Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Interact ; 387: 110810, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38013145

RESUMO

INTRODUCTION: Iodide is an essential micronutrient for the synthesis of thyroid hormones and its imbalance is involved in the origin of different thyroid pathological processes. Selenium (Se) is another essential trace element that contributes to thyroid preservation through the control of the redox homeostasis. Different studies have demonstrated that sodium-iodide-symporter (NIS) is downregulated in the presence of iodide excess and Se supplementation reverses this effect. We also demonstrated that NOX4-derived ROS are involved in NIS repression induced by iodide excess. The aim of this study was to investigate how Se bioavailability is decisive in the sensitivity to iodide excess on a differentiated rat thyroid cell line (FRTL-5). RESULTS: We demonstrated that siRNA-mediated silencing of Nox4 suppressed AKT phosphorylation induced by iodide excess. Iodide increases TGF-ß1 mRNA expression, AKT phosphorylation, ROS levels and decreases GPX1 and TXRND1 mRNAs expression while Se reversed these effects. Furthermore, iodide induced Nrf2 transcriptional activity only in Se-supplemented cultures, suggesting that Se positively influences Nrf2 activation and selenoenzyme response in FRTL-5. Se, also inhibited NF-κB phosphorylation induced by iodide excess. In addition, we found that iodide excess decreased total phosphatase activity and PTP1B and PTEN mRNA expression. Se supply restored only PTEN mRNA expression. Finally, we studied the 2-α-iodohexadecanal (2-IHD) effects since it has been proposed as intermediary of iodide action on thyroid autoregulation. 2-IHD stimulated PI3K/AKT activity and reduced NIS expression by a ROS-independent mechanism. Also, we found that 2-IHD increased TGF-ß1 mRNA and TGF-ß inhibitor (SB431542) reverses the 2-IHD inhibitory effect on NIS mRNA expression, suggesting that TGF-ß1 signaling pathway could be involved. Although Se reduced 2-IHD-induced TGFB1 levels, it could not reverse its inhibitory effect on NIS expression. CONCLUSION: Our study suggests that Se bioavailability may improve the expression of antioxidant genes through the activation of Nrf2, interfere in PI3K/AKT signaling and NIS expression by redox modulation.


Assuntos
Selênio , Glândula Tireoide , Ratos , Animais , Glândula Tireoide/metabolismo , Iodetos/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Disponibilidade Biológica , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834802

RESUMO

The adequate availability and metabolism of three essential trace elements, iodine, selenium and iron, provide the basic requirements for the function and action of the thyroid hormone system in humans, vertebrate animals and their evolutionary precursors. Selenocysteine-containing proteins convey both cellular protection along with H2O2-dependent biosynthesis and the deiodinase-mediated (in-)activation of thyroid hormones, which is critical for their receptor-mediated mechanism of cellular action. Disbalances between the thyroidal content of these elements challenge the negative feedback regulation of the hypothalamus-pituitary-thyroid periphery axis, causing or facilitating common diseases related to disturbed thyroid hormone status such as autoimmune thyroid disease and metabolic disorders. Iodide is accumulated by the sodium-iodide-symporter NIS, and oxidized and incorporated into thyroglobulin by the hemoprotein thyroperoxidase, which requires local H2O2 as cofactor. The latter is generated by the dual oxidase system organized as 'thyroxisome' at the surface of the apical membrane facing the colloidal lumen of the thyroid follicles. Various selenoproteins expressed in thyrocytes defend the follicular structure and function against life-long exposure to H2O2 and reactive oxygen species derived therefrom. The pituitary hormone thyrotropin (TSH) stimulates all processes required for thyroid hormone synthesis and secretion and regulates thyrocyte growth, differentiation and function. Worldwide deficiencies of nutritional iodine, selenium and iron supply and the resulting endemic diseases are preventable with educational, societal and political measures.


Assuntos
Iodo , Selênio , Oligoelementos , Animais , Humanos , Glândula Tireoide/metabolismo , Selênio/metabolismo , Oligoelementos/metabolismo , Iodo/metabolismo , Ferro/metabolismo , Peróxido de Hidrogênio/metabolismo , Iodetos/metabolismo , Hormônios Tireóideos/metabolismo , Iodeto Peroxidase/metabolismo , Selenoproteínas/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142392

RESUMO

In antiquity, flax was used as a dressing for healing wounds. Currently, work is underway on the genetic modification of flax fibers to improve their properties. Genetic modifications have resulted in an increased content of antioxidants and more favorable mechanical properties. The works published so far have presented independent tests of fibers and dressings after appropriate technological treatments in cell cultures. This study aimed to compare the properties of the fibers and the dressing produced in cell cultures-hamster fibroblasts-V79. The research material was traditional NIKE fibers; genetically modified M, B, and MB fibers; and linen dressings obtained from these fibers. The extract from 48-h incubation of 40 mg of fiber in the culture medium, which was desolved into 10, 20, and 30 mg, was administered to the cell culture. On the other hand, a linen dressing was placed on cells with an area of 0.5 cm2, 1 cm2, 1.5 cm2, and 2 cm2. Cells with fiber or dressing were incubated for 48 h, and then, biological tests were performed, including cell viability (in propidium iodide staining), cell proliferation (in the SRB assay), evaluation of the intracellular free radical level (in the DCF-DA assay), genotoxicity (in the comet assay), assessment of the apoptotic and necrotic cells (in staining anexin-V and iodide propidium), the course of the cell cycle, and the scratch test. The correlation between apoptosis and genotoxicity and the levels of free radicals and genotoxicity were determined for the tested linen fibers and fabrics. The tests presented that the fibers are characterized by the ability to eliminate damaged cells in the elimination phase. However, the obtained fabrics gain different properties during the technological processing of the fibers into linen dressings. Linen fabrics have better regenerative properties for cells than fibers. The linseed dressing made of MB fiber has the most favorable regenerative properties.


Assuntos
Linho , Iodetos , Animais , Bandagens , Roupas de Cama, Mesa e Banho , Cricetinae , Linho/genética , Iodetos/metabolismo , Extratos Vegetais/metabolismo , Propídio
4.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142613

RESUMO

Radioactive iodine (RAI) plays an important role in the diagnosis and treatment of papillary thyroid cancer (PTC). The curative effects of RAI therapy are not only related to radiosensitivity but also closely related to the accumulation of radionuclides in the lesion in PTC. Sinomenine hydrochloride (SH) can suppress tumor growth and increase radiosensitivity in several tumor cells, including PTC. The aim of this research was to investigate the therapeutic potential of SH on PTC cell redifferentiation. In this study, we treated BCPAP and TPC-1 cells with SH and tested the expression of thyroid differentiation-related genes. RAI uptake caused by SH-pretreatment was also evaluated. The results indicate that 4 mM SH significantly inhibited proliferation and increased the expression of the thyroid iodine-handling gene compared with the control group (p < 0.005), including the sodium/iodide symporter (NIS). Furthermore, SH also upregulated the membrane localization of NIS and RAI uptake. We further verified that upregulation of NIS was associated with the activation of the thyroid-stimulating hormone receptor (TSHR)/cyclic adenosine monophosphate (cAMP) signaling pathway. In conclusion, SH can inhibit proliferation, induce apoptosis, promote redifferentiation, and then increase the efficacy of RAI therapy in PTC cells. Thus, our results suggest that SH could be useful as an adjuvant therapy in combination with RAI therapy in PTC.


Assuntos
Iodo , Simportadores , Neoplasias da Glândula Tireoide , Monofosfato de Adenosina , Humanos , Iodetos/metabolismo , Iodo/metabolismo , Radioisótopos do Iodo/metabolismo , Radioisótopos do Iodo/uso terapêutico , Morfinanos , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Tireotropina/metabolismo
5.
Medicine (Baltimore) ; 101(35): e30253, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36107570

RESUMO

RATIONALE: Pendred syndrome is an autosomal recessive disorder characterized by sensorineural hearing loss, inner ear malformations, goiter, and abnormal organification of iodide. It is caused by mutations in SLC26A4 gene, which encodes pendrin (a transporter of chloride, bicarbonate, and iodide). Pendred syndrome is a common cause of syndromic deafness, but the metabolic abnormalities it causes are often overlooked. Here, we report the case of a patient diagnosed with Pendred syndrome with hypokalemia. PATIENT CONCERNS: A 53-year-old deaf-mute woman was hospitalized due to severe limb asthenia. The emergency examination showed that her blood potassium level was 1.8 mmol/L. DIAGNOSES: Through the genetic test, we found a mutation of SLC26A4 gene in NM_000441: c.2027T>A, p.L676Q, as well as the SLC26A4 exon 5-6 deletion. These genetic variations pointed to Pendred syndrome (an autosomal recessive disorder that mainly affects the inner ear, thyroid, and kidney) which is a common cause of syndromic deafness. INTERVENTIONS: The patient was treated with potassium supplements and screened for the cause of hypokalemia. OUTCOMES: The patient was discharged after her potassium levels rose to the normal range. LESSONS: Patients with Pendred syndrome may also have certain metabolic abnormalities; thus, more attention should be paid to them during clinical diagnosis.


Assuntos
Surdez , Bócio Nodular , Perda Auditiva Neurossensorial , Hipopotassemia , Bicarbonatos , Cloretos , Feminino , Bócio Nodular/complicações , Bócio Nodular/diagnóstico , Bócio Nodular/genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Humanos , Hipopotassemia/genética , Iodetos/metabolismo , Pessoa de Meia-Idade , Mutação , Potássio , Transportadores de Sulfato/genética
6.
Arch Toxicol ; 96(11): 2947-2965, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35922584

RESUMO

In the case of nuclear incidents, radioiodine may be released. After incorporation, it accumulates in the thyroid and enhances the risk of thyroidal dysfunctions and cancer occurrence by internal irradiation. Pregnant women and children are particularly vulnerable. Therefore, thyroidal protection by administering a large dose of stable (non-radioactive) iodine, blocking radioiodide uptake into the gland, is essential in these subpopulations. However, a quantitative estimation of the protection conferred to the maternal and fetal thyroids in the different stages of pregnancy is difficult. We departed from an established biokinetic model for radioiodine in pregnancy using first-order kinetics. As the uptake of iodide into the thyroid and several other tissues is mediated by a saturable active transport, we integrated an uptake mechanism described by a Michaelis-Menten kinetic. This permits simulating the competition between stable and radioactive iodide at the membrane carrier site, one of the protective mechanisms. The Wollf-Chaikoff effect, as the other protective mechanism, was simulated by adding a total net uptake block for iodide into the thyroid, becoming active when the gland is saturated with iodine. The model's validity was confirmed by comparing predicted values with results from other models and sparse empirical data. According to our model, in the case of radioiodine exposure without thyroid blocking, the thyroid equivalent dose in the maternal gland increases about 45% within the first weeks of pregnancy to remain in the same range until term. Beginning in the 12th pregnancy week, the equivalent dose in the fetal thyroid disproportionately increases over time and amounts to three times the dose of the maternal gland at term. The maternal and fetal glands' protection increases concomitantly with the amount of stable iodine administered to the mother simultaneously with acute radioiodine exposure. The dose-effect curves reflecting the combined thyroidal protection by the competition at the membrane carrier site and the Wolff-Chaikoff effect in the mother are characterized by a mean effective dose (ED50) of roughly 1.5 mg all over pregnancy. In the case of the fetal thyroid, the mean effective doses for thyroid blocking, taking into account only the competition at the carrier site are numerically lower than in the mother. Taking into account additionally the Wolff-Chaikoff effect, the dose-effect curves for thyroidal protection in the fetus show a shift to the left over time, with a mean effective dose of 12.9 mg in the 12th week of pregnancy decreasing to 0.5 mg at term. In any case, according to our model, the usually recommended dose of 100 mg stable iodine given at the time of acute radioiodine exposure confers a very high level of thyroidal protection to the maternal and fetal glands over pregnancy. For ethical reasons, the possibilities of experimental studies on thyroid blocking in pregnant women are extremely limited. Furthermore, results from animal studies are associated with the uncertainties related to the translation of the data to humans. Thus model-based simulations may be a valuable tool for better insight into the efficacy of thyroidal protection and improve preparedness planning for uncommon nuclear or radiological emergencies.


Assuntos
Iodo , Glândula Tireoide , Animais , Criança , Feminino , Feto , Humanos , Iodetos/metabolismo , Iodo/farmacologia , Radioisótopos do Iodo , Mães , Gravidez , Glândula Tireoide/metabolismo
7.
J Inorg Biochem ; 220: 111461, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882424

RESUMO

Lactoperoxidase (LPO) is a mammalian heme peroxidase which catalyzes the conversion of thiocyanate (SCN¯) and iodide (I-) by hydrogen peroxide (H2O2) into antimicrobial hypothiocyanite (OSCN¯) and hypoiodite (IO-). The prosthetic heme group is covalently attached to LPO through two ester linkages involving conserved glutamate and aspartate residues. On the proximal side, His351 is coordinated to heme iron while His 109 is located in the substrate binding site on the distal heme side. We report here the first structure of the ternary complex of LPO with iodide (I-) and H2O2 at 1.77 Å resolution. LPO was crystallized with ammonium iodide and the crystals were soaked in the reservoir solution containing H2O2. Structure determination showed the presence of an iodide ion and a H2O2 molecule in the substrate binding site. The iodide ion occupied the position which is stabilized by the interactions with heme moiety, His109, Arg255 and Glu258 while H2O2 was held between the heme iron and His109. The presence of I- in the distal heme cavity seems to screen the positive charge of Arg255 thus suppressing the proton transfer from H2O2 to His109. This prevents compound I formation and allows trapping of a stable enzyme-substrate (LPO-I--H2O2) ternary complex. This stable geometrical arrangement of H2O2 in the distal heme cavity of LPO is similar to that of H2O2 in the structure of the transient intermediate of the palm tree heme peroxidase. The biochemical studies showed that the catalytic activity of LPO decreased when the samples of LPO were preincubated with ammonium iodide.


Assuntos
Peróxido de Hidrogênio/metabolismo , Iodetos/metabolismo , Lactoperoxidase/metabolismo , Animais , Sítios de Ligação , Bovinos , Colostro/enzimologia , Cristalografia por Raios X , Peróxido de Hidrogênio/química , Iodetos/química , Lactoperoxidase/química , Ligação Proteica , Estrutura Terciária de Proteína
8.
Redox Biol ; 28: 101331, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568923

RESUMO

Iodide ions (I-) are an essential dietary mineral, and crucial for mental and physical development, fertility and thyroid function. I- is also a high affinity substrate for the heme enzyme myeloperoxidase (MPO), which is involved in bacterial cell killing during the immune response, and also host tissue damage during inflammation. In the presence of H2O2 and Cl-, MPO generates the powerful oxidant hypochlorous acid (HOCl), with excessive formation of this species linked to multiple inflammatory diseases. In this study, we have examined the hypothesis that elevated levels of I- would decrease HOCl formation and thereby protein damage induced by a MPO/Cl-/H2O2 system, by acting as a competitive substrate. The presence of increasing I- concentrations (0.1-10 µM; i.e. within the range readily achievable by oral supplementation in humans), decreased damage to both model proteins and extracellular matrix components as assessed by gross structural changes (SDS-PAGE), antibody recognition of parent and modified protein epitopes (ELISA), and quantification of both parent amino acid loss (UPLC) and formation of the HOCl-biomarker 3-chlorotyrosine (LC-MS) (reduced by ca. 50% at 10 µM I-). Elevated levels of I- ( > 1 µM) also protected against functional changes as assessed by a decreased loss of adhesion (eg. 40% vs. < 22% with >1 µM I-) of primary human coronary artery endothelial cells (HCAECs), to MPO-modified human plasma fibronectin. These data indicate that low micromolar concentrations of I-, which can be readily achieved in humans and are readily tolerated, may afford protection against cell and tissue damage induced by MPO.


Assuntos
Suscetibilidade a Doenças , Heme/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Iodetos/metabolismo , Peroxidase/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Ácido Hipocloroso/metabolismo , Inflamação/patologia , Iodetos/farmacologia , Oxirredução , Conformação Proteica/efeitos dos fármacos
9.
Toxicol Sci ; 166(2): 318-331, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137636

RESUMO

The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces available iodide for thyroid hormone synthesis, which leads to hormone insufficiency in tissues and subsequent negative developmental consequences. IYD activity is especially critical under conditions of lower dietary iodine and in low iodine environments. Our objective was to evaluate the toxicological relevance of IYD inhibition in a model amphibian (Xenopus laevis) used extensively for thyroid disruption research. First, we characterized IYD ontogeny through quantification of IYD mRNA expression. Under normal development, IYD was expressed in thyroid glands, kidneys, liver, and intestines, but minimally in the tail. Then, we evaluated how IYD inhibition affected developing larval X. laevis with an in vivo exposure to a known IYD inhibitor (3-nitro-l-tyrosine, MNT) under iodine-controlled conditions; MNT concentrations were 7.4-200 mg/L, with an additional 'rescue' treatment of 200 mg/L MNT supplemented with iodide. Chemical inhibition of IYD resulted in markedly delayed development, with larvae in the highest MNT concentrations arrested prior to metamorphic climax. This effect was linked to reduced glandular and circulating thyroid hormones, increased thyroidal sodium-iodide symporter gene expression, and follicular cell hypertrophy and hyperplasia. Iodide supplementation negated these effects, effectively rescuing exposed larvae. These results establish toxicological relevance of IYD inhibition in amphibians. Given the highly conserved nature of the IYD protein sequence and scarcity of environmental iodine, IYD should be further investigated as a target for thyroid axis disruption in freshwater organisms.


Assuntos
Iodeto Peroxidase/antagonistas & inibidores , Iodeto Peroxidase/metabolismo , Iodetos/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Iodeto Peroxidase/genética , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Monoiodotirosina/sangue , RNA Mensageiro/metabolismo , Simportadores/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Tirosina/análogos & derivados , Tirosina/farmacologia , Xenopus laevis
10.
Endocr Relat Cancer ; 25(4): R225-R245, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29437784

RESUMO

Iodide (I-) metabolism is crucial for the synthesis of thyroid hormones (THs) in the thyroid and the subsequent action of these hormones in the organism. I- is principally transported by the sodium iodide symporter (NIS) and by the anion exchanger PENDRIN, and recent studies have demonstrated the direct participation of new transporters including anoctamin 1 (ANO1), cystic fibrosis transmembrane conductance regulator (CFTR) and sodium multivitamin transporter (SMVT). Several of these transporters have been found expressed in various tissues, implicating them in I- recycling. New research supports the exciting idea that I- participates as a protective antioxidant and can be oxidized to hypoiodite, a potent oxidant involved in the host defense against microorganisms. This was possibly the original role of I- in biological systems, before the appearance of TH in evolution. I- per se participates in its own regulation, and new evidence indicates that it may be antineoplastic, anti-proliferative and cytotoxic in human cancer. Alterations in the expression of I- transporters are associated with tumor development in a cancer-type-dependent manner and, accordingly, NIS, CFTR and ANO1 have been proposed as tumor markers. Radioactive iodide has been the mainstay adjuvant treatment for thyroid cancer for the last seven decades by virtue of its active transport by NIS. The rapid advancement of techniques that detect radioisotopes, in particular I-, has made NIS a preferred target-specific theranostic agent.


Assuntos
Iodetos/metabolismo , Iodo/metabolismo , Neoplasias/metabolismo , Simportadores/metabolismo , Humanos
11.
Sci Rep ; 7(1): 5329, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706256

RESUMO

The sodium/iodide symporter (NIS) mediates active iodide (I-) accumulation in the thyroid, the first step in thyroid hormone (TH) biosynthesis. Mutations in the SLC5A5 gene encoding NIS that result in a non-functional protein lead to congenital hypothyroidism due to I- transport defect (ITD). ITD is a rare autosomal disorder that, if not treated promptly in infancy, can cause mental retardation, as the TH decrease results in improper development of the nervous system. However, in some patients, hypothyroidism has been ameliorated by unusually large amounts of dietary I-. Here we report the first NIS knockout (KO) mouse model, obtained by targeting exons 6 and 7 of the Slc5a5 gene. In NIS KO mice, in the thyroid, stomach, and salivary gland, NIS is absent, and hence there is no active accumulation of the NIS substrate pertechnetate (99mTcO4-). NIS KO mice showed undetectable serum T4 and very low serum T3 levels when fed a diet supplying the minimum I- requirement for rodents. These hypothyroid mice displayed oxidative stress in the thyroid, but not in the brown adipose tissue or liver. Feeding the mice a high-I- diet partially rescued TH biosynthesis, demonstrating that, at high I- concentrations, I- enters the thyroid through routes other than NIS.


Assuntos
Suplementos Nutricionais , Hipotireoidismo/prevenção & controle , Iodetos/administração & dosagem , Simportadores/deficiência , Animais , Transporte Biológico , Modelos Animais de Doenças , Iodetos/metabolismo , Camundongos Knockout , Hormônios Tireóideos/sangue , Resultado do Tratamento
12.
J Sci Food Agric ; 97(1): 230-235, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26992053

RESUMO

BACKGROUND: Iodine deficiency is an environmental health problem affecting one-third of the global population. An iodine biofortification hydroponic experiment was conducted to explore the iodide and iodate uptake characteristics of strawberry plants, to measure the dosage effects of iodine on plant growth and to evaluate the influence of I- or IO3- application on fruit quality. RESULTS: After biofortification, the iodine contents of the fresh strawberry fruits were 600-4000 µg kg-1 , covering the WHO dietary iodine allowance of 150 µg · day-1 for adults. The iodine uptake of the strawberry plants increased with increasing I- or IO3- concentration of the culture solution. At the same iodine concentration, the iodate uptakes of various plant organs under I- treatments were apparently more than those under IO3- treatments. Low-level exogenous iodine (I- ≤ 0.25 mg L-1 or IO3- ≤ 0.50 mg L-1 ) not only promoted plant growth and increased biomass per plant, but also improved fruit quality by enhancing the vitamin C and soluble sugar contents of the strawberry fruits. Nevertheless, excessive exogenous iodine inhibited plant growth and reduced biomass per plant. IO3- uptake apparently increased the total acidity and nitrate content of the fruits, reducing the quality of the strawberry fruits. Conversely, I- uptake obviously decreased the total acidity and nitrate content of the strawberry fruits, improving the fruit quality. CONCLUSION: The strawberry can be used as a target crop for iodine biofortification. Furthermore, applying an appropriate dose of KI can improve the fruit quality of the strawberry plants. © 2016 Society of Chemical Industry.


Assuntos
Fragaria/crescimento & desenvolvimento , Frutas/química , Frutas/crescimento & desenvolvimento , Iodatos/administração & dosagem , Iodetos/administração & dosagem , Biomassa , Relação Dose-Resposta a Droga , Qualidade dos Alimentos , Alimentos Fortificados , Fragaria/efeitos dos fármacos , Fragaria/metabolismo , Frutas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidroponia , Iodatos/metabolismo , Iodetos/metabolismo , Iodo/administração & dosagem , Iodo/efeitos adversos , Nitratos/análise , Recomendações Nutricionais
13.
Nitric Oxide ; 63: 13-20, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28024935

RESUMO

Uptake of inorganic nitrate (NO3-) into the salivary circulation is a rate-limiting step for dietary NO3- metabolism in mammals. It has been suggested that salivary NO3- uptake occurs in competition with inorganic iodide (I-). Therefore, this study tested the hypothesis that I- supplementation would interfere with NO3- metabolism and blunt blood pressure reductions after dietary NO3- supplementation. Nine healthy adults (4 male, mean ± SD, age 20 ± 1 yr) reported to the laboratory for initial baseline assessment (control) and following six day supplementation periods with 140 mL·day-1 NO3--rich beetroot juice (8.4 mmol NO3-·day-1) and 198 mg potassium gluconate·day-1 (nitrate), and 140 mL·day-1 NO3--rich beetroot juice and 450 µg potassium iodide·day-1 (nitrate + iodide) in a randomized, cross-over experiment. Salivary [I-] was higher in the nitrate + iodide compared to the control and NIT trials (P < 0.05). Salivary and plasma [NO3-] and [NO2-] were higher in the nitrate and nitrate + iodide trials compared to the control trial (P < 0.05). Plasma [NO3-] was higher (474 ± 127 vs. 438 ± 117 µM) and the salivary-plasma [NO3-] ratio was lower (14 ± 6 vs. 20 ± 6 µM), indicative of a lower salivary NO3- uptake, in the nitrate + iodide trial compared to the nitrate trial (P < 0.05). Plasma and salivary [NO2-] were not different between the nitrate and nitrate + iodide trials (P > 0.05). Systolic blood pressure was lower than control (112 ± 13 mmHg) in the nitrate (106 ± 13 mmHg) and nitrate + iodide (106 ± 11 mmHg) trials (P < 0.05), with no differences between the nitrate and nitrate + iodide trials (P > 0.05). In conclusion, co-ingesting NO3- and I- perturbed salivary NO3- uptake, but the increase in salivary and plasma [NO2-] and the lowering of blood pressure were similar compared to NO3- ingestion alone. Therefore, increased dietary I- intake, which is recommended in several countries worldwide as an initiative to offset hypothyroidism, does not appear to compromise the blood pressure reduction afforded by increased dietary NO3- intake.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Suplementos Nutricionais , Iodetos/metabolismo , Nitratos/metabolismo , Pressão Arterial/efeitos dos fármacos , Beta vulgaris , Feminino , Sucos de Frutas e Vegetais , Humanos , Iodetos/administração & dosagem , Masculino , Nitratos/administração & dosagem , Nitratos/sangue , Nitritos/sangue , Nitritos/metabolismo , Saliva/metabolismo , Adulto Jovem
14.
Cell Mol Life Sci ; 70(15): 2757-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23471296

RESUMO

Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg(2+)), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg(2+) ([Mg(2+)]i) and this is facilitated through the ATP-binding site of the channel's kinase domain. The synergistic block of TRPM7 by chloride and Mg(2+) is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg(2+)]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Brometos/farmacologia , Cloretos/farmacologia , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Iodetos/farmacologia , Canais de Cátion TRPM/metabolismo , Brometos/metabolismo , Proliferação de Células/efeitos dos fármacos , Cloretos/metabolismo , DNA Complementar/biossíntese , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Iodetos/metabolismo , Células MCF-7 , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Simportadores/metabolismo , Canais de Cátion TRPM/fisiologia
15.
Microb Ecol ; 63(3): 522-31, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22138964

RESUMO

α-Proteobacteria that can oxidize iodide (I(-)) to molecular iodine (I(2)) have only been isolated from iodide-rich natural and artificial environments, i.e., natural gas brine waters and seawaters supplemented with iodide, respectively. To understand the growth characteristics of such iodide-oxidizing bacteria (IOB) under iodide-rich environments, microcosms comprising natural seawater and 1 mM iodide were prepared, and the succession of microbial communities was monitored by culture-independent techniques. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis showed that bacteria closely related with known IOB were predominant in the microcosms after several weeks of incubation. Quantitative PCR analysis targeting specific 16S rRNA gene regions of IOB showed that the relative abundance of IOB in the microcosms was 6-76% of the total bacterial population, whereas that in natural seawater was less than 1%. When 10(3) cells mL(-1) of IOB were inoculated into natural seawater supplemented with 0.1-1 mM iodide, significant growth (cell densities, 10(5)-10(6) cells mL(-1)) and I(2) production (6-32 µM) were observed. Interestingly, similar growth stimulation occurred when 12-44 µM of I(2) was added to seawater, instead of iodide. IOB were found to be more I(2) tolerant than the other heterotrophic bacteria in seawater. These results suggest that I(2) plays a key role in the growth stimulation of IOB in seawater. IOB could potentially attack other bacteria with I(2) to occupy their ecological niche in iodide-rich environments.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Iodetos/metabolismo , Água do Mar/microbiologia , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Alphaproteobacteria/metabolismo , Dados de Sequência Molecular , Oxirredução , Filogenia , Água do Mar/química
16.
Environ Toxicol ; 27(8): 445-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20882593

RESUMO

Perchlorate, a kind of inorganic chemical, is mainly used in defense industry and widely used in other civilian areas. It was well known that perchlorate exerts its thyrotoxicant effect on thyroid homeostasis via competitive inhibition of iodide uptake. However, some details of mechanism by which perchlorate disturb thyroid homeostasis are unknown and remain to be elucidated. The present study aimed to investigate if iodide insufficiency in the thyroid is the main mechanism by which perchlorate exerts its effect on the thyroid gland. We highlighted and measured the gene expression of NIS, Tg, and TPO which involved in thyroid hormone biosynthesis. Thyroid effects of perchlorate were identified by assessing different responses of these genes at the treatments of perchlorate and iodine deficiency. The results indicated that high dose perchlorate (520 mg kg(-1) b.wt.) can induce a significant decrease in body weight and cause hypertrophy of thyroid gland, with a decreased level of FT3, FT4 and a remarkable increased level of TSH. In addition, the significant decreased gene expression of Thyroglobulin (Tg) and thyroperoxidase (TPO) were both observed at the treatment of high dose perchlorate. These results suggested that perchlorate can suppress gene expression of Tg and TPO which directly involved in biosynthesis of thyroid hormones, and may therefore aggravate the perturbation of thyroid homeostasis in addition to competitive inhibition of iodide uptake.


Assuntos
Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Iodetos/metabolismo , Percloratos/toxicidade , Compostos de Amônio Quaternário/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Hipertrofia , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Iodo/deficiência , Masculino , Ratos , Ratos Sprague-Dawley , Tireoglobulina/genética , Tireoglobulina/metabolismo , Glândula Tireoide/patologia , Hormônios Tireóideos/sangue
17.
J Endocrinol ; 200(3): 357-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19066290

RESUMO

The sodium/iodide symporter (NIS) mediates the active transport of iodide from the bloodstream into thyrocytes. NIS function is strategic for the diagnosis and treatment of various thyroid diseases. In addition, a promising anti-cancer strategy based on targeted NIS gene transfer in non-thyroidal cells is currently developed. However, only little information is available concerning the molecular mechanism of NIS-mediated iodide translocation. Ten small molecules have recently been identified using a high-throughput screening method for their inhibitory effect on iodide uptake of NIS-expressing mammalian cells. In the present study, we analyzed these compounds for their rapid and reversible effects on the iodide-induced current in NIS-expressing Xenopus oocytes. Four molecules almost completely inhibited the iodide-induced current; for three of them the effect was irreversible, for one compound the initial current could be fully re-established after washout. Three molecules showed a rapid inhibitory effect of about 75%, half of which was reversible. Another three compounds inhibited the iodide-induced current from 10 to 50%. Some molecules altered the membrane conductance by themselves, i.e. in the absence of iodide. For one of these molecules the observed effect was also found in water-injected oocytes whereas for some others the iodide-independent effect was associated with NIS expression. The tested molecules show a surprisingly high variability in their possible mode of action, and thus are promising tools for further functional characterization of NIS on a molecular level, and they could be useful for medical applications.


Assuntos
Simportadores/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Iodetos/metabolismo , Camundongos , Estrutura Molecular , Oócitos/metabolismo , Bibliotecas de Moléculas Pequenas , Simportadores/metabolismo , Xenopus laevis
18.
Radiats Biol Radioecol ; 48(1): 82-6, 2008.
Artigo em Russo | MEDLINE | ID: mdl-18666583

RESUMO

The study was devoted to the effect of long-term (20 days) external ionizing radiation at a dose of 0.5 Gy on the iodide metabolism in the rat thyroid under supplementation of high iodine doses (10 daily KI doses). It was found that the potassium iodide administration partially prevented the effects of a post radiation decrease of serum thyroid hormone levels (the level of T4 was normal and that of T3 was 77.4% of the controls). After the supplementation of 10 daily iodide doses, the rat thyroid tissue showed the most pronounced increase in the levels of total, free and protein-bound iodide compared to the groups of animals consuming normal and elevated KI doses. Pronounced inhibition of thyroid peroxidase activity (3.1-fold) was noted in the same group. The data obtained indicate a radiation-induced activation of iodide uptake during its enhanced supplementation and disturbed iodide enzymatic oxidation and organification.


Assuntos
Iodeto de Potássio/farmacologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/efeitos da radiação , Hormônios Tireóideos/metabolismo , Animais , Esquema de Medicação , Feminino , Iodeto Peroxidase/metabolismo , Iodetos/metabolismo , Iodeto de Potássio/administração & dosagem , Radiação Ionizante , Ratos , Ratos Wistar , Glândula Tireoide/metabolismo , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 105(19): 6954-8, 2008 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-18458346

RESUMO

Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells.


Assuntos
Antioxidantes/metabolismo , Atmosfera/química , Iodetos/metabolismo , Kelp/metabolismo , Sequestradores de Radicais Livres/metabolismo , Ácidos Hexurônicos/farmacologia , Laminaria/metabolismo , Modelos Biológicos , Ozônio , Explosão Respiratória , Análise Espectral , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA