Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Chin Med ; 51(2): 355-372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36661075

RESUMO

Ischemic stroke is a serious health hazard that lacks effective treatment strategies. This study aims to investigate baicalin's effect on tight junctions and immune cell infiltration after ischemic stroke injury. Rat brain microvascular endothelial cells (BMECs) were treated with OGD/R to establish an in vitro model. Caspase-3, Bax, Bcl-2, zonula occludens-1 (ZO-1), occludin, claudin-5, tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-6, inducible nitric oxide synthase (iNOS), Toll-like receptor (TLR) 2, TLR4, and nuclear factor-kappa B (NF-[Formula: see text]B) expressions were detected using qRT-PCR and western blotting. ZO-1, TNF-[Formula: see text], iNOS, IL6, CD31, and ZO-1 expressions were examined using immunofluorescence. A tube formation assay was performed to measure angiogenesis. An ischemia-reperfusion model in rats was established by middle cerebral artery occlusion. The infarct volume was observed using 2,3,5-triphenyltetrazolium chloride staining. TNF-[Formula: see text], iNOS, and IL6 levels in the serum were tested using ELISA. Flow cytometry was performed to examine immune cell inflammatory infiltration. Baicalin had no significant effect on the proliferation of normal BMECs. Baicalin inhibited apoptosis, protected against tight junction injury, and alleviated the inflammatory response in OGD/R-induced BMECs and IR rats, with the highest dose (25[Formula: see text][Formula: see text]g/mL) exerting a superior effect. Baicalin decreased the neurological function score, infarct volume, and brain water content, relieved brain morphological changes, and inhibited immune cell infiltration in vivo. In conclusion, baicalin could reduce BMECs apoptosis, protect tight junctions, and resist immune cell infiltration, thereby alleviating ischemic stroke. Our findings potentially provide a novel treatment strategy for ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Ratos , Animais , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Isquemia Encefálica/metabolismo , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico
2.
Chin J Nat Med ; 19(3): 188-194, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33781452

RESUMO

Triptolide (TP), an active component of Tripterygium wilfordiiHook. f. (TWHF), has been widely used for centuries as a traditional Chinese medicine. However, the clinical application of TP has been restricted due to multitarget toxicity, such as hepatotoxicity. In this study, 28 days of oral TP administration (100, 200, or 400 µg·kg-1·d-1) induced the occurrence of cholestasis in female Wistar rats, as evidenced by increased serum levels of γ-glutamyl transpeptidase (γ-GGT), alkaline phosphatase (ALP) and hepatic total bile acids (TBAs). In addition, the heptocyte polarity associated with the strcture of tight junctions (TJs) was disrupted in both rats and sandwich-cultured primary hepatocytes. Immunoblotting revealed decreased expression of the TJ-associated proteins occludin, claudin-1, and zonula occludens protein (ZO-1), and downregulated mRNA levels of these TJs was also detected by real-time PCR. An immunofluorescence analysis showed abnormal subcellular localization of occludin, claudin-1 and ZO-1, which was also confirmed by transmission electron microscopy. Moreover, the concentration of FITC-dextran, a marker of paracellular penetration, was found to increase rapidly in bile increased rapidly (within 6 minutes) after treatment with TP, which indicated the functional impairment of TJs. Taken together, these results suggest that the administration of TP for 28 consecutive days to rats could induce cholestatic injury in the liver, and the increased paracellular permeability might play an important role in these pathological changes.


Assuntos
Colestase , Diterpenos/efeitos adversos , Fígado/efeitos dos fármacos , Fenantrenos/efeitos adversos , Junções Íntimas , Animais , Colestase/induzido quimicamente , Claudina-1 , Compostos de Epóxi/efeitos adversos , Feminino , Hepatócitos/efeitos dos fármacos , Ocludina , Ratos , Ratos Wistar , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1
3.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573189

RESUMO

Hyperglycemia alters the function of cerebral endothelial cells from the blood-brain barrier, increasing the risk of cerebrovascular complications during diabetes. This study evaluated the protective effect of polyphenols on inflammatory and permeability markers on bEnd3 cerebral endothelial cells exposed to high glucose concentration. Results show that hyperglycemic condition increased nuclear factor kappa B (NFκB) activity, deregulated the expression of interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10) and endothelial-leukocyte adhesion molecule (E-selectin) genes, raised MCP-1 secretion and elevated monocyte adhesion and transendothelial migration. High glucose decreased occludin, claudin-5, zona occludens-1 (ZO-1) and zona occludens-2 (ZO-2) tight junctions production and altered the endothelial permeability. Characterized polyphenolic extracts from the French medicinal plants Antirhea borbonica, Ayapana triplinervis, Dodonaea viscosa and Terminalia bentzoe, and their major polyphenols quercetin, caffeic, chlorogenic and gallic acids limited the pro-inflammatory and permeability alterations caused by high glucose. Peroxisome proliferator-activated receptor gamma (PPARγ) agonist also attenuated these damages while PPARγ antagonist aggravated them, suggesting PPARγ protective action. Interestingly, polyphenols improved PPARγ gene expression lowered by high glucose. Moreover, polyphenols were detected at the intracellular level or membrane-bound to cells, with evidence for breast cancer resistance protein (BCRP) efflux transporter role. Altogether, these findings emphasize the ability of polyphenols to protect cerebral endothelial cells in hyperglycemic condition and their relevance for pharmacological strategies aiming to limit cerebrovascular disorders in diabetes.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Transtornos Cerebrovasculares/prevenção & controle , Hiperglicemia/imunologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Glicemia/metabolismo , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/imunologia , Linhagem Celular , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/imunologia , Transtornos Cerebrovasculares/patologia , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Humanos , Hiperglicemia/sangue , Hiperglicemia/complicações , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , NF-kappa B/metabolismo , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Extratos Vegetais/uso terapêutico , Polifenóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/imunologia , Junções Íntimas/patologia
4.
Mol Med Rep ; 23(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495820

RESUMO

Disruption of the intestinal mucosal barrier integrity is a pathogenic process in inflammatory bowel disease (IBD) development, and is therefore considered a drug discovery target for IBD. The well­known traditional Chinese formulation Qing Hua Chang Yin (QHCY) has been suggested as a potential therapeutic agent for the treatment of ulcerative colitis. However, the possible underlying molecular mechanisms regarding its therapeutic effect remain unclear. Consequently, the present study investigated the effects of QHCY on lipopolysaccharide (LPS)­induced loss of intestinal epithelial barrier integrity in vitro using the Caco­2 cell model of intestinal epithelium. QHCY reversed the LPS­induced decrease in transepithelial electrical resistance and significantly alleviated the increased fluorescently­labeled dextran 4 flux caused by LPS. Moreover, QHCY upregulated the mRNA and protein expression levels of occludin, zona occludens­1 and claudin­1 in LPS­exposed Caco­2 cells. In conclusion, QHCY was able to protect intestinal epithelial barrier integrity following an inflammatory insult; the protective effects of QHCY may be mediated by modulation of the expression of tight junction proteins.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/toxicidade , Junções Íntimas/metabolismo , Células CACO-2 , Células Epiteliais/patologia , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/lesões , Mucosa Intestinal/patologia , Junções Íntimas/patologia
5.
Biomed Pharmacother ; 133: 111012, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254017

RESUMO

The beneficial effects of prebiotic, such as fructo-oligosaccharides (FOS), in intestinal inflammation have been demonstrated in several studies. Herein, we evaluate whether joint treatment with FOS, both before and during mucositis, had additional beneficial effects and investigated the mechanisms underlying in the action of FOS on the intestinal barrier. BALB/c mice were randomly divided into five groups: CTR (without mucositis + saline solution), FOS (without mucositis + 6 % FOS), MUC (mucositis + saline solution), PT (mucositis + 6 % FOS supplementation before disease induction), and TT (mucositis + 6 % FOS supplementation before and during disease induction). Mucositis was induced by intraperitoneal injection (300 mg/kg) of 5-fluorouracil (5-FU). After 72 h, the animals were euthanized and intestinal permeability (IP), tight junction, bacterial translocation (BT), histology and morphometry, and immunoglobulin A secretory (sIgA), inflammatory infiltrate, and production of short-chain fatty acids (acetate, butyrate and propionate) were evaluated. The MUC group showed an increase in the IP, BT, and inflammatory infiltrate but a decrease in the tight junction expression and butyrate and propionate levels (P < 0.05). In the PT and TT groups, FOS supplementation maintained the IP, tight junction expression, and propionate concentration within physiologic levels, increased butyrate levels, and reduced BT and inflammatory infiltrate (P < 0.05). Total treatment with FOS (TT group) was more effective in maintaining histological score, morphometric parameters, and sIgA production. Thus, total treatment (prophylactic and therapeutic supplementation) with FOS was more effective than pretreatment alone, in reducing 5-FU-induced damage to the intestinal barrier.


Assuntos
Bactérias/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosite/induzido quimicamente , Oligossacarídeos/farmacologia , Prebióticos , Junções Íntimas/efeitos dos fármacos , Acetatos/metabolismo , Animais , Bactérias/metabolismo , Translocação Bacteriana/efeitos dos fármacos , Butiratos/metabolismo , Modelos Animais de Doenças , Fluoruracila , Íleo/metabolismo , Íleo/microbiologia , Íleo/patologia , Imunoglobulina A Secretora/metabolismo , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos BALB C , Mucosite/metabolismo , Mucosite/microbiologia , Mucosite/patologia , Permeabilidade , Propionatos/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/microbiologia , Junções Íntimas/patologia
6.
Cutan Ocul Toxicol ; 40(1): 7-13, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33283549

RESUMO

Purpose: This study aimed to investigate the protective effects of quercetin on the tight junction proteins of human retinal pigment epithelial cells (ARPE-19 cells) suffering from oxidative stress injury and explore the possible mechanism.Methods: H2O2 (300 µM) was used to establish an oxidative stress model of ARPE-19 cells. ARPE-19 cells were pretreated with different concentrations (0-80 µM) of quercetin before H2O2 exposure. The expression and distribution of tight junction proteins and autophagy-related proteins were detected by Western blot and immunostaining. ARPE-19 cells were pretreated with 5 mM 3-methyladenine (3-MA).Results: The cell viability weakened in the H2O2 group compared with the control group. However, it was preserved after pretreatment with quercetin. It was observed that the expression levels of occludin, claudin-1 were decreased in the H2O2 group. Quercetin treatment significantly enhanced the expression levels of them as compared to the H2O2 group. H2O2 alone strongly decreased the Zonula occludens protein 1 (ZO-1) expression in the cytomembrane. Quercetin supplementation enhanced the accumulation of ZO-1 in ARPE-19 cells. The expression levels of Beclin-1 and Microtubule associated protein light chain 3 II (LC-3II) increased, and that of P62 decreased in the quercetin protection group. The appearance of LC-3II, which examined by immunofluorescence experiments, enhanced in the quercetin protection group as compared with the control group. The expression levels of beclin-1 and LC-3II increased, and that of P62 increased in the autophagy-inhibited group compared with the quercetin protection group. The levels of occludin and claudin-1 also decreased.Conclusion: Quercetin prevents the loss of tight junction proteins by upregulating autophagy after oxidative stress in ARPE-19 cells.


Assuntos
Autofagia/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Degeneração Macular/prevenção & controle , Substâncias Protetoras/farmacologia , Quercetina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Degeneração Macular/patologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Quercetina/uso terapêutico , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia
7.
Biomed Pharmacother ; 133: 110937, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217689

RESUMO

BACKGROUND: Compound sophorae decoction (CSD), a Chinese Herbal decoction, is frequently clinically prescribed for patients suffered from ulcerative colitis (UC) characterized by bloody diarrhea. Yet, the underlying mechanism about how this formulae works is remain elusive. METHODS: In the present study, the experimental colitis in C57BL/6 J mice was induced by oral administration of standard diets containing 3% dextran sodium sulfate (DSS), and CSD was given orally for treatment at the same time. The clinical symptoms including stool and body weight were recorded each day, and colon length and its histopathological changes were observed. Apoptosis of colonic epithelium was studied by detecting protein expression of cleaved caspase-3, and cell proliferation by Ki-67 immunohistochemistry. Tight junction complex like ZO-1 and occludin were also determined by transmission electron microscope and immunofluorescence. The concentration of FITC-dextran 4000 was measured to evaluate intestinal barrier permeability and possible signaling pathway was investigated. Mucin2 (MUC2) and notch pathway were tested through western blot. The M1/M2 ratio in spleen and mesenteric lymph nodes were detected by flow cytometry. And the mRNA levels of iNOS and Arg1 were examined by qRT-PCR. RESULTS: CSD could significantly alleviate the clinical manifestations and pathological damage. Body weight loss and DAI score of mice with colitis were improved and shortening of colon was inhibited. The administration of CSD was able to reduce apoptotic epithelial cells and facilitate epithelial cell regeneration. Increased intestinal permeability was reduced in DSS-induced colitis mice. In addition, CSD treatment obviously up-regulated the expression of ZO-1 and occludin and the secretion of MUC2, regulated notch signaling, and decreased the ratio of M1/M2. CONCLUSIONS: These data together suggest that CSD can effectively mitigate intestinal inflammation, promote phenotypic change in macrophage phenotype and enhance colonic mucosal barrier function by, at least in part, regulating notch signaling in mice affected by DSS-induced colitis.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Receptores Notch/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Ocludina/metabolismo , Permeabilidade , Regeneração/efeitos dos fármacos , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1/metabolismo
8.
Biol Pharm Bull ; 43(12): 1847-1858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268702

RESUMO

Alzheimer's disease (AD) is a chronic neurodegeneration disease that is closely related to the abnormal tight junction scaffold proteins (TJ) proteins of the blood-brain barrier (BBB). Recently, Yi-Zhi-Fang-Dai Formula (YZFDF) had exerted a neuronal protective effect against amyloid peptide (Aß) toxicity. Still, the therapeutic mechanism of YZFDF in restoring Aß-induced injury of TJ proteins (ZO-1, Occludin, and Claudin-5) remains unclear. This study aimed to explore the underlying mechanism of YZFDF in alleviating the injury of TJ proteins. We examined the impacts of YZFDF on autophagy-related proteins and the histopathology of Aß in the APP/PS1 double-transgenic male mice. We then performed the free intracellular calcium levels [Ca2+]i analysis and the cognitive behavior test of the AD model. Our results showed that YZFDF ameliorated the injury of TJ proteins by reducing the mRNA transcription and expression of the receptor for advanced glycation end-products (RAGE), the levels of [Ca2+]i, calmodulin-dependent protein kinase ß (CaMKKß), phosphorylated AMP-activated protein kinase (AMPK). Accordingly, YZFDF increased the expression of the phosphorylated mammalian targets of rapamycin (mTOR), leading to inhibition of autophagy (downregulated LC3 and upregulated P62). Moreover, the Aß1-42 oligomers-induced alterations of autophagy in murine mouse brain capillary (bEnd.3) cells were blocked by RAGE small interfering RNA (siRNA). These results suggest that YZFDF restored TJ proteins' injury by suppressing autophagy via RAGE signaling. Furthermore, YZFDF reduced the pathological precipitation of Aß in the hippocampus, and improved cognitive behavior impairment of the AD model suggested that YZFDF might be a potential therapeutic candidate for treating AD through RAGE/CaMKKß/AMPK/mTOR-regulated autophagy pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Junções Íntimas/metabolismo , Alpinia , Animais , Autofagia/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Extratos Vegetais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
9.
Artigo em Chinês | MEDLINE | ID: mdl-32842360

RESUMO

Objective: To investigate the damage and mechanism of artemisia annua pollen on tight junction of human nasal mucosa epithelial cells (HNEpC). Methods: HNEpC were cultured in vitro. Different concentrations of artemisia annua pollen (0, 20, 40, 80, 100, 160, 200 µg/ml) were used to intervene the cells for 24 h, and the cell proliferation activity was detected by the CCK-8 method. The expression and phosphorylation of p38MAPK signaling pathway were detected by Western Blot before and after the intervention of SB203580, a p38MAPK inhibitor in HNEpC. Immunofluorescence chemical staining, Western Blot and quantitative real-time PCR (qPCR) were used to observe the expression and distribution of tight junctions Occludin and Claudin-1. SPSS 21.1 software was used for statistical analysis. Results: CCK-8 results showed that, compared with the control group, the proliferation activity of HNEpC increased after 6 h intervention with different concentrations of artemisia annua pollen (all P<0.05). After 12 h of intervention, the proliferation activity of HNEpC in the 20, 40, 80, 100 and 160 µg/ml groups was not significantly changed (all P>0.05), while that in the 200 µg/ml group was decreased (P<0.05). After the intervention for 24 h, the proliferation activity of cells in the 20 and 40 µg/ml groups was not significantly changed (all P>0.05), while that in the 80, 100, 160 and 200 µg/ml groups was decreased (all P<0.05). Immunofluorescence staining showed that the Occludin and Claudin-1 proteins in the normal control group were localized on the cell membrane and expressed more and formed a ring structure around the cell membrane. However, under the intervention of high concentration artemisia annua pollen, its expression level decreased, appeared broken, fuzzy, and nonuniform distribution. Western Blot and qPCR results showed that after 24 h of intervention, the expression levels of HNEpC Claudin-1 protein and its mRNA in the pollen groups (40, 80, 100, 160, 200 µg/ml) of artemisia annua decreased compared with those of those of the control group (mRNA expression levels were 0.567±0.214, 0.443±0.109, 0.462±0.160, 0.497±0.134, 0.388±0.076 compared with 1.001±0.067, respectively, all P<0.05). However, the mRNA of Occludin protein and its mRNA only decreased in the 200 µg/ml treatment group (mRNA expression level was 0.631±0.109 compared with 1.016±0.026, P<0.05), while all the other treatment groups increased (mRNA expression levels were 1.258±0.134, 1.827±0.103, 2.429±0.077, 1.707±0.085, 1.477±0.066 compared with 1.016±0.026, respectively, all P<0.05). Western Blot showed that p-p38MAPK expression increased after intervention with 100, 160, 200 µg/ml artemisia annua pollen for 24 h. SB203580 could inhibit the decreasing expression of Occludin caused by artemisinin pollen (mRNA expression was 1.255±0.179 compared with 0.631±0.109, P<0.05), but had no effect on Claudin-1 protein expression. Conclusion: Pollen from artemisia annua may activate p38MAPK signaling pathway and destroy the close connection of HNEpC.


Assuntos
Artemisia annua , Células Epiteliais/metabolismo , Mucosa Nasal/metabolismo , Pólen/efeitos adversos , Junções Íntimas , Artemisia annua/efeitos adversos , Proliferação de Células , Células Cultivadas , Claudina-1/biossíntese , Claudina-1/metabolismo , Células Epiteliais/patologia , Imunofluorescência , Humanos , Mucosa Nasal/lesões , Mucosa Nasal/patologia , Ocludina/biossíntese , Ocludina/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia
10.
J Stroke Cerebrovasc Dis ; 29(9): 105071, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32807473

RESUMO

BACKGROUND: Chinese medicine Tongxinluo capsule (TXL) has been extensively used to treat ischemic stroke in China, and one of its mechanisms is to protect against blood brain barrier (BBB) disruption after stroke. However, the underlying protective mechanisms are not fully illuminated. It is reported that the low-density lipoprotein receptor-related protein 1 (LRP-1) is involved in BBB disruption after brain ischemia. In this study, we explored whether TXL could downregulate LRP-1 expression and subsequently protect against BBB disruption after stroke using permanent middle cerebral artery occlusion (pMCAO) in mice. METHODS: The animal model of ischemic stroke was induced by pMCAO in male adult C57BL/6J mice. The mice were orally administered TXL (3.0 g/kg) at 1, 3 and 21 h after pMCAO. Meanwhile, the LRP-1 antagonist receptor associated protein (RAP) was intracerebroventricularly injected at 1 and 21 h after stroke. We measured the following parameters at 6 and 24 h: LRP-1 protein level, BBB leakage, and the expression of tight junction (TJ) proteins including occludin, claudin-5 and zonula occludens-1 (ZO-1). RESULTS: Our results showed that TXL downregulated LRP-1 level, upregulated these TJ proteins level, and reduced BBB leakage in peri-infarct regions after pMCAO. Further study found that the inhibitor RAP played the same role as did TXL in upregulating these TJ proteins level and reducing BBB leakage after stroke. CONCLUSION: Our study demonstrates that TXL protects against BBB disruption after stroke via inhibiting the LRP-1 pathway.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Administração Oral , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Cápsulas , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
11.
J Dermatol Sci ; 98(1): 41-49, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32376153

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) calcium depletion-induced ER stress is a crucial signal for keratinocyte differentiation and barrier homeostasis, but its effects on the epidermal tight junction (TJ) have not been characterized. Ultraviolet B (UVB) causes ER calcium release in keratinocytes and disrupts epidermal TJ, however, the involvement of ER stress in the UVB-induced TJ alterations remains unknown. OBJECTIVES: To investigate the effect of ER stress by pharmacological ER calcium depletion or UVB on the TJ integrity in normal human epidermal keratinocytes (NHEK). METHODS: NHEK were exposed to ER calcium pump inhibitor thapsigargin (Tg) or UVB. ER stress markers and TJ molecules expression, TJ and F-actin structures, and TJ barrier function were analyzed. RESULTS: Tg or UVB exposure dose-dependently triggered unfolded protein response (UPR) in NHEK. Low dose Tg induced the IRE1α-XBP1 pathway and strengthened TJ barrier. Contrary, high dose Tg activated PERK phosphorylation and disrupted TJ by F-actin disorganization. UVB disrupted TJ and F-actin structures dose dependently. IRE1α RNase inhibition induced or exacerbated TJ and F-actin disruption in the presence of low dose Tg or UVB. High dose Tg increased RhoA activity. 4-PBA or Rho kinase (ROCK) inhibitor partially prevented the disruption of TJ and F-actin following high dose Tg or UVB. CONCLUSIONS: ER stress has bimodal effects on the epidermal TJ depending on its intensity. The IRE1α pathway is critical for the maintenance of TJ integrity during mild ER stress. Severe ER stress-induced UPR or ROCK signalling mediates the disruption of TJ through cytoskeletal disorganization during severe ER stress.


Assuntos
Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos da radiação , Queratinócitos/patologia , Junções Íntimas/patologia , Raios Ultravioleta/efeitos adversos , Amidas/farmacologia , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Retículo Endoplasmático/efeitos da radiação , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Fenilbutiratos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/efeitos da radiação , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos da radiação , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Vet Microbiol ; 243: 108632, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273011

RESUMO

Zinc treatment is beneficial for infectious diarrhea or colitis. This study aims to characterize the pathomechanisms of the epithelial barrier dysfunction caused by alpha-hemolysin (HlyA)-expressing Escherichia coli in the colon mucosa and the mitigating effects of zinc ions. We performed Ussing chamber experiments on porcine colon epithelium and infected the tissues with HlyA-producing E. coli. Colon mucosa from piglets was obtained from a feeding trial with defined normal or high dose zinc feeding (pre-conditioning). Additional to the zinc feeding, zinc was added to the luminal compartment of the Ussing chamber. Transepithelial electrical resistance (TER) was measured during the infection of the living tissue and subsequently the tissues were immuno-stained for confocal microscopy. Zinc applied to the luminal compartment was effective in preventing from E. coli-induced epithelial barrier dysfunction in Ussing chamber experiments. In contrast, zinc pre-conditioning of colon mucosae when zinc ions were missing subsequently in the luminal compartment was not sufficient to prevent epithelial barrier impairment during E. coli infection. The pathological changes caused by E. coli HlyA were alterations of tight junction proteins claudin-4 and claudin-5, focal leak formation, and cell exfoliation which reflected the paracellular barrier defect measured by a reduced TER. In microscopic analysis of luminal zinc-treated mucosae these changes were absent. In conclusion, continuous presence of unbound zinc ions in the luminal compartment is essential for the protective action of zinc against E. coli HlyA. This suggests the usage of zinc as therapeutic regimen, while prophylactic intervention by high dietary zinc loads may be less useful.


Assuntos
Colo/efeitos dos fármacos , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Zinco/farmacologia , Ração Animal , Animais , Colo/citologia , Colo/microbiologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/prevenção & controle , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Técnicas de Cultura de Órgãos , Suínos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia
13.
Nutrients ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396265

RESUMO

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150-450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1ß, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/µL for IL1R1 and COX-2 (p < 0.01) and 300 ng/µL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Cumarínicos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Células CACO-2 , Técnicas de Cocultura , Colite/imunologia , Colite/patologia , Cumarínicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células THP-1 , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
14.
J Cell Biochem ; 120(12): 19509-19517, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31265168

RESUMO

Necrotizing enterocolitis (NEC) is one of the most widespread and devastating gastrointestinal diseases in neonates. Destruction of the intestinal barrier is the main underlying cause of NEC. The aim of this study was to determine the role of lactadherin in preventing NEC in a neonatal rat model and investigate the molecular mechanism of lactadherin-mediated protection of the intestinal barrier. Neonatal rats were divided into three groups: dam feeding (DF), NEC (NEC), and NEC supplemented with 10 µg/(g·day) recombinant human lactadherin (NEC+L). Intestinal permeability, tissue damage, and cell junction protein expression and localization were evaluated. We found that lactadherin reduced weight loss caused by NEC, reduced the incidence of NEC from 100% to 46.7%, and reduced the mean histological score for tissue damage to 1.40 compared with 2.53 in the NEC group. Intestinal permeability of lactadherin-treated rats was significantly reduced when compared with that of the NEC group. In addition, the expression levels of JAM-A, claudin 3, and E-calcium in the ileum of NEC group animals increased compared with those in the ileum of DF group animals, and these levels decreased in the NEC+L group. Lactadherin changed the localization of claudin 3, occludin, and E-cadherin in epithelial cells. The mechanism underlying lactadherin-mediated protection of the intestinal barrier might be restoring the correct expression levels and localization of tight junction and adherent junction proteins. These findings suggest a new candidate agent for the prevention of NEC in newborns.


Assuntos
Antígenos de Superfície/administração & dosagem , Permeabilidade da Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Enterocolite Necrosante/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Proteínas do Leite/administração & dosagem , Junções Íntimas/efeitos dos fármacos , Animais , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/patologia , Feminino , Humanos , Recém-Nascido , Mucosa Intestinal/lesões , Mucosa Intestinal/patologia , Ratos , Ratos Sprague-Dawley , Junções Íntimas/metabolismo , Junções Íntimas/patologia
15.
Int Immunopharmacol ; 74: 105681, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31220694

RESUMO

Salmonella typhimurium (S. t.) is one of the main pathogens that causes acute gastroenteritis. To evaluate the anti-inflammatory mechanism of Astragalus polysaccharide (APS) in vivo and its influence on the intestinal flora, BALB/c mice were infected with S. t. to establish a model of diarrhea. The disease activity index (DAI) scores showed that APS attenuated S. t.-induced weight loss and diarrhea in mice. APS significantly reduced the index of the liver and spleen as well as the ALT and AST levels in serum (P < 0.05). Hematoxylin and eosin (H&E) results indicated that APS significantly increased jejunum villus height and crypt depth and reduced the infiltration of inflammatory cells (P < 0.05). Additionally, APS increased the tight junction (TJ) proteins expression levels of ZO-1, Occludin and Claudin-1 in the jejunum. The results of 16S rDNA showed that APS significantly increased the number of Lactobacillus and Bifidobacterium spp. to normal levels (compared with the control group). In addition, APS significantly decreased the mRNA expression levels of the proinflammatory cytokines TNF-α, IL-1ß, IL-6 and IL-17 in the jejunum (P < 0.01) as well as the proteins expression levels of COX-2 and iNOS (P < 0.05). Western blot confirmed that prefeeding with APS inhibited S. t.-induced expression of TLR4 and MyD88 in the jejunum and further inhibited nuclear factor-κB (NF-κB) activation, including the nuclear translocation of the p65 NF-κB subunit and the phosphorylation and degradation of IκB-α. This was the key to APS inhibition of the production of inflammatory factors and inflammatory mediators in the jejunum.


Assuntos
Anti-Inflamatórios/uso terapêutico , Bifidobacterium/genética , Diarreia/terapia , Microbioma Gastrointestinal/genética , Lactobacillus/genética , Fígado/metabolismo , Polissacarídeos/uso terapêutico , Infecções por Salmonella/terapia , Salmonella typhimurium/fisiologia , Junções Íntimas/metabolismo , Animais , Astrágalo/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Transdução de Sinais , Junções Íntimas/patologia
16.
Nutrients ; 11(4)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979002

RESUMO

Inflammatory bowel diseases (IBD) are a chronic inflammatory disorders with increasing global incidence. Synbiotic, which is a two-point approach carrying probiotic and prebiotic components in mitigating inflammation in IBD, is thought to be a pragmatic approach owing to the synergistic outcomes. In this study, the impacts of dietary supplementation with probiotic Bacillus coagulans MTCC5856 spores (B. coagulans) and prebiotic whole plant sugar cane fibre (PSCF) was assessed using a murine model of IBD. Eight-week-old C57BL/6 mice were fed a normal chow diet supplemented with either B. coagulans, PSCF or its synbiotic combination. After seven days of supplementation, colitis was induced with dextran sulfate sodium (DSS) in drinking water for seven days during the continuation of the supplemented diets. Synbiotic supplementation ameliorated disease activity index and histological score (-72%, 7.38, respectively), more effectively than either B. coagulans (-47%, 10.1) and PSCF (-53%, 13.0) alone. Synbiotic supplementation also significantly (p < 0.0001) prevented the expression of tight junction proteins and modulated the altered serum IL-1ß (-40%), IL-10 (+26%), and C-reactive protein (CRP) (-39%) levels. Synbiotic supplementations also raised the short-chain fatty acids (SCFA) profile more extensively compared to the unsupplemented DSS-control. The synbiotic health outcome effect of the probiotic and prebiotic combinations may be associated with a synergistic direct immune-regulating efficacy of the components, their ability to protect epithelial integrity, stimulation of probiotic spores by the prebiotic fibre, and/or with stimulation of greater levels of fermentation of fibres releasing SCFAs that mediate the reduction in colonic inflammation. Our model findings suggest synbiotic supplementation should be tested in clinical trials.


Assuntos
Fibras na Dieta/administração & dosagem , Doenças Inflamatórias Intestinais/terapia , Probióticos/administração & dosagem , Saccharum , Esporos Bacterianos , Simbióticos/administração & dosagem , Animais , Bacillus coagulans , Proteína C-Reativa/análise , Colo/ultraestrutura , Dieta , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-1beta/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/patologia
17.
J Cardiovasc Pharmacol ; 73(5): 316-325, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30855407

RESUMO

Chuanxiong rhizome has been widely used for the treatment of cerebral vascular disease in traditional Chinese medicine. The integrity of blood-brain barrier (BBB) is closely linked to the cerebral vascular disease. The protective effects of ligustilide, the major bioactive component in Chuanxiong rhizome, on cerebral blood vessels have been reported previously, but its effects and potential mechanism on BBB have not been entirely clarified. In the current work, the effects of ligustilide on BBB permeability and the underlying molecular mechanisms had been investigated using the model of BBB established by coculturing astrocytes and brain microvascular endothelial cells isolated from the rat brain. The ischemia-damaged model of BBB has been established with oxygen and glucose deprivation (OGD). Our results indicated that OGD significantly increased the permeability in the coculture BBB model. This OGD-induced increase in permeability could suppress by ligustilide in a concentration-dependent manner. Also, ligustilide promoted both gene and protein expression of tight junction proteins. Ligustilide suppressed the upregulation of HIF-1α, vascular endothelial growth factor, and AQP-4 in the BBB model induced by OGD. Collectively, all results have demonstrated that ligustilide is capable of reducing the permeability of BBB in vitro model induced by OGD through HIF-1α/vascular endothelial growth factor pathway and AQP-4, which provide a new target for the clinical application of ligustilide on BBB after stroke in future.


Assuntos
4-Butirolactona/análogos & derivados , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glucose/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , 4-Butirolactona/farmacologia , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Hipóxia Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Ratos Sprague-Dawley , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
18.
J Vasc Res ; 56(1): 1-10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763928

RESUMO

Panax notoginseng saponins (PNS) are known as clinical anti-stroke herbal medicines. The aim of this study is to describe the impact of PNS on ischemia-reperfusion-induced cerebral microvasculature barrier dysfunction which has not been investigated yet. Mice were subjected to transient middle cerebral artery occlusion and PNS were administrated to mice 3 days before and 2 days after surgery. Leukocyte adhesion, albumin leakage, tight junctions and other parameters in the cortex were measured. The PNS 45 mg/kg intervention alleviated leukocyte adhesion, inhibited endothelial barrier alterations evidenced by reduced albumin leakage and tight junction degradations, and ultimately ameliorated infarct volumes and neurological deficits subsequent to ischemia-reperfusion. Taken together, P. notoginseng saponins are able to attenuate leukocyte-mediated microvascular disturbance at the onset of ischemic stroke.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Leucócitos/efeitos dos fármacos , Panax notoginseng , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Saponinas/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Camundongos , Panax notoginseng/química , Extratos Vegetais/isolamento & purificação , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Saponinas/isolamento & purificação , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
19.
J Allergy Clin Immunol ; 143(2): 681-690.e1, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29705246

RESUMO

BACKGROUND: In areas of high exposure to grass pollen, allergic patients are frequently sensitized to profilin, and some experience severe profilin-mediated food-induced reactions. This specific population of patients is ideal to study the relationship between respiratory and food allergies. OBJECTIVE: We sought to determine the role of oral mucosal epithelial barrier integrity in profilin-mediated allergic reactions. METHODS: Thirty-eight patients with profilin allergy stratified into mild or severe according to their clinical history and response to a profilin challenge test and 6 nonallergic subjects were recruited. Oral mucosal biopsies were used for measurement of CD11c, CD3, CD4, tryptase, claudin-1, occludin, E-cadherin, and vascular endothelial growth factor A levels; Masson trichrome staining; and POSTN, IL33, TPSAB, TPSB, and CMA gene expression analysis by using quantitative RT-PCR. Blood samples were used for basophil activation tests. RESULTS: Distinct features of the group with severe allergy included the following: (1) impaired epithelial integrity with reduced expression of claudin-1, occludin, and E-cadherin and decreased numbers of epithelial cells, which is indicative of acanthosis, higher collagen deposition, and angiogenesis; (2) inflammatory immune response in the mucosa, with an increased number of CD11c+ and CD4+ infiltrates and increased expression of the cytokine genes POSTN and IL33; and (3) a 10-fold increased sensitivity of basophils to profilin. CONCLUSIONS: Patients with profilin allergy present with significant damage to the oral mucosal epithelial barrier, which might allow profilin penetration into the oral mucosa and induction of local inflammation. Additionally, severely allergic patients presented with increased sensitivity of effector cells.


Assuntos
Basófilos/imunologia , Hipersensibilidade Alimentar/imunologia , Mucosa Bucal/patologia , Hipersensibilidade Respiratória/imunologia , Junções Íntimas/patologia , Adulto , Alérgenos/imunologia , Claudina-1/genética , Claudina-1/metabolismo , Reações Cruzadas , Feminino , Humanos , Imunoglobulina E/metabolismo , Masculino , Pessoa de Meia-Idade , Poaceae/imunologia , Pólen/imunologia , Profilinas/imunologia , Adulto Jovem
20.
Redox Biol ; 18: 266-278, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30071471

RESUMO

Alcoholic liver disease (ALD) is a major chronic liver disease worldwide and can range from simple steatosis, inflammation to fibrosis/cirrhosis possibly through leaky gut and systemic endotoxemia. We investigated whether pomegranate (POM) protects against binge alcohol-induced gut leakiness, endotoxemia, and inflammatory liver damage. After POM pretreatment for 10 days, rats were exposed to 3 oral doses of binge alcohol (5 g/kg/dose) or dextrose (as control) at 12-h intervals. Binge alcohol exposure induced leaky gut with significantly elevated plasma endotoxin and inflammatory fatty liver by increasing the levels of oxidative and nitrative stress marker proteins such as ethanol-inducible CYP2E1, inducible nitric oxide synthase, and nitrated proteins in the small intestine and liver. POM pretreatment significantly reduced the alcohol-induced gut barrier dysfunction, plasma endotoxin and inflammatory liver disease by inhibiting the elevated oxidative and nitrative stress marker proteins. POM pretreatment significantly restored the levels of intestinal tight junction (TJ) proteins such as ZO-1, occludin, claudin-1, and claundin-3 markedly diminished after alcohol-exposure. In addition, the levels of gut adherent junction (AJ) proteins (e.g., ß-catenin and E-cadherin) and desmosome plakoglobin along with associated protein α-tubulin were clearly decreased in binge alcohol-exposed rats but restored to basal levels in POM-pretreated rats. Immunoprecipitation followed by immunoblot analyses revealed that intestinal claudin-1 protein was nitrated and ubiquitinated in alcohol-exposed rats, whereas these modifications were significantly blocked by POM pretreatment. These results showed for the first time that POM can prevent alcohol-induced gut leakiness and inflammatory liver injury by suppressing oxidative and nitrative stress.


Assuntos
Antioxidantes/uso terapêutico , Intestinos/efeitos dos fármacos , Hepatopatias Alcoólicas/prevenção & controle , Lythraceae , Nitratos/metabolismo , Preparações de Plantas/uso terapêutico , Animais , Antioxidantes/química , Apoptose/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/complicações , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Mucosa Intestinal/metabolismo , Intestinos/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Lythraceae/química , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Preparações de Plantas/química , Ratos Endogâmicos F344 , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA