Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118108, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574780

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY: This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS: A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS: Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1ß, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS: In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.


Assuntos
Colestase Intra-Hepática , Colestase , Polygala , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , 1-Naftilisotiocianato/toxicidade , China , Fígado/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Colestase/metabolismo , Colestase Intra-Hepática/induzido quimicamente , Isotiocianatos/efeitos adversos , Isotiocianatos/metabolismo , Ácidos e Sais Biliares/metabolismo
2.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540770

RESUMO

Sulforaphane (SFN) is one of the hydrolysates of glucosinolates (GSLs), primarily derived from Brassica vegetables like broccoli. In clinical therapy, SFN has been proven to display antimicrobial, anticancer, antioxidant, and anti-inflammatory properties. However, the antimicrobial effects and mechanism of SFN against plant pathogens need to be further elucidated, which limits its application in agriculture. In this study, the genetic factors involved in SFN biosynthesis in 33 B. oleracea varieties were explored. The finding showed that besides the genetic background of different B. oleracea varieties, myrosinase and ESP genes play important roles in affecting SFN content. Subsequently, the molecular identification cards of these 33 B. oleracea varieties were constructed to rapidly assess their SFN biosynthetic ability. Furthermore, an optimized protocol for SFN extraction using low-cost broccoli curds was established, yielding SFN-enriched extracts (SFN-ee) containing up to 628.44 µg/g DW of SFN. The antimicrobial activity assay confirmed that SFN-ee obtained here remarkably inhibit the proliferation of nine tested microorganisms including four plant pathogens by destroying their membrane integrity. Additionally, the data demonstrated that exogenous application of SFN-ee could also induce ROS accumulation in broccoli leaves. These results indicated that SFN-ee should play a dual role in defense against plant pathogens by directly killing pathogenic cells and activating the ROS signaling pathway. These findings provide new evidence for the antimicrobial effect and mechanism of SFN against plant pathogens, and suggest that SFN-ee can be used as a natural plant antimicrobial agent for crop protection and food preservation.


Assuntos
Anti-Infecciosos , Brassica , Isotiocianatos , Sulfóxidos , Brassica/metabolismo , Proteção de Cultivos , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
3.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543016

RESUMO

Moringa oleifera Lam, commonly known as moringa, is a plant widely used both as a human food and for medicinal purposes around the world. This research aimed to evaluate the efficacy of the aqueous extract of Moringa oleifera leaves (MoAE) and benzyl isothiocyanate (BIT) in rats with induced breast cancer. Cancer was induced with 7,12-dimethylbenz[a]anthracene (DMBA) at a dose of 60 mg/kg by orogastric gavage once only. Forty-eight rats were randomly assigned to eight groups, each consisting of six individuals. The control group (healthy) was called Group I. Group II received DMBA plus saline. In addition to DMBA, Groups III, IV, and V received MoAE at 100, 250, and 500 mg/kg/day, respectively, while Groups VI, VII, and VIII received BIT at 5, 10, and 20 mg/kg/day, respectively. Treatment was carried out for 13 weeks. Secondary metabolite analysis results identified predominantly quercetin, caffeoylquinic acid, neochlorogenic acid, vitexin, and kaempferol, as well as tropone, betaine, loliolide, and vitexin. The administration of MoAE at a dose of 500 mg/kg and BIT at 20 mg/kg exhibited a notable decrease in both the total tumor count and the cumulative tumor weight, along with a delay in their onset. Furthermore, they improved the histological grade. A significant decrease in serum levels of VEGF and IL-1ß levels was observed (p < 0.001) with a better effect demonstrated with MoAE at 500 mg/kg and BIT at 20 mg/kg. In conclusion, this study suggests that both the aqueous extract of Moringa oleifera leaves and the benzyl isothiocyanate possess antitumor properties against mammary carcinogenesis, and this effect could be due, at least in part, to the flavonoids and isothiocyanates present in the extract.


Assuntos
Moringa oleifera , Camundongos , Ratos , Humanos , Animais , Moringa oleifera/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Isotiocianatos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Carcinogênese , Folhas de Planta/química
4.
Phytother Res ; 38(6): 2641-2655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488442

RESUMO

Insufficient vessel maintenance adversely impacts patients in terms of tissue reperfusion following stroke or myocardial infarction, as well as during wound healing. Angiogenesis impairment is a feature typical of metabolic disorders acting at the cardiovascular level, such as diabetes. Therapeutic angiogenesis regulation offers promising clinical implications, and natural compounds as pro-angiogenic nutraceuticals hold valuable applications in regenerative medicine. By using cultured endothelial cells from human umbilical veins (HUVEC) we studied functional and molecular responses following exposure to erucin, a natural isothiocyanate derived from Brassicaceae plants and extracted from the seeds of rocket. Erucin (at nanomolar concentrations) promotes cell migration and tube formation, similar to vascular endothelial growth factor (VEGF), through mobilizing paxillin at endothelial edges. At the molecular level, erucin induces signaling pathways typical of angiogenesis activation, namely Ras, PI3K/AKT, and ERK1/2, leading to VEGF expression and triggering its autocrine production, as pharmacological inhibition of soluble VEGF and VEGFR2 dampens endothelial functions. Furthermore, erucin, alone and together with VEGF, preserves endothelial angiogenic functions under pathological conditions, such as those induced in HUVEC by high glucose (HG) exposure. Erucin emerges as a compelling candidate for therapeutic revascularization applications, showcasing promising prospects for natural compounds in regenerative medicine, particularly in addressing angiogenesis-related disorders.


Assuntos
Movimento Celular , Glucose , Células Endoteliais da Veia Umbilical Humana , Isotiocianatos , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Isotiocianatos/farmacologia , Movimento Celular/efeitos dos fármacos , Paxilina/metabolismo , Indutores da Angiogênese/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Brassicaceae/química , Neovascularização Fisiológica/efeitos dos fármacos , Sulfetos , Tiocianatos
5.
Phytother Res ; 38(5): 2388-2405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430052

RESUMO

The prevalence of overweight and obesity has progressively increased in the last few years, becoming a real threat to healthcare systems. To date, the clinical management of body weight gain is an unmet medical need, as there are few approved anti-obesity drugs and most require an extensive monitoring and vigilance due to risk of adverse effects and poor patient adherence/persistence. Growing evidence has shown that the gasotransmitter hydrogen sulfide (H2S) and, therefore, H2S-donors could have a central role in the prevention and treatment of overweight/obesity. The main natural sources of H2S-donors are plants from the Alliaceae (garlic and onion), Brassicaceae (e.g., broccoli, cabbage, and wasabi), and Moringaceae botanical families. In particular, polysulfides and isothiocyanates, which slowly release H2S, derive from the hydrolysis of alliin from Alliaceae and glucosinolates from Brassicaceae/Moringaceae, respectively. In this review, we describe the emerging role of endogenous H2S in regulating adipose tissue function and the potential efficacy of natural H2S-donors in animal models of overweight/obesity, with a final focus on the preliminary results from clinical trials. We conclude that organosulfur-containing plants and their extracts could be used before or in combination with conventional anti-obesity agents to improve treatment efficacy and reduce inflammation in obesogenic conditions. However, further high-quality studies are needed to firmly establish their clinical efficacy.


Assuntos
Sulfeto de Hidrogênio , Obesidade , Sobrepeso , Humanos , Obesidade/tratamento farmacológico , Animais , Sobrepeso/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fármacos Antiobesidade/farmacologia , Glucosinolatos/farmacologia , Glucosinolatos/química , Isotiocianatos/farmacologia , Brassicaceae/química
7.
Nutrients ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337658

RESUMO

Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli. A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species.


Assuntos
Microbioma Gastrointestinal , Nasturtium , Tropaeolum , Feminino , Humanos , Isotiocianatos/farmacologia , Bactérias , Escherichia coli , Metaboloma
8.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339067

RESUMO

Sulforaphane (SFN) is a promising molecule for developing phytopharmaceuticals due to its potential antioxidative and anti-inflammatory effects. A plethora of research conducted in vivo and in vitro reported the beneficial effects of SFN intervention and the underlying cellular mechanisms. Since SFN is a newly identified nutraceutical in sports nutrition, only some human studies have been conducted to reflect the effects of SFN intervention in exercise-induced inflammation and oxidative stress. In this review, we briefly discussed the effects of SFN on exercise-induced inflammation and oxidative stress. We discussed human and animal studies that are related to exercise intervention and mentioned the underlying cellular signaling mechanisms. Since SFN could be used as a potential therapeutic agent, we mentioned briefly its synergistic attributes with other potential nutraceuticals that are associated with acute and chronic inflammatory conditions. Given its health-promoting effects, SFN could be a prospective nutraceutical at the forefront of sports nutrition.


Assuntos
Isotiocianatos , Estresse Oxidativo , Animais , Humanos , Estudos Prospectivos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Inflamação/tratamento farmacológico , Sulfóxidos/farmacologia , Suplementos Nutricionais , Fator 2 Relacionado a NF-E2/metabolismo
9.
Molecules ; 29(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276596

RESUMO

The main goal of this work was to develop analytical procedures for the isolation and determination of selected isothiocyanates. As an example, particularly sulforaphane from plants of the Brassicaceae Burnett or Cruciferae Juss family. The applied methodology was mainly based on classical extraction methods and high-performance liquid chromatography coupled with tandem mass spectrometry. Moreover, the effect of temperature on the release of isothiocyanates from plant cells was considered. The cytotoxic activity of the obtained plant extracts against a selected cancer cell line has also been included. The results allow evaluating the usefulness of obtained plant extracts and raw sprouts regarding their content of isothiocyanates-bioactive compounds with chemopreventive properties.


Assuntos
Antineoplásicos , Brassica , Brassica/química , Isotiocianatos/farmacologia , Isotiocianatos/química , Extratos Vegetais/química , Linhagem Celular , Sulfóxidos , Glucosinolatos/metabolismo
10.
J Ren Nutr ; 34(1): 68-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37619675

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) have reduced expression of erythroid nuclear factor-related factor 2 (NRF2) and increased nuclear factor κB (NF-κB). "Food as medicine" has been proposed as an adjuvant therapeutic alternative in modulating these factors. No studies have investigated the effects of sulforaphane (SFN) in cruciferous vegetables on the expression of these genes in patients with CKD. OBJECTIVE: The study aimed to evaluate the effects of SFN on the expression of NRF2 and NF-κB in patients on hemodialysis (HD). DESIGN AND METHODS: A randomized, double-blind, crossover study was performed on 30 patients on regular HD. Fourteen patients were randomly allocated to the intervention group (1 sachet/day of 2.5 g containing 1% SFN extract with 0.5% myrosinase) and 16 patients to the placebo group (1 sachet/day of 2.5 g containing corn starch colored with chlorophyll) for 2 months. After a washout period of 2 months, the groups were switched. NRF2 and NF-κB mRNA expression was evaluated by real-time quantitative polymerase chain reaction, and tumor necrosis factor alpha and interleukin-6 levels were quantified by enzyme-linked immunosorbent assay. Malondialdehyde was evaluated as a marker of lipid peroxidation. RESULTS: Twenty-five patients (17 women, 55 [interquartile range = 19] years and 55 [interquartile range = 74] months on HD) completed the study. There was no significant difference concerning the expression of mRNA NRF2 (P = .915) and mRNA NF-κB (P = .806) after supplementation with SFN. There was no difference in pro-inflammatory and oxidative stress biomarkers. CONCLUSION: 150 µmol of SFN for 2 months had no antioxidant and anti-inflammatory effect in patients with CKD undergoing HD.


Assuntos
Isotiocianatos , NF-kappa B , Insuficiência Renal Crônica , Sulfóxidos , Humanos , Feminino , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estudos Cross-Over , Estresse Oxidativo , Diálise Renal/efeitos adversos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Suplementos Nutricionais
11.
Environ Toxicol ; 39(3): 1140-1162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37860845

RESUMO

Sulforaphane (SFN) has attracted much attention due to its ability on antioxidant, anti-inflammatory, and anti-apoptotic properties, while its functional targets and underlying mechanism of action on brain injury caused by acute carbon monoxide poisoning (ACOP) have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the mechanism of SFN in the treatment of brain damage after ACOP. In this study, the results of network pharmacology demonstrated that there were a total of 81 effective target genes of SFN and 36 drug-disease targets, which were strongly in connection with autophagy-animal signaling pathway, drug metabolism, and transcription disorders in cancer. Upon the further biological function and KEGG signaling pathway enrichment analysis, a large number of them were involved in neuronal death, reactive oxygen metabolic processes and immune functions. Moreover, based on the results of bioinformatics prediction associated with multiple potential targets and pathways, the AMP-activated protein kinase (AMPK) signaling pathway was selected to elucidate the molecular mechanism of SFN in the treatment of brain injury caused by ACOP. The following molecular docking analysis also confirmed that SFN can bind to AMPKα well through chemical bonds. In addition, an animal model of ACOP was established by exposure to carbon monoxide in a hyperbaric oxygen chamber to verify the predicted results of network pharmacology. We found that the mitochondrial ultrastructure of neurons in rats with ACOP was seriously damaged, and apoptotic cells increased significantly. The histopathological changes were obviously alleviated, apoptosis of cortical neurons was inhibited, and the number of Nissl bodies was increased in the SFN group as compared with the ACOP group (p < .05). Besides, the administration of SFN could increase the expressions of phosphorylated P-AMPK and MFN2 proteins and decrease the levels of DRP1, Caspase3, and Casapase9 proteins in the brain tissue of ACOP rats. These findings suggest that network pharmacology is a useful tool for traditional Chinese medicine (TCM) research, SFN can effectively inhibit apoptosis, protect cortical neurons from the toxicity of carbon monoxide through activating the AMPK pathway and may become a potential therapeutic strategy for brain injury after ACOP.


Assuntos
Lesões Encefálicas , Intoxicação por Monóxido de Carbono , Medicamentos de Ervas Chinesas , Isotiocianatos , Sulfóxidos , Ratos , Animais , Simulação de Acoplamento Molecular , Monóxido de Carbono , Proteínas Quinases Ativadas por AMP , Farmacologia em Rede , Encéfalo
12.
Phytother Res ; 38(1): 331-348, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882581

RESUMO

The isothiocyanates (ITCs) derived from the precursor glucosinolate molecules present in Brassica vegetables are bioactive organo-sulfur compounds with numerous pharmacologically important properties such as antioxidant, antiinflammatory, antimicrobial, and anticancer. Over the years, ITCs have been the focus of several research investigations associated with cancer treatment. Due to their potent chemo-preventive action, ITCs have been considered to be promising therapeutics for cancer therapy in place of the already existing conventional anticancer drugs. However, their wide spread use at the clinical stage is greatly restricted due to several factors such as low solubility in an aqueous medium, low bioavailability, low stability, and hormetic effect. To overcome these hindrances, nanotechnology can be exploited to develop nano-scale delivery systems that have the potential to enhance stability, and bioavailability and minimize the hermetic effect of ITCs.


Assuntos
Anticarcinógenos , Antineoplásicos , Brassica , Isotiocianatos/farmacologia , Verduras , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Antineoplásicos/farmacologia
13.
Phytomedicine ; 123: 155270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096717

RESUMO

BACKGROUND: 2-Amino-1-methyl-6-phenylimidazo [4,5-b] pyrimidine (PhIP) is a known carcinogen generated mainly from cooking meat and environmental pollutants. It is worth exploring the potential of natural small-molecule drugs to protect against adverse effects on embryonic development. PURPOSE: In this study, we investigated the potential toxicological effects of PhIP on embryonic heart tube formation and the effect of Sulforaphane (SFN) administration on the anti-toxicological effects of PhIP on embryonic cardiogenesis. STUDY DESIGN AND METHODS: First, the chicken embryo model was used to investigate the different phenotypes of embryonic heart tubes induced by various concentrations of PhIP exposure. We also proved that SFN rescues PhIP-induced embryonic heart tube malformation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR) and flow cytometry experiments were employed to explore the mechanisms by which SFN protects cardiac cells from oxidative damage in the presence of PhIP. We used RNA-seq analysis, molecular docking, in situ hybridization, cellular thermal shift assay and solution nuclear magnetic resonance spectroscopy to explore whether SFN protects cardiogenesis through the EGFR/MAPK signaling pathway. RESULTS: The study showed that PhIP might dose-dependently interfere with the C-looping heart tube (mild) or the fusion of a pair of bilateral endocardial tubes (severe) in chick embryos, while SFN administration prevented cardiac cells from oxidative damage in the presence of high-level PhIP. Furthermore, we found that excessive reactive oxygen species (ROS) production and subsequent apoptosis were not the principal mechanisms by which low-level PhIP induced malformation of heart tubes. This is due to PhIP-disturbed Mitogen-activated protein kinase (MAPK) signaling pathway could be corrected by SFN administration. CONCLUSIONS: This study provided novel insight that PhIP exposure could increase the risk of abnormalities in early cardiogenesis and that SFN could partially rescue various concentrations of PhIP-induced abnormal heart tube formation by targeting EGFR and mediating EGFR/MAPK signaling pathways.


Assuntos
Cardiopatias Congênitas , Imidazóis , Isotiocianatos , Sulfóxidos , Animais , Embrião de Galinha , Simulação de Acoplamento Molecular , Isotiocianatos/farmacologia , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo , Receptores ErbB/metabolismo , Apoptose
14.
Toxicol Appl Pharmacol ; 482: 116796, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145809

RESUMO

Sulforaphane (SFN) is a bioactive phytonutrient found in cruciferous vegetables. There is a lack of detailed information on the lactational transfer of SFN and SFN metabolites, and potential pharmacological effects on breastfeeding infants. We carried out two maternal supplementation studies in a mouse model, wherein lactating dams received either vehicle, 300 or 600 ppm SFN from postnatal day (PND) 1 to 5, or in a second experiment, vehicle or 600 ppm SFN from PND 1 to 14. The parent compound was only detectable in milk and plasma from dams receiving 600 ppm SFN for five days. The predominant metabolite SFN-N-acetylcysteine (SFN-NAC) was readily detected in milk from dams receiving 300 and 600 ppm SFN for five days or 600 ppm for 14 days. Maternal SFN-NAC plasma levels were elevated in both 600 ppm groups. Maternal hepatic and pulmonary expression of NRF2-related genes, Nqo1, Gsta2, Gstm1, and Gstp1, were significantly increased, generally following a dose-response; however, offspring induction varied. PND5 neonates in the 600-ppm group exhibited significantly elevated expression of Nqo1, Gsta2, and Gstp1 in liver, and Gstm1 and Gstp1 in lung. Findings support maternal dietary supplementation with SFN induces NRF2-related gene expression in neonates via lactational transfer of SFN-NAC. However, NQO1 enzyme activity was not significantly elevated, highlighting the need to optimize dosing strategy. Additionally, in a pilot investigation of lactating women consuming a typical diet, without any purified SFN supplementation, 7 out of 8 breast milk samples showed SFN-NAC above the limit of quantification (LOQ). Notably, the one sample below the LOQ was collected from the only participant who reported no consumption of cruciferous vegetables in the past 24 h. The parent compound was not detected in any of the human breast milk samples. Overall, these data indicate lactational transfer of SFN-NAC at dietary relevant levels. Future studies are needed to evaluate pharmacokinetics and pharmacodynamics of lactational transfer for potential preventive or therapeutic effects in breastfeeding children.


Assuntos
Acetilcisteína , Lactação , Sulfóxidos , Camundongos , Animais , Criança , Recém-Nascido , Humanos , Feminino , Acetilcisteína/farmacologia , Aleitamento Materno , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Leite Humano/metabolismo , Isotiocianatos/farmacologia
15.
Biomed Pharmacother ; 168: 115720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839110

RESUMO

The aggressive and incurable diffuse gliomas constitute 80% of malignant brain tumors, and patients succumb to recurrent surgeries and drug resistance. Epidemiological research indicates that substantial consumption of fruits and vegetables diminishes the risk of developing this tumor type. Broccoli consumption has shown beneficial effects in both cancer and neurodegenerative diseases. These effects are partially attributed to the isothiocyanate sulforaphane (SFN), which can regulate the Keap1/Nrf2/ARE signaling pathway, stimulate detoxifying enzymes, and activate cellular antioxidant defense processes. This study employs a C6 rat glioma model to assess the chemoprotective potential of aqueous extracts from broccoli seeds, sprouts, and inflorescences, all rich in SFN, and pure SFN as positive control. The findings reveal that administering a dose of 100 mg/kg of broccoli sprout aqueous extract and 0.1 mg/kg of SFN to animals for 30 days before introducing 1 × 104 cells effectively halts tumor growth and progression. This study underscores the significance of exploring foods abundant in bioactive compounds, such as derivatives of broccoli, for potential preventive integration into daily diets. Using broccoli sprouts as a natural defense against cancer development might seem idealistic, yet this investigation establishes that administering this extract proves to be a valuable approach in designing strategies for glioma prevention. Although the findings stem from a rat glioma model, they offer promising insights for subsequent preclinical and clinical research endeavors.


Assuntos
Brassica , Glioma , Humanos , Ratos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Glioma/prevenção & controle
16.
Int Immunopharmacol ; 123: 110777, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567014

RESUMO

BACKGROUND: Folic acid (FA)-induced acute renal injury (AKI) is a commonly and highly reproducible model used to study AKI. The current study aims to evaluate the possible protective effects of sulforaphane (SFN) against FA-induced renal damage and explore the underlying molecular mechanism. METHODS: The animals were divided into four groups (6 rats/group) as follows: normal group (received vehicle, p.o.), FA group (received 250 mg/kg, i.p.), SFN low dose group (received 15 mg/kg, p.o. plus FA 250 mg/kg, i.p.), SFN high dose group (30 mg/kg, p.o. plus FA 250 mg/kg, i.p.). At the end of the experiment, serum samples and kidney tissues were obtained to perform biochemical, molecular, and histopathological investigations. RESULTS: The present study showed that FA-caused AKI was confirmed by a significant elevation of kidney function biomarkers serum levels accompanied by an observation of histopathologic changes. Interestingly, SFN-administration significantly improved kidney function, reduced oxidative stress markers; MDA, NADPH oxidase, MPO, iNOS with up-regulation of GSH, GCLM, GPX4, SOD, NQO1, HO-1 and Nrf2 levels. SFN also downregulated proinflammatory markers. The results also demonstrated the anti-apoptotic effect of SFN through its ability to increase the antiapoptotic Bcl-2 protein and to decrease caspase-3. Moreover, SFN significantly decreased the relative expression of JNK, ERK-1/2, IRF3, and p38MAPK as compared to the FA-nephrotoxic group. CONCLUSION: The present study revealed that SFN possess an antioxidant, anti-inflammatory and antiapoptotic activity by modulating caspase-3, Bcl-2, ERK1/2, JNK, GCLM, NQO1, GPX4, Nrf2, HO-1 and P38 signaling pathways in a dose dependent manner which provides a potential therapeutic strategy for preventing FA-induced AKI.


Assuntos
Injúria Renal Aguda , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Taxa de Filtração Glomerular , Isotiocianatos/uso terapêutico , Isotiocianatos/farmacologia , Transdução de Sinais , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico
17.
J Integr Med ; 21(5): 464-473, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37620223

RESUMO

OBJECTIVE: Acute liver failure (ALF) is characterized by severe liver dysfunction, rapid progression and high mortality and is difficult to treat. Studies have found that sulforaphane (SFN), a nuclear factor E2-related factor 2 (NRF2) agonist, has anti-inflammatory, antioxidant and anticancer effects, and has certain protective effects on neurodegenerative diseases, cancer and liver fibrosis. This paper aimed to explore the protective effect of SFN in ALF and it possible mechanisms of action. METHODS: Lipopolysaccharide and D-galactosamine were used to induce liver injury in vitro and in vivo. NRF2 agonist SFN and histone deacetylase 6 (HDAC6) inhibitor ACY1215 were used to observe the protective effect and possible mechanisms of SFN in ALF, respectively. Cell viability, lactate dehydrogenase (LDH), Fe2+, glutathione (GSH) and malondialdehyde (MDA) were detected. The expression of HDAC6, NRF2, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and solute carrier family 7 member 11 (SLC7A11) were detected by Western blotting and immunofluorescence. RESULTS: Our results show that NRF2 was activated by SFN. LDH, Fe2+, MDA and ACSL4 were downregulated, while GSH, GPX4 and SLC7A11 were upregulated by SFN in vitro and in vivo, indicating the inhibitory effect of SFN on ferroptosis. Additionally, HDAC6 expression was decreased in the SFN group, indicating that SFN could downregulate the expression of HDAC6 in ALF. After using the HDAC6 inhibitor, ACY1215, SFN further reduced HDAC6 expression and inhibited ferroptosis, indicating that SFN may inhibit ferroptosis by regulating HDAC6 activity. CONCLUSION: SFN has a protective effect on ALF, and the mechanism may include reduction of ferroptosis through the regulation of HDAC6. Please cite this article as: Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. J Integr Med. 2023; 21(5): 464-473.


Assuntos
Ferroptose , Falência Hepática Aguda , Humanos , Fator 2 Relacionado a NF-E2/genética , Falência Hepática Aguda/tratamento farmacológico , Isotiocianatos/farmacologia , Glutationa , Desacetilase 6 de Histona
18.
Food Chem ; 429: 136864, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506660

RESUMO

Sulforaphene (SFEN), an isothiocyanate (ITC) abundant in radish (Raphanus sativus) seeds (RS), has many health benefits, including anti-obesity effects. SFEN content is affected by multiple factors during processing, such as glucoraphenin (GLE) (the precursor of SFEN) availability, myrosinase (essential for conversion from GLE to SFEN) activity, and SFEN stability. We examined the physiochemical-properties and anti-adipogenic effects of SFEN-enriched RSE produced by two processes, roasting and micro-grinding. The roasting process lowered SFEN content and myrosinase activity over 50 °C. However, among micro-grinding conditions, smaller particle size (#2 grind, ≈11.31 µm) more effectively increased SFEN content in RS compared to larger particles (#1 grind, ≈ 179.50 µm) by accelerating available GLE and myrosinase release from RS. Grind #2 also effectively inhibited the adipogenesis of 3T3-L1 pre-adipocytes compared to #1. Thus, micro-grinding can be suggested for producing SFEN-enriched RSE with anti-adipogenic activity as a functional material for obesity prevention or treatment.


Assuntos
Raphanus , Glucosinolatos/farmacologia , Adipogenia , Isotiocianatos/farmacologia , Sementes , Extratos Vegetais/farmacologia
19.
Food Chem ; 426: 136603, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329791

RESUMO

Broccoli sprouts have a strong ability to accumulate isothiocyanate and selenium. In this study, the isothiocyanate content increased significantly as a result of ZnSO4 stress. Particularly, based on the isothiocyanate content is not affected, the combined ZnSO4 and Na2SeO3 treatment alleviated the inhibition of ZnSO4 and induced selenium content. Gene transcription and protein expression analyses revealed the changes in isothiocyanate and selenium metabolite levels in broccoli sprouts. ZnSO4 combined with Na2SeO3 was proven to activate a series of isothiocyanate metabolite genes (UGT74B1, OX1, and ST5b) and selenium metabolite genes (BoSultr1;1, BoCOQ5-2, and BoHMT1). The relative abundance of the total 317 and 203 proteins, respectively, in 4-day-old broccoli sprouts varied, and the metabolic and biosynthetic pathways for secondary metabolites were significantly enriched in ZnSO4/control and ZnSO4 combined Na2SeO3/ZnSO4 comparisons. The findings demonstrated how ZnSO4 combined with Na2SeO3 treatment reduced stress inhibition and the accumulation of encouraged selenium and isothiocyanates during the growth of broccoli sprouts.


Assuntos
Brassica , Selênio , Selênio/metabolismo , Proteoma/metabolismo , Isotiocianatos/metabolismo , Enxofre , Brassica/metabolismo , Glucosinolatos/metabolismo , Sulfóxidos/metabolismo
20.
J Photochem Photobiol B ; 242: 112701, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37003123

RESUMO

Phototherapy is a new method to treat tumor, including photodynamic therapy (PDT) and photothermal therapy (PTT). However, the GSH in tumor cells could deplete ROS produced by photosensitizers, resulting in inadequate PDT. Isothiocyanate not only is a new type of anti-tumor drug, but also may combine with GSH, increasing the content of intracellular ROS and improving PDT effect. Here we synthesized a kind of water-soluble nanoparticles (BN NPs) parceling BODIPY-I-35 up with mPEG-ITC and lecithin. mPEG-ITC can react with GSH in tumor cells to reduce the consumption of ROS. BN NPs can be used as vectors to deliver drugs to tumor sites. Under 808 nm laser irradiation, BN NPs solution increased 13 °C within 10 min, indicating that BN NPs had superb photothermal performance. In vitro experiments, low dose BN NPs showed satisfactory PDT and PTT effects, and the cell viability of MCF-7 cell was only 13%. In vivo, BN NPs with excellent biocompatibility showed favorable phototherapy effect and tumor was effectively inhibited. Fluorescence imaging could present the long retention effect of BN NPs in tumor locations. In conclusion, the BN NPs showed the effect of enhancing phototherapy and provided a remarkable application prospect in the phototherapy of tumor cells.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA