Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Horm Behav ; 159: 105478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241961

RESUMO

Early life adversity in the form of childhood maltreatment in humans or as modeled by maternal separation (MS) in rodents is often associated with an earlier emergence of puberty in females. Earlier pubertal initiation is an example of accelerated biological aging and predicts later risk for anxiety in women, especially in populations exposed to early life trauma. Here we investigated external pubertal markers as well as hypothalamic gene expression of pubertal regulators kisspeptin and gonadotropin-releasing hormone, to determine a biological substrate for MS-induced accelerated puberty. We further investigated a mechanism by which developmental stress might regulate pubertal timing. As kisspeptin and gonadotropin-releasing hormone secretion are typically inhibited by corticotropin releasing hormone at its receptor CRH-R1, we hypothesized that MS induces a downregulation of Crhr1 gene transcription in a cell-specific manner. Finally, we explored the association between pubertal timing and anxiety-like behavior in an acoustic startle paradigm, to drive future preclinical research linking accelerated puberty and anxiety. We replicated previous findings that MS leads to earlier puberty in females but not males, and found expression of kisspeptin and gonadotropin-releasing hormone mRNA to be prematurely increased in MS females. RNAscope confirmed increased expression of these genes, and further revealed that kisspeptin-expressing neurons in females were less likely to express Crhr1 after MS. Early puberty was associated with higher acoustic startle magnitude in females. Taken together, these findings indicate precocial maturation of central pubertal timing mechanisms after MS, as well as a potential role of CRH-R1 in these effects and an association with a translational measure of anxiety.


Assuntos
Experiências Adversas da Infância , Kisspeptinas , Humanos , Ratos , Feminino , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Privação Materna , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Maturidade Sexual/fisiologia
2.
Endocrine ; 83(3): 733-746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966704

RESUMO

OBJECTIVE: We examined how the sex steroids influence the synthesis of gonadotropins. MATERIALS AND METHODS: The effects of sex steroids estradiol (E2), progesterone (P4), and dihydrotestosterone (DHT) in pituitary gonadotroph cell model (LßT2 cells) in vitro and ovary-intact rats in vivo were examined. The effects of sex steroids on Kiss1 gene expression in the hypothalamus were also examined in ovary-intact rats. RESULTS: In LßT2 cells, E2 increased common glycoprotein alpha (Cga) and luteinizing hormone beta (Lhb) subunit promoter activity as well as their mRNA expression. Although gonadotropin subunit promoter activity was not modulated by P4, Cga and Lhb mRNA expression was increased by P4. DHT inhibited Cga and Lhb mRNA expression with a concomitant decrease in their promoter activity. During the 2-week administration of exogenous E2 to ovary-intact rats, the estrous cycle determined by vaginal smears was disrupted. P4 or DHT administration completely eliminated the estrous cycle. Protein expression of all three gonadotropin subunits within the pituitary gland was inhibited by E2 or P4 treatment in vivo; however, DHT reduced Cga expression but did not modulate Lhb or follicle-stimulating hormone beta subunit expression. E2 administration significantly repressed Kiss1 mRNA expression in a posterior hypothalamic region that included the arcuate nucleus. P4 and DHT did not modulate Kiss1 mRNA expression in this region. In contrast, P4 administration significantly inhibited Kiss1 mRNA expression in the anterior region of the hypothalamus that included the anteroventral periventricular nucleus. The expression of gonadotropin-releasing hormone (Gnrh) mRNA in the anterior hypothalamic region, where the preoptic area is located, appeared to be decreased by treatment with E2 and P4. CONCLUSION: Our findings suggest that sex steroids have different effects in the hypothalamus and pituitary gland.


Assuntos
Kisspeptinas , Ovário , Ratos , Feminino , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hipotálamo/metabolismo , Gonadotropinas Hipofisárias/genética , Gonadotropinas Hipofisárias/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Estradiol/farmacologia , RNA Mensageiro/metabolismo , Di-Hidrotestosterona/farmacologia , Expressão Gênica
3.
Reproduction ; 167(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934722

RESUMO

In brief: The transcriptional profiles of Kiss1 neurons from the arcuate and the rostral periventricular region of the third ventricle of the hypothalamus have been directly compared in diestrous female mice. Differentially expressed genes provide molecular signatures for these two populations of Kiss1 neurons and insights into their physiology. Abstract: The neuropeptide kisspeptin is produced by Kiss1 neurons and is required for normal mammalian fertility. The two main populations of Kiss1 neurons are located in the arcuate (ARC) and the rostral periventricular area of the third ventricle (RP3V) of the hypothalamus. To define the molecular signature of these Kiss1 populations, transcriptomics profiling was performed using purified Kiss1 neurons from diestrous stage female mice. From a data set of 7026 genes, 332 differentially expressed transcripts were identified between the Kiss1ARC and Kiss1RP3V neurons. These data have uncovered novel transcripts and expanded the receptor expression, co-transmitter and transcription factor profiles of Kiss1 neurons. Validation by quantitative RT-PCR confirmed differential expression of Cartpt, Ddc, Gal, Gda, Npy2r, Penk, Rasp18, Rxfp3, Slc18a2, and Th in Kiss1RP3V neurons and Gpr83, Hctr2, Nhlh2, Nmn, Npr3, Nr4a2, Nr5a2, Olfm2, Tac2 and Tacr3 in Kiss1ARC neurons. Enriched pathways common to both Kiss1 populations included the NF-kB, mTor, endocannabinoid, GPCR, Wnt and oestrogen signalling while some pathways (e.g. cytomegalovirus infection, dopaminergic and serotonergic biosynthesis) were specific to Kiss1RP3V neurons. Our gene expression data set augments the existing data sets describing the transcriptional profiles of Kiss1 neuronal populations.


Assuntos
Kisspeptinas , Neurônios , Neuropeptídeos , Animais , Feminino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Perfilação da Expressão Gênica
4.
Front Endocrinol (Lausanne) ; 14: 1269334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900144

RESUMO

Introduction: Male reproduction is under the control of the hypothalamus-pituitary-gonadal (HPG) axis. The endocannabinoid system (ECS) and the kisspeptin system (KS) are two major signaling systems in the central and peripheral control of reproduction, but their possible interaction has been poorly investigated in mammals. This manuscript analyzes their possible reciprocal modulation in the control of the HPG axis. Materials and methods: Adolescent male rats were treated with kisspeptin-10 (Kp10) and endocannabinoid anandamide (AEA), the latter alone or in combination with the type 1 cannabinoid receptor (CB1) antagonist rimonabant (SR141716A). The hypothalamic KS system and GnRH expression, circulating sex steroids and kisspeptin (Kiss1) levels, and intratesticular KS and ECS were evaluated by immunohistochemical and molecular methods. Non-coding RNAs (i.e., miR145-5p, miR-132-3p, let7a-5p, let7b-5p) were also considered. Results: Circulating hormonal values were not significantly affected by Kp10 or AEA; in the hypothalamus, Kp10 significantly increased GnRH mRNA and aromatase Cyp19, Kiss1, and Kiss1 receptor (Kiss1R) proteins. By contrast, AEA treatment affected the hypothalamic KS at the protein levels, with opposite effects on the ligand and receptor, and SR141716A was capable of attenuating the AEA effects. Among the considered non-coding RNA, only the expression of miR145-5p was positively affected by AEA but not by Kp10 treatment. Localization of Kiss1+/Kiss1R+ neurons in the arcuate nucleus revealed an increase of Kiss1R-expressing neurons in Kp10- and AEA-treated animals associated with enlargement of the lateral ventricles in Kp10-treated animals. In the brain and testis, the selected non-coding RNA was differently modulated by Kp10 or AEA. Lastly, in the testis, AEA treatment affected the KS at the protein levels, whereas Kp10 affected the intragonadal levels of CB1 and FAAH, the main modulator of the AEA tone. Changes in pubertal transition-related miRNAs and the intratesticular distribution of Kiss1, Kiss1R, CB1, and CB2 following KP and AEA treatment corroborate the KS-ECS crosstalk also showing that the CB1 receptor is involved in this interplay. Conclusion: For the first time in mammals, we report the modulation of the KS in both the hypothalamus and testis by AEA and revealed the KP-dependent modulation of CB1 and FAAH in the testis. KP involvement in the progression of spermatogenesis is also suggested.


Assuntos
Kisspeptinas , MicroRNAs , Masculino , Ratos , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/genética , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Rimonabanto/metabolismo , Rimonabanto/farmacologia , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Mamíferos/metabolismo , Reprodução , RNA não Traduzido/metabolismo , MicroRNAs/metabolismo
5.
Zhen Ci Yan Jiu ; 48(8): 804-11, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37614139

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) on hormone secretion function of ovarian granulosa cells and theca cells, as well as the expression changes of kisspeptin and kiss1r in rats with polycystic ovarian syndrome (PCOS), so as to explore the mechanism of EA for relieving ovarian dysfunction in PCOS rats. METHODS: Forty-eight SD female rats were randomly divided into control group, model group, EA group and flutamide group, with 12 rats in each group. PCOS rat model was replicated with the gavage of letrozole (0.1 mg/mL, 10 mL•kg-1•d-1). In the EA group, EA (2 Hz, 2 mA) was used to stimulate "Guanyuan" (CV4) for 20 min each time. In the flutamide group, flutamide solution (50 mg•kg-1•d-1) was administrated by gavage. The treatments were given once daily for 14 days in each group. After the modeling and treatment, the body and ovarian weights of the rats were measured, and the ovarian index was calculated. Using HE staining, the morphological changes of ovary were observed. ELISA was adopted to detect the contents of testosterone (T), luteinizing hormone (LH) and estradiol (E2) in serum, the contents of E2 and T in the culture medium of ovarian granulosa cells and theca cells, as well as the content of kisspeptin in the ovarian tissue. The positive expression of kisspeptin in ovary was observed by immunohistochemical method, and the protein expression of its receptor kiss1r was detected by Western blot. RESULTS: Compared with the control group, the body and ovarian weights, ovarian index, the contents of T and LH in serum and that of T in the culture medium of theca cells, as well as the content and positive expression of kisspeptin in ovary were all increased (P<0.01, P<0.05); and the content of E2 in the culture medium of granulosa cells was decreased (P<0.01) in the model group. When compared with the model group, in the EA and flutamide groups, the body and ovarian weights, ovarian index, the contents of T and LH in serum and that of T in the culture medium of theca cells, as well as the content and expression of kisspeptin in ovary were all decreased (P<0.01, P<0.05); and the content of E2 in the culture medium of granulosa cells was increased (P<0.05, P<0.01). CONCLUSION: EA regulates the serum sex hormone levels, the secretion function of the ovarian granulosa cells and theca cells, and the ovarian kisspeptin/kiss1r protein expression in PCOS rats, showing the similar effect as receptor blockade intervention. It is suggested that the improvement of EA in ovarian dysfunction of PCOS rats may be related to the kisspeptin/kiss1r system.


Assuntos
Eletroacupuntura , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Ratos , Flutamida , Kisspeptinas/genética , Hormônio Luteinizante , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/terapia
6.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 8-12, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300694

RESUMO

The basic objective of this study was to examine the possible effects of treadmill exercise on obesity-related sexual behavior disorder in obese male rats and the role of kisspeptin in this effect. The rats were separated from their mothers at the age of 3 weeks, and classified into four groups as Control (C): normal diet-sedentary group, Exercise (E): normal diet-exercise group, Obese (O): high-fat diet-sedentary group, Obese + Exercise (O+E): high-fat diet-exercise grouSexual behavioral testing was conducted in the rats. At the end of the study, brain samples were taken from the animals for gene expression analyses. The treadmill exercise caused a significant increase in the O+E Group compared to the O Group in kisspeptin and kiss1R gene expression and in EF, ML, IL, MF, IF, III, EL, PEI, IR1, MFT, IFT, IRT sexual behavior parameters (p<0.05), and a significant decrease in ML, IL, III, EL sexual behavior parameters (p<0.05). Treadmill exercise caused a significant decrease in EF, ML, IL, MF, IF, III, EL, PEI, IR1, MFT, IFT, IRT sexual behavior parameters and kisspeptin and kiss1R gene expression in the hypothalamus, hippocampus, prefrontal cortex and corpus striatum in E Group compared to C Group (p<0.05), and a significant increase in ML, IL, III, EL sexual behavior parameters (p<0.05). Based on this effect, we believe that it is caused by an increase in kisspeptin and kiss1R expression in the hypothalamus, hippocampus, prefrontal cortex and corpus striatum. In conclusion, treadmill exercise-induced kisspeptin secretion may increase GnRH secretion and cause hypothalamo-pituitary gonadal axis activation and ameliorative effect on deteriorated sexual function.


Assuntos
Hipotálamo , Kisspeptinas , Obesidade , Condicionamento Físico Animal , Disfunções Sexuais Fisiológicas , Animais , Masculino , Ratos , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Obesidade/terapia , Obesidade/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Comportamento Sexual Animal
7.
Nat Commun ; 14(1): 3076, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248237

RESUMO

Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.


Assuntos
Receptor Nuclear Órfão DAX-1 , Receptor alfa de Estrogênio , Hipotálamo , Kisspeptinas , Animais , Feminino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptor Nuclear Órfão DAX-1/genética , Receptor Nuclear Órfão DAX-1/metabolismo
8.
Reprod Toxicol ; 119: 108410, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211340

RESUMO

We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHß+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHß+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.


Assuntos
Hipotálamo , Obesidade , Ratos , Feminino , Animais , Hipotálamo/metabolismo , Obesidade/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta , Carboidratos , Kisspeptinas/genética , Kisspeptinas/metabolismo
9.
Gen Comp Endocrinol ; 337: 114260, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933747

RESUMO

mHypoA-55 cells are kisspeptin-expressing neuronal cells originating from the arcuate nucleus of the mouse hypothalamus. These cells are called KNDy neurons because they co-express kisspeptin, neurokinin B, and dynorphin A. In addition, they express gonadotropin-releasing hormone (GnRH). Here, we found that kisspeptin 10 (KP10) increased Kiss-1 (encoding kisspeptin) and GnRH gene expression in kisspeptin receptor (Kiss-1R)-overexpressing mHypoA-55 cells. KP10 greatly increased serum response element (SRE) promoter activity, which is a target of extracellular signal-regulated kinase (ERK) (20.0 ± 2.54-fold). KP10 also increased cAMP-response element (CRE) promoter activity in these cells (2.32 ± 0.36-fold). KP10-increased SRE promoter activity was significantly prevented in the presence of PD098095, a MEK kinase (MEKK) inhibitor, and KP10-induced CRE promoter activity was also inhibited by PD098059. Similarly, H89, a protein kinase A (PKA) inhibitor, significantly inhibited the KP10 induction of SRE and CRE promoters. KP10-induced Kiss-1 and GnRH gene expressions were inhibited in the presence of PD098059. Likewise, H89 significantly inhibited the KP10-induced increase in Kiss-1 and GnRH. Transfection of mHypoA-55 cells with constitutively active MEKK (pFC-MEKK) increased SRE and CRE promoter activities by 9.75 ± 1.77- and 1.36 ± 0.12-fold, respectively. Induction of constitutively active PKA (pFC-PKA) also increased SRE and CRE promoter activities by 2.41 ± 0.42- and 40.71 ± 7.77-fold, respectively. Furthermore, pFC-MEKK and -PKA transfection of mHypoA-55 cells increased both Kiss-1 and GnRH gene expression. Our current observations suggest that KP10 increases both the ERK and PKA pathways and that both pathways mutually interact in mHypoA-55 hypothalamic cells. Activation of both ERK and PKA signaling might be necessary to induce Kiss-1 and GnRH gene expressions.


Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Animais , Camundongos , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Transdução de Sinais
10.
Physiol Behav ; 260: 114055, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563733

RESUMO

AIMS: This study investigated the possible relationships between the expression of the Kiss1 and Gpr54 gene expressions and the pituitary-gonadal hormones with the female onset of puberty and sexual behavior. The Kiss1 and Gpr54 gene expressions were examined because they are critical to controlling the hypothalamic activation of GnRH neurons and, in turn, the pituitary-gonadal hormones related to the early onset of puberty and sexual behavior. Further, it was evaluated that the pituitary and gonadal hormones involved in the vaginal opening and the expression of sexual behavior. METHODS: Pregnant rats exposed to PRS from gestation days 17 to 20 were evaluated for maternal and open-field behaviors. The maternal behavior was analyzed because it may alter brain sexual organization affecting the pups development. It was observed in female pups the physical and development and, in adult age, the open-field behavior, the anxiety-like behavior, the estrous cycle, the sexual behavior, the serum FSH, LH, estrogen, progesterone, and testosterone levels, and the gene expression of kisspeptin protein (Kiss1) and Gpr54 in the hypothalamus. RESULTS: the maternal and open-field behaviors were unaffected. In the F1 generation, PRS reduced weight at weaning, delayed the day of the vaginal opening and reduced the intensity of lordosis, the estrogen levels, and the Kiss1 and Gpr54 gene expression. These effects were attributed to hypothalamic kisspeptidergic system downregulation of transcripts genes and the reduced estrogen levels affected by the PRS.


Assuntos
Kisspeptinas , Maturidade Sexual , Gravidez , Ratos , Animais , Feminino , Kisspeptinas/genética , Maturidade Sexual/fisiologia , Hipotálamo/metabolismo , Estrogênios/farmacologia
11.
JBRA Assist Reprod ; 27(2): 226-233, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36098456

RESUMO

OBJECTIVE: This study investigated the expression of Kiss1 gene on the testis and the blood of Wistar rats, following the administration of methanolic extract of Hibiscus Sabdariffa (MEHS). METHODS: Fifteen (15) rats with an average weight of 204g were randomly divided into three (3) groups (A-C). Group A was given no treatment and served as the normal control group. Groups B and C were orally administered 200mg/kg and 400mg/kg of MEHS, respectively. The extract was administered once a day for 21 days. RESULTS: There was a significant increase in the relative testicular weight in group B and C compared to the control group (p=0.035). There was no significant difference in the sperm parameters, reproductive hormones, and antioxidant levels in all the treatment groups when compared to the control group (p>0.05). There is a significantly lower expression intensity of the Kiss1 gene in the blood in groups B (p=0.000) and C (p=0.017), compared to the control group. There is no difference in the relative intensity of Kiss1 gene expression in the testis of all the experimental groups (p=0.173). CONCLUSIONS: MEHS caused no histopathological changes on the testis at both doses. MEHS shows the potential of downregulating the expression of the Kiss1 gene in the blood. However, this effect lacks a regulatory mechanism on the reproductive hormones, sperm parameters, testicular morphology, and antioxidative levels.


Assuntos
Hibiscus , Testículo , Ratos , Masculino , Animais , Ratos Wistar , Kisspeptinas/genética , Kisspeptinas/farmacologia , Sementes , Espermatozoides , Antioxidantes/farmacologia , Hormônios , Extratos Vegetais/farmacologia , Expressão Gênica
12.
Aging (Albany NY) ; 14(21): 8615-8632, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326686

RESUMO

The process of aging is the result of progressive loss of homeostasis and functional body impairment, including the central nervous system, where the hypothalamus plays a key role in regulating aging mechanisms. The consequences of aging include a chronic proinflammatory environment in the hypothalamus that leads to decreased secretion of gonadotropin-releasing hormone (GnRH) and impairs kisspeptin neuron functionality. In this work, we investigated the effect of insulin-like growth factor 1 (IGF1) gene therapy on hypothalamic kisspeptin/GnRH neurons and on microglial cells, that mediate the inflammatory process related with the aging process. The results show that IGF1 rats have higher kisspeptin expression in the anteroventral periventricular (AVPV) nucleus and higher immunoreactivity of GnRH in the arcuate nucleus and median eminence. In addition, IGF1-treated animals exhibit increased numbers of Iba1+ microglial cells and MHCII+/Iba1+ in the AVPV and arcuate nuclei. In conclusion, IGF1 gene therapy maintains kisspeptin production in the AVPV nucleus, induces GnRH release in the median eminence, and alters the number and reactivity of microglial cells in middle-aged female rats. We suggest that IGF1 gene therapy may have a protective effect against reproductive decline.


Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Feminino , Ratos , Animais , Kisspeptinas/genética , Hormônio Liberador de Gonadotropina/genética , Hormônios Liberadores de Hormônios Hipofisários , Fator de Crescimento Insulin-Like I/genética , Hipotálamo , Gonadotropinas , Neurônios , Envelhecimento , Terapia Genética
13.
Endocrinology ; 163(11)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35974456

RESUMO

Makorin ring finger protein 3 (MKRN3) is an important neuroendocrine player in the control of pubertal timing and upstream inhibitor of gonadotropin-releasing hormone secretion. In mice, expression of Mkrn3 in the hypothalamic arcuate and anteroventral periventricular nucleus is high early in life and declines before the onset of puberty. Therefore, we aimed to explore if the persistence of hypothalamic Mkrn3 expression peripubertally would result in delayed puberty. Female mice that received neonatal bilateral intracerebroventricular injections of a recombinant adeno-associated virus expressing Mkrn3 had delayed vaginal opening and first estrus compared with animals injected with control virus. Subsequent estrous cycles and fertility were normal. Interestingly, male mice treated similarly did not exhibit delayed puberty onset. Kiss1, Tac2, and Pdyn mRNA levels were increased in the mediobasal hypothalamus in females at postnatal day 28, whereas kisspeptin and neurokinin B protein levels in the arcuate nucleus were decreased, following Mkrn3 overexpression, compared to controls. Cumulatively, these data suggest that Mkrn3 may directly or indirectly target neuropeptides of Kiss1 neurons to degradation pathways. This mouse model suggests that MKRN3 may be a potential contributor to delayed onset of puberty, in addition to its well-established roles in central precocious puberty and the timing of menarche.


Assuntos
Hipotálamo , Maturidade Sexual , Ubiquitina-Proteína Ligases , Animais , Feminino , Hormônio Liberador de Gonadotropina , Hipotálamo/metabolismo , Kisspeptinas/genética , Masculino , Camundongos , Neurocinina B/genética , Maturidade Sexual/genética , Ubiquitina-Proteína Ligases/genética
14.
Reprod Biol Endocrinol ; 20(1): 91, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729637

RESUMO

BACKGROUND: Kisspeptin released from Kiss-1 neurons in the hypothalamus plays an essential role in the control of the hypothalamic-pituitary-gonadal axis by regulating the release of gonadotropin-releasing hormone (GnRH). In this study, we examined how androgen supplementation affects the characteristics of Kiss-1 neurons. METHODS: We used a Kiss-1-expressing mHypoA-55 cell model that originated from the arcuate nucleus (ARC) of the mouse hypothalamus. These cells are KNDy neurons that co-express neurokinin B (NKB) and dynorphin A (DynA). We stimulated these cells with androgens and examined them. We also examined the ARC region of the hypothalamus in ovary-intact female rats after supplementation with androgens. RESULTS: Stimulation of mHypoA-55 cells with 100 nM testosterone significantly increased Kiss-1 gene expression by 3.20 ± 0.44-fold; testosterone also increased kisspeptin protein expression. The expression of Tac3, the gene encoding NKB, was also increased by 2.69 ± 0.64-fold following stimulation of mHypoA-55 cells with 100 nM testosterone. DynA gene expression in these cells was unchanged by testosterone stimulation, but it was significantly reduced at the protein level. Dihydrotestosterone (DHT) had a similar effect to testosterone in mHypoA-55 cells; kisspeptin and NKB protein expression was significantly increased by DHT, whereas it significantly reduced DynA expression. In ovary-intact female rats, DTH administration significantly increased the gene expression of Kiss-1 and Tac3, but not DynA, in the arcuate nucleus. Exogenous NKB and DynA stimulation failed to modulate Kiss-1 gene expression in mHypoA-55 cells. Unlike androgen stimulation, prolactin stimulation did not modulate kisspeptin, NKB, or DynA protein expression in these cells. CONCLUSIONS: Our observations imply that hyperandrogenemia affects KNDy neurons and changes their neuronal characteristics by increasing kisspeptin and NKB levels and decreasing DynA levels. These changes might cause dysfunction of the hypothalamic-pituitary-gonadal axis.


Assuntos
Dinorfinas , Hiperandrogenismo , Androgênios/metabolismo , Animais , Dinorfinas/genética , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hiperandrogenismo/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Neurocinina B/genética , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Neurônios/metabolismo , Ratos , Taquicininas , Testosterona/metabolismo , Testosterona/farmacologia
15.
Front Endocrinol (Lausanne) ; 13: 844397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685211

RESUMO

Background: Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, affecting energy homeostasis and reproduction. The aim of this study was to investigate whether stress affected energy metabolism and reproduction through the glucocorticoid receptor on Kisspeptin neurons in the hypothalamus. Methods: Four groups included control group, chronic restraint stress group, Kisspeptin specific glucocorticoid receptor knock out group (KGRKO) and KGRKO+stress group. Body weight, food intake, estrous cycle of female mice, serum sex hormone levels, serum corticosterone and prolactin, Kisspeptin expression in the hypothalamus were measured. Results: The restraint stress group showed a significant weight loss compared with the control group. KGRKO+restraint stress group had a reduced weight loss, suggesting that restraint stress might partially affect the energy metabolism through GR on Kisspeptin neurons. In terms of reproductive function, the restraint stress group and the KGRKO+restraint stress group showed missing pre-estrus period or prolonged estrous cycles. Serum LH and FSH in KGRKO + restraint stress group decreased significantly compared with KGRKO group. However, no significant difference in the level of serum testosterone was observed. After restraint stress, the levels of serum cortisol and prolactin in male and female mice were significantly higher than the control group, and the hypothalamus Kiss1 gene mRNA expression and Kisspeptin protein expression were significantly decreased. Conclusion: Chronic restraint stress induced weight loss and negative changes in reproduction, which were partially mediated by glucocorticoid receptor on Kisspeptin neurons in the hypothalamus.


Assuntos
Kisspeptinas , Receptores de Glucocorticoides , Animais , Metabolismo Energético/fisiologia , Feminino , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Prolactina/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Reprodução , Redução de Peso
16.
Theriogenology ; 181: 79-88, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065460

RESUMO

Kazakh sheep are typical seasonal estrus animals. Their reproductive system regulation mainly involves the complex regulation of the hypothalamic-pituitary-gonadal axis (HPGA), which is also closely related to reproductive hormone secretion. Gonadotropin-releasing hormone (GnRH), synthesized and secreted by the hypothalamus, is the key to controlling sheep reproductive activity. We studied how GNAQ (G protein subunit alpha q) regulates estrus in sheep by controlling GnRH expression and secretion. We used hypothalamic nerve cells as the research model. GNAQ overexpression and RNA interference vectors were constructed and transfected into the hypothalamic nerve cells of fetal Kazakh sheep. qPCR, western blotting, and enzyme-linked immunosorbent assay were used to detect GNAQ gene expression in Kazakh ewe tissues and analyze its regulatory effect on GnRH expression in the hypothalamic nerve cells. The fetal sheep hypothalamic nerve cells were successfully isolated and cultured. qPCR and cell immunofluorescence showed that the purity of positive cells was >95%. The tissue expression profile showed that there were different degrees of GNAQ gene expression in the Kazakh ewe tissue. Expression levels were relatively higher in the hypothalamus, pituitary, brain, and uterine tissues. When GNAQ expression was downregulated in the hypothalamic nerve cells, the upstream genes KISS1 (kisspeptin), GPR54 (KISS1 receptor), and ER (estrogen receptor) were all upregulated, as were the downstream genes PLCB1 (phospholipase C beta 1), PRKCB (protein kinase C beta), and GNRH. At the same time, GnRH secretion levels were also upregulated. GNAQ regulated its downstream gene PLCB1 in the hypothalamic nerve cells, and directly regulated GnRH expression and secretion through the calcium and PRKC signaling pathways. GNAQ also regulated kisspeptin expression, subsequently regulating GnRH expression and secretion indirectly through the kisspeptin-GPR54 signaling pathway. Our results are of great importance for improving the reproductive performance of seasonal-estrus sheep.


Assuntos
Hipotálamo , Kisspeptinas , Animais , Estro , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Neurônios , Estações do Ano , Ovinos
17.
Biol Reprod ; 106(4): 802-813, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34982141

RESUMO

We tested the hypothesis that divergent genetic merit for fertility of dairy cows is due to aberrant reproductive neuroendocrine function. The kisspeptin status of non-pregnant cows of either positive (POS) or negative (NEG) breeding values (BVs) for fertility was studied in three groups (n = 8), based on their previous post-partum period: POS cows, which had spontaneous ovarian cycles (POS-CYC) and NEG cows, which either cycled (NEG-CYC) or did not cycle (NEG-NONCYC). Ovarian cycles were synchronized, blood samples were taken to define endocrine status, and the animals were slaughtered in an artificial follicular phase. The brains and the pituitary glands were collected for quantitative polymerase chain reaction (qPCR) and in situ hybridization of hypothalamic GNRH1, Kiss1, TAC3, and PDYN and pituitary expression of LHB and FSHB. Gonadotropin releasing hormone (GnRH) and kisspeptin levels were quantified in snap frozen median eminence (ME). GNRH1 expression and GnRH levels in the ME were similar across groups. Kiss1 expression in the preoptic area of the hypothalamus was also similar across groups, but Kiss1 in the arcuate nucleus was almost 2-fold higher in POS-CYC cows than in NEG groups. TAC3 expression was higher in POS-CYC cows. The number of pituitary gonadotropes and the level of expression of LHB and FSHB were similar across groups. We conclude that the lower levels of Kiss1 and TAC3 in NEG cows with low fertility status and may lead to deficient GnRH and gonadotropin secretion.


Assuntos
Núcleo Arqueado do Hipotálamo , Kisspeptinas , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Bovinos , Feminino , Fertilidade/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo
18.
Reprod Biol ; 22(1): 100599, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033902

RESUMO

The neuroendocrine mechanism underlying the sinusoidal wave nature of gonadotropin-releasing hormone pulse generator activity from infantile to adult age still needs to be meticulously defined. Direct inhibition of kisspeptin neurons by neuropeptide Y (NPY) and close intimacy between the two rekindle the importance of these two neuropeptides controlling reproductive axis activity. Thus, the present study was undertaken to decipher simultaneous fluctuations and to profile correlative changes in the relative expression of KISS1, NPY, and their receptor genes from the mediobasal hypothalamus of infant (n = 3), juvenile, pre-pubertal, and adult (n = 4 in each stage) male rhesus monkey (Macaca mulatta) by RT-qPCR. Significant elevation (p < 0.05-0.01) in KISS1 and KISS1R and low (p < 0.05) expression in NPY and NPY1R mRNA in the adult group as compared to the pre-pubertal group was observed. Moreover, significantly high (p < 0.05) expression of NPY and NPY1R mRNA with non-significant (p> 0.05) decline in KISS1 and KISS1R in pre-pubertal animals in comparison to infants describe inverse correlative age-associated changes during pubertal development. Current findings imply that NPY may contribute as a neurobiological brake for the dormancy of kisspeptin neurons before pubertal onset, while dwindling of this brake is likely to occasion kisspeptin dependent hypothalamic-pituitary-gonadal axis activation at puberty. These findings may help in the development of clinical and therapeutic strategies to regulate fertility in humans.


Assuntos
Envelhecimento , Kisspeptinas , Neuropeptídeo Y , Animais , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Macaca mulatta/genética , Macaca mulatta/metabolismo , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Maturidade Sexual/fisiologia
19.
Metabolism ; 129: 155141, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35074314

RESUMO

BACKGROUND: Perturbations in the timing of puberty, with potential adverse consequences in later health, are increasingly common. The underlying neurohormonal mechanisms are unfolded, but nutritional alterations are key contributors. Efforts to unveil the basis of normal puberty and its metabolic control have focused on mechanisms controlling expression of Kiss1, the gene encoding the puberty-activating neuropeptide, kisspeptin. However, other regulatory phenomena remain ill-defined. Here, we address the putative role of the G protein-coupled-receptor kinase-2, GRK2, in GnRH neurons, as modulator of pubertal timing via repression of the actions of kisspeptin, in normal maturation and conditions of nutritional deficiency. METHODS: Hypothalamic RNA and protein expression analyses were conducted in maturing female rats. Pharmacological studies involved central administration of GRK2 inhibitor, ßARK1-I, and assessment of gonadotropin responses to kisspeptin or phenotypic and hormonal markers of puberty, under normal nutrition or early subnutrition in female rats. In addition, a mouse line with selective ablation of GRK2 in GnRH neurons, aka G-GRKO, was generated, in which hormonal responses to kisspeptin and puberty onset were monitored, in normal conditions and after nutritional deprivation. RESULTS: Hypothalamic GRK2 expression increased along postnatal maturation in female rats, especially in the preoptic area, where most GnRH neurons reside, but decreased during the juvenile-to-pubertal transition. Blockade of GRK2 activity enhanced Ca+2 responses to kisspeptin in vitro, while central inhibition of GRK2 in vivo augmented gonadotropin responses to kisspeptin and advanced puberty onset. Postnatal undernutrition increased hypothalamic GRK2 expression and delayed puberty onset, the latter being partially reversed by central GRK2 inhibition. Conditional ablation of GRK2 in GnRH neurons enhanced gonadotropin responses to kisspeptin, accelerated puberty onset, and increased LH pulse frequency, while partially prevented the negative impact of subnutrition on pubertal timing and LH pulsatility in mice. CONCLUSIONS: Our data disclose a novel pathway whereby GRK2 negatively regulates kisspeptin actions in GnRH neurons, as major regulatory mechanism for tuning pubertal timing in nutritionally-compromised conditions.


Assuntos
Kisspeptinas , Desnutrição , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Desnutrição/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Receptores de Kisspeptina-1/metabolismo , Maturidade Sexual/fisiologia
20.
Front Neuroendocrinol ; 64: 100951, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757093

RESUMO

Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.


Assuntos
Kisspeptinas , Peixe-Zebra , Animais , Genes Supressores de Tumor , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Reprodução/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA