flow did not have strong synergistic effects can be considered reassuring for management, future experiments should manipulate these and other human stressors in experiments that run for much longer periods, thus focusing on the long-term impacts of multiple simultaneously operating stressors.


Assuntos
Ecossistema , Sedimentos Geológicos , Rios , Movimentos da Água , Animais , Biomassa , Monitoramento Ambiental/métodos , Finlândia , Fungos/fisiologia , Sedimentos Geológicos/química , Invertebrados/fisiologia , Nitrogênio/química , Fósforo/química , Folhas de Planta , Plantas/classificação , Rios/química , Temperatura
20.
Sci Total Environ ; 566-567: 929-937, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27285534

RESUMO

Jellyfish often form blooms that persist for weeks to months before they collapse en masse, resulting in the sudden release of large amounts of organic matter to the environment. This study investigated the biogeochemical and ecological effects of the decomposition of jellyfish in a shallow coastal lagoon in New South Wales, Australia. Catostylus mosaicus carrion was added to the surface of shallow sub-tidal sediments and biogeochemical parameters and macrofaunal abundance immediately below the jellyfish carrion were measured over three days. Sediment plots without jellyfish served as controls. Sediment oxygen demand and carbon and nitrogen efflux increased by up to 60-fold in the jellyfish plots, compared to control plots, and dissolved organic nutrient fluxes were more sustained than in previous studies due to the use of fresh rather than frozen biomass. The decomposing jellyfish progressively altered sediment redox conditions, indicated by an increase in porewater iron (II) and sulfide concentrations measured by high-resolution in situ diffusive samplers. Abundance of some macrofaunal taxa in the jellyfish plots decreased relative to controls, however, the abundance of a carnivorous gastropod, which was presumably feeding on the carrion, increased in the jellyfish plots. While jellyfish carrion may be a food source for some macrofauna, low oxygen conditions coupled with the accumulation of toxic dissolved sulfides in the near-surface sediments may explain the overall change in the macroinfaunal community.


Assuntos
Biota , Sedimentos Geológicos/química , Invertebrados/fisiologia , Cifozoários/fisiologia , Animais , Morte , Monitoramento Ambiental , New South Wales , Oxirredução , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA