Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Plant Biol (Stuttg) ; 21(2): 237-247, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30468688

RESUMO

Genome size evolution and its relationship with pollen grain size has been investigated in sweet potato (Ipomoea batatas), an economically important crop which is closely related to diploid and tetraploid species, assessing the nuclear DNA content of 22 accessions from five Ipomoea species, ten sweet potato varieties and two outgroup taxa. Nuclear DNA amounts were determined using flow cytometry. Pollen grains were studied using scanning and transmission electron microscopy. 2C DNA content of hexaploid I. batatas ranged between 3.12-3.29 pg; the mean monoploid genome size being 0.539 pg (527 Mbp), similar to the related diploid accessions. In tetraploid species I. trifida and I. tabascana, 2C DNA content was, respectively, 2.07 and 2.03 pg. In the diploid species closely related to sweet potato e.g. I. ×leucantha, I. tiliacea, I. trifida and I. triloba, 2C DNA content was 1.01-1.12 pg. However, two diploid outgroup species, I. setosa and I. purpurea, were clearly different from the other diploid species, with 2C of 1.47-1.49 pg; they also have larger chromosomes. The I. batatas genome presents 60.0% AT bases. DNA content and ploidy level were positively correlated within this complex. In I. batatas and the more closely related species I. trifida, the genome size and ploidy levels were correlated with pollen size. Our results allow us to propose alternative or complementary hypotheses to that currently proposed for the formation of hexaploid Ipomoea batatas.


Assuntos
DNA de Plantas/genética , Ipomoea batatas/genética , Pólen/ultraestrutura , Poliploidia , Núcleo Celular/genética , DNA de Plantas/fisiologia , Citometria de Fluxo , Genoma de Planta/genética , Ipomoea batatas/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pólen/genética
3.
BMC Ecol ; 16: 30, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27323798

RESUMO

BACKGROUND: As a means of biologically controlling Mikania micrantha H.B.K. in Yunnan, China, the influence of sweet potato [Ipomoea batatas (L.) Lam.] on its reproductive characteristics was studied. The trial utilized a de Wit replacement series incorporating six ratios of sweet potato and M. micrantha plants in 25 m(2) plots over 2 years. RESULTS: Budding of M. micrantha occurred at the end of September; flowering and fruiting occurred from October to February. Flowering phenology of M. micrantha was delayed (P < 0.05), duration of flowering and fruiting was reduced (P < 0.05) and duration of bud formation was increased (P < 0.05) with increasing proportions of sweet potato. Reproductive allocation, reproductive investment and reproductive index of M. micrantha were significantly reduced (P < 0.05) with increasing sweet potato densities. Apidae bees, and Calliphoridae or Syrphidae flies were the most abundant visitors to M. micrantha flowers. Overall flower visits decreased (P < 0.05) as sweet potato increased. Thus the mechanism by which sweet potato suppressed sexual reproduction in M. micrantha was essentially two-fold: causing a delay in flowering phenology and reducing pollinator visits. The number, biomass, length, set rate, germination rate, and 1000-grain dry weight of M. micrantha seeds were suppressed (P < 0.05) by sweet potato competition. With proportional increases in sweet potato, sexual and asexual seedling populations of M. micrantha were significantly reduced (P < 0.05). The mortality of both seedling types increased (P < 0.05) with proportional increases in sweet potato. CONCLUSIONS: These results suggest that sweet potato significantly suppresses the reproductive ability of the invasive species M. micrantha, and is a promising alternative to traditional biological control and other methods of control. Planting sweet potato in conjunction with other control methods could provide a comprehensive strategy for managing M. micrantha. The scenario of controlling M. micrantha by utilizing a crop with a similar growth form may provide a useful model for similar management strategies in other systems.


Assuntos
Ipomoea batatas/fisiologia , Mikania/fisiologia , Animais , Abelhas/fisiologia , Dípteros/fisiologia , Ipomoea batatas/crescimento & desenvolvimento , Mikania/crescimento & desenvolvimento , Reprodução
4.
C R Biol ; 339(5-6): 207-213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27212605

RESUMO

Potato (Solanum tuberosum L.) is generally considered to be sensitive to drought stress. Even short periods of water shortage can result in reduced tuber production and quality. We previously reported that transgenic potato plants expressing the sweet potato orange gene (IbOr) under the control of the stress-inducible SWPA2 promoter (referred to as SOR plants) showed increased tolerance to methyl viologen-mediated oxidative stress and high salinity, along with increased carotenoid contents. In this study, in an effort to improve the productivity and environmental stress tolerance of potato, we subjected transgenic potato plants expressing IbOr to water-deficient conditions in the greenhouse. The SOR plants exhibited increased tolerance to drought stress under greenhouse conditions. IbOr expression was associated with slightly negative phenotypes, including reduced tuber production. Controlling IbOr expression imparted the same degree of drought tolerance while ameliorating these negative phenotypic effects, leading to levels of tuber production similar to or better than those of wild-type plants under drought stress conditions. In particular, under drought stress, drought tolerance and the production of marketable tubers (over 80g) were improved in transgenic plants compared with non-transgenic plants. These results suggest that expressing the IbOr transgene can lead to significant gains in drought tolerance and tuber production in potato, thereby improving these agronomically important traits.


Assuntos
Secas , Ipomoea batatas/genética , Ipomoea batatas/fisiologia , Peroxidases/genética , Pigmentação/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Ipomoea batatas/química , Fotossíntese/genética , Tubérculos/metabolismo , Plantas Comestíveis , Reação em Cadeia da Polimerase , Solanum tuberosum/química , Estresse Fisiológico , Água/análise
5.
J Plant Physiol ; 169(1): 86-97, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21893366

RESUMO

In this report a full-length cDNA, SPCAT1, was isolated from ethephon-treated mature L3 leaves of sweet potato. SPCAT1 contained 1479 nucleotides (492 amino acids) in its open reading frame, and exhibited high amino acid sequence identities (ca. 71.2-80.9%) with several plant catalases, including Arabidopsis, eggplant, grey mangrove, pea, potato, tobacco and tomato. Gene structural analysis showed that SPCAT1 encoded a catalase and contained a putative conserved internal peroxisomal targeting signal PTS1 motif and calmodulin binding domain around its C-terminus. RT-PCR showed that SPCAT1 gene expression was enhanced significantly in mature L3 and early senescent L4 leaves and was much reduced in immature L1, L2 and completely yellowing senescent L5 leaves. In dark- and ethephon-treated L3 leaves, SPCAT1 expression was significantly enhanced temporarily from 0 to 24h, then decreased gradually until 72h after treatment. SPCAT1 gene expression levels also exhibited approximately inverse correlation with the qualitative and quantitative H(2)O(2) amounts. Effector treatment showed that ethephon-enhanced SPCAT1 expression was repressed by antioxidant reduced glutathione, NADPH oxidase inhibitor diphenylene iodonium (DPI), calcium ion chelator EGTA and de novo protein synthesis inhibitor cycloheximide. These data suggest that elevated reactive oxygen species H(2)O(2), NADPH oxidase, external calcium influx and de novo synthesized proteins are required and associated with ethephon-mediated enhancement of sweet potato catalase SPCAT1 expression. Exogenous application of expressed catalase SPCAT1 fusion protein delayed or alleviated ethephon-mediated leaf senescence and H(2)O(2) elevation. Based on these data we conclude that sweet potato SPCAT1 is an ethephon-inducible peroxisomal catalase, and its expression is regulated by reduced glutathione, DPI, EGTA and cycloheximide. Sweet potato catalase SPCAT1 may play a physiological role or function in cope with H(2)O(2) homeostasis in leaves caused by developmental cues and environmental stimuli.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Ipomoea batatas/enzimologia , Compostos Organofosforados/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Catalase/genética , Clonagem Molecular , DNA Complementar/análise , DNA de Plantas/análise , Homeostase , Ipomoea batatas/genética , Ipomoea batatas/fisiologia , Dados de Sequência Molecular , Filogenia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Brain Pathol ; 20(3): 598-612, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19863544

RESUMO

Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, protects brain function against oxidative stress induced by D-galactose (D-gal) (Sigma-Aldrich, St. Louis, MO, USA). Our data showed that PSPC enhanced open-field activity, decreased step-through latency, and improved spatial learning and memory ability in D-gal-treated old mice by decreasing advanced glycation end-products' (AGEs) formation and the AGE receptor (RAGE) expression, and by elevating Cu,Zn-superoxide dismutase (Cu,Zn-SOD) (Sigma-Aldrich) and catalase (CAT) expression and activity. Cleavage of caspase-3 and increased terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling (TUNEL)-positive cells in D-gal-treated old mice were inhibited by PSPC, which might be attributed to its antioxidant property. PSPC also suppressed the activation of c-Jun NH(2)-terminal kinase (JNK) and the release of cytochrome c from mitochondria that counteracted the onset of neuronal apoptosis in D-gal-treated old mice. Furthermore, it was demonstrated that phosphoinositide 3-kinase (PI3K) activation was required for PSPC to promote the neuronal survival accompanied with phosphorylation and activation of Akt and p44/42 mitogen-activated protein kinase (MAPK) by using PI3K inhibitor LY294002 (Cell Signaling Technology, Inc., Beverly, MA, USA), implicating a neuronal survival mechanism. The present results suggest that neuronal survival promoted by PSPC may be a potentially effective method to enhance resistance of neurons to age-related disease.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Citocromos c/fisiologia , Galactose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/fisiologia , Ipomoea batatas/fisiologia , Fosfatidilinositol 3-Quinase/fisiologia , Transdução de Sinais/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Encéfalo/enzimologia , Encéfalo/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Galactose/toxicidade , Ipomoea batatas/química , Masculino , Camundongos , Neurônios/citologia , Neurônios/enzimologia , Neurônios/fisiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Transdução de Sinais/fisiologia
7.
J Biomed Biotechnol ; 2009: 564737, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19865488

RESUMO

Purple sweet potato color (PSPC), a naturally occurring anthocyanin, has a powerful antioxidant activity in vitro and in vivo. This study explores whether PSPC has the neuroprotective effect on the aging mouse brain induced by D-galactose (D-gal). The mice administrated with PSPC (100 mg/kg.day, 4 weeks, from 9th week) via oral gavage showed significantly improved behavior performance in the open field and passive avoidance test compared with D-gal-treated mice (500 mg/kg.day, 8 weeks). We further investigate the mechanism involved in neuroprotective effects of PSPC on mouse brain. Interestingly, we found, PSPC decreased the expression level of glial fibrillary acidic protein (GFAP), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), inhibited nuclear translocation of nuclear factor-kappaB (NF-kappaB), increased the activity of copper/zinc superoxide dismutase (Cu/Zn-SOD) and catalase (CAT), and reduced the content of malondialdehyde (MDA), respectively. Our data suggested that PSPC attenuated D-gal-induced cognitive impairment partly via enhancing the antioxidant and anti-inflammatory capacity.


Assuntos
Envelhecimento , Lesões Encefálicas/tratamento farmacológico , Encéfalo/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Galactose/metabolismo , Inflamação , Ipomoea batatas/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Pigmentos Biológicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/induzido quimicamente , Modelos Animais de Doenças , Ipomoea batatas/metabolismo , Masculino , Camundongos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA