Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474811

RESUMO

Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from Lactiplantibacillus plantarum Q7 on inflammatory factors and the gut microbiota of mice were investigated. The results showed that FM-nisin or FM-Q7 up-regulated IFN-γ and down-regulated IL-17 and IL-12 in serum significantly. FM-nisin down-regulated TNF-α and IL-10 while FM-Q7 up-regulated them. The results of 16S rRNA gene sequence analysis suggested that the gut microbiome in mice was changed by FM-nisin or FM-Q7. The Firmicutes/Bacteroides ratio was reduced significantly in both groups. It was observed that the volume of Akkermansia_Muciniphila was significantly reduced whereas those of Lachnospiraceae and Ruminococcaceae were increased. The total number of short-chain fatty acids (SCFAs) in the mouse feces of the FM-nisin group and FM-Q7 group was increased. The content of acetic acid was increased while the butyric acid content was decreased significantly. These findings indicated that FM-nisin or FM-Q7 could stimulate the inflammation response and alter gut microbiota and metabolic components in mice. Further in-depth study is needed to determine the impact of FM-nisin or FM-Q7 on the host's health.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Nisina , Camundongos , Animais , Nisina/metabolismo , Nisina/farmacologia , Leite/metabolismo , RNA Ribossômico 16S/genética , Lactobacillales/metabolismo , Ácido Butírico
2.
Microbiol Spectr ; 12(2): e0234522, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38169289

RESUMO

Weaning is a stressful event in the pig life cycle. We hypothesized that probiotics could be potential alternatives to antibiotics for promoting growth and ameliorating stress in weaning piglets via gut microbiota modulation and, thus, investigated the beneficial effects of dietary probiotic supplementation in weaning pigs. Ninety weaning piglets (Landrace × large white, 45 males and 45 females, 25 days of age) were randomized into three dietary treatments (30 piglets/treatment, divided into five replicates/treatment, i.e., six piglets/replicate) in this 28-day trial: control (C group, basal diet); probiotic [lactic acid bacteria (LAB) group, basal diet plus Lactiplantibacillus plantarum P-8]; and antibiotic (A group; basal diet plus chlortetracycline). The piglets' growth performance [average daily gain, average daily feed intake (ADFI), and feed conversion ratio (FCR)], immune and antioxidant markers, ileal mucosal morphology, and ileal and colonic microbiomes were compared among treatment groups. Compared to the C and A groups, probiotic supplementation significantly decreased the ADFI, FCR, and ileal mucosal crypt depth while increasing the villus height-to-crypt depth ratio, hepatic glutathione peroxidase and catalase activities, and serum levels of interleukin-2. Both probiotic and antibiotic treatments modulated the piglets' gut microbiomes, with more L. plantarum in the LAB group and more Eubacterium rectale and Limosilactobacillus reuteri in the A group. Probiotic supplementation significantly increased the relative abundance of genes encoding the acetylene, galactose, and stachyose degradation pathways, potentially enhancing nutrient absorption, energy acquisition, and growth performance. Probiotics are effective alternatives to antibiotics for promoting the health of piglets, possibly via gut microbiome modulation.IMPORTANCEWeaning impacts piglet health, performance, and mortality. Antibiotic treatment during weaning can mitigate the negative effects on growth. However, antibiotic use in livestock production contributes to the emergence of antibiotic resistance, which is a threat to global public health. This comprehensive study describes the gut microbial composition and growth performance of weaned piglets after dietary supplementation with Lactiplantibacillus plantarum P-8 or antibiotics. L. plantarum P-8 ameliorated stress and improved antioxidant capacity and growth performance in weaned piglets, accompanied by gut microbiota improvement. L. plantarum P-8 is an effective substitute for antibiotics to promote the health of weaned piglets while avoiding the global concern of drug resistance.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Lactobacillus plantarum , Feminino , Masculino , Animais , Suínos , Suplementos Nutricionais/análise , Antioxidantes/metabolismo , Desmame , Lactobacillales/metabolismo , Lactobacillus plantarum/metabolismo , Antibacterianos/farmacologia
3.
Food Chem ; 442: 138416, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241988

RESUMO

The health benefits of fermented fruits have attracted consumers' attention. High levels of antioxidant ability in the fermented kiwifruit extract were found at the early stage of fermentation. The co-fermention with Lactobacillus paracasei LG0260 and Kluyveromyces marxianus J2853 showed the highest ABTS radical scavenging ability (ABTS⋅+-SA) and superoxide dismutase (SOD) activity. Also, the typical antioxidant components of SOD activity, vitamin C concentration and total phenol content were highly correlated with ABTS⋅+-SA. Obviously, polyphenols in the fermented kiwifruit extract evolved into monophenols during fermentation. Compared to undigested samples, the activity of ABTS⋅+-SA and reducing power capacity (RP-CA) after the final intestinal digestion decreased and ranged 387.44-531.89 VCµg/mL, 650.95-981.63 VCµg/mL, respectively (P < 0.05). Meanwhile, SOD activity on the 10th day of fermentation were still remained 222.82 U/mL, 206.98 U/mL and 217.23 U/mL, respectively. These results suggested that the fermented kiwifruit extract could exhibit antioxidant activity through tolerance to the digestive environment.


Assuntos
Antioxidantes , Benzotiazóis , Lactobacillales , Ácidos Sulfônicos , Antioxidantes/metabolismo , Lactobacillales/metabolismo , Extratos Vegetais , Superóxido Dismutase , Digestão , Fermentação
4.
Appl Microbiol Biotechnol ; 108(1): 24, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159115

RESUMO

On the basis of good phosphate solubilization ability of a lactic acid bacteria (LAB) strain Limosilactobacillus sp. LF-17, bacterial agent was prepared and applied to calcareous soil to solubilize phosphate and promote the growth of maize seedlings in this study. A pot experiment showed that the plant growth indicators, phosphorus content, and related enzyme activity of the maize rhizospheric soils in the LF treatment (treated with LAB) were the highest compared with those of the JP treatment (treated with phosphate solubilizing bacteria, PSB) and the blank control (CK). The types of organic acids in maize rhizospheric soil were determined through LC-MS, and 12 acids were detected in all the treatments. The abundant microbes belonged to the genera of Lysobacter, Massilia, Methylbacillus, Brevundimonas, and Limosilactobacillus, and they were beneficial to dissolving phosphate or secreting growth-promoting phytohormones, which were obviously higher in the LF and JP treatments than in CK as analyzed by high-throughput metagenomic sequencing methods. In addition, the abundance values of several enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, and Carbohydrate-Active Enzymes (CAZys), which were related to substrate assimilation and metabolism, were the highest in the LF treatment. Therefore, aside from phosphate-solubilizing microorganisms, LAB can be used as environmentally friendly crop growth promoters in agriculture and provide another viable option for microbial fertilizers. KEY POINTS: • The inoculation of LAB strain effectively promoted the growth and chlorophyll synthesis of maize seedlings. • The inoculation of LAB strain significantly increased the TP content of maize seedlings and the AP concentration of the rhizosphere soil. • The inoculation of LAB strain increased the abundances of the dominant beneficial functional microbes in the rhizosphere soil.


Assuntos
Lactobacillales , Fosfatos , Fosfatos/metabolismo , Solo/química , Lactobacillales/metabolismo , Fósforo/metabolismo , Plântula , Ácido Láctico , Microbiologia do Solo
5.
J Med Food ; 26(8): 560-569, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405755

RESUMO

The antiobesity effects of kimchi with catechin and lactic acid bacteria as starters were studied in C57BL/6 mice with high-fat diet (HFD)-induced obesity. We prepared four types of kimchi: commercial kimchi, standard kimchi, green tea functional kimchi, and catechin functional kimchi (CFK). Body weight and weight of adipose tissue were significantly lower in the kimchi-treated groups than in the HFD and Salt (HFD +1.5% NaCl) groups. In addition, in the CFK group, the serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol were significantly lower and those of high-density lipoprotein cholesterol were markedly higher than the corresponding levels in the HFD and Salt groups. Moreover, CFK reduced fat cells and crown-like structures in the liver and epididymal fat tissues. The protein expression of adipo/lipogenesis-related genes in the liver and epididymal fat tissues was significantly lower (1.90-7.48-fold) in the CFK group than in the HFD and Salt groups, concurrent with upregulation of lipolysis-related genes (1.71-3.38-fold) and downregulation of inflammation-related genes (3.17-5.06-fold) in epididymal fat tissues. In addition, CFK modulated the gut microbiomes of obese mice by increasing the abundance of Bacteroidetes (7.61%), while in contrast, Firmicutes (82.21%) decreased. In addition, the presence of the Erysipelotrichaceae (8.37%) family in the CFK group decreased, while the number of beneficial bacteria of the families, Akkermansiaceae (6.74%), Lachnospiraceae (14.95%), and Lactobacillaceae (38.41%), increased. Thus, CFK exhibited an antiobesity effect through its modulation of lipid metabolism and the microbiome.


Assuntos
Fármacos Antiobesidade , Catequina , Alimentos Fermentados , Lactobacillales , Animais , Camundongos , Catequina/farmacologia , Catequina/metabolismo , Lactobacillales/metabolismo , Camundongos Endogâmicos C57BL , Fármacos Antiobesidade/farmacologia , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Colesterol
6.
Med Oncol ; 40(6): 175, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171497

RESUMO

Bacterial-based cancer immunotherapy has recently gained widespread attention due to its exceptional mechanism of rich pathogen-associated molecular patterns in anti-cancer immune responses. Contrary to conventional cancer therapies such as surgery, chemotherapy, radiation and phototherapy, bacteria-based cancer immunotherapy has the unique ability to suppress cancer by selectively accumulating and growing in tumours. In the view of this, several bacterial strains are being used for the treatment of cancer. Of which, lactic acid bacteria are a powerful, albeit still inadequately understood bacteria that possess a wide source of bioactive chemicals. Lactic acid bacteria metabolites, such as bacteriocins, short-chain fatty acids, exopolysaccharides show antitumour property. Amino acid pathways, which have lately been focussed as a new strategy to cancer therapy, are key element of the adaptability and dysregulation of metabolic pathways identified in proliferation of tumour cells. Arginine metabolism, in particular, has been shown to be critical for cancer therapy. As a result, better understanding of arginine metabolism in LAB and cancer cells could lead to new cancer therapeutic targets. This review will outline current advances in the interaction of arginine metabolism with cancer therapy and propose an arginine deiminase expression system to combat cancer more effectively.


Assuntos
Antineoplásicos , Lactobacillales , Neoplasias , Humanos , Lactobacillales/metabolismo , Hidrolases/farmacologia , Hidrolases/uso terapêutico , Hidrolases/metabolismo , Bactérias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Arginina/metabolismo , Arginina/farmacologia
7.
Crit Rev Food Sci Nutr ; 63(3): 411-425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34278845

RESUMO

Endemic selenium (Se) deficiency is a major worldwide nutritional challenge. Organic Se can be synthesized through physical and chemical methods that are conducive to human absorption, but its high production cost and low output cannot meet the actual demand for Se supplementation. Some microbes are known to convert inorganic Se into organic forms of high nutritional value and Se-enriched probiotics are the main representatives. The aim of the present review is to describe the characteristics of Se-enriched yeast, lactic acid bacteria, bifidobacteria and discuss their Se enrichment mechanisms. Se products metabolized by Se-enriched probiotics have been classified, such as Se nanoparticles (SeNPs) and selenoprotein, and their bioactivities have been assessed. The factors affecting the Se enrichment capacity of probiotics and their application in animal feed, food additives, and functional food production have been summarized. Moreover, a brief summary and the development of Se-enriched probiotics, particularly their potential applications in the field of biomedicine have been provided. In conclusion, Se-enriched probiotics not just have a wide range of applications in the food industry but also have great potential for application in the field of biomedicine in the future.


Assuntos
Lactobacillales , Probióticos , Selênio , Animais , Humanos , Lactobacillales/metabolismo , Saccharomyces cerevisiae/metabolismo , Bifidobacterium/metabolismo
8.
Biomolecules ; 12(12)2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36551324

RESUMO

With the increased frequency of red ginseng extract (RGE) and lactic acid bacteria (LAB) co-administration, we aimed to investigate the interactions between RGE and LAB with regard to in vitro and in vivo deglycosylation metabolism and the pharmacokinetics of ginsenosides. As a proof-of-concept study, five healthy humans were administered RGE (104.1 mg of total ginsenosides/day) with or without co-administration of LAB (2 g, 1 billion CFU/day) for 2 weeks, and the plasma concentrations of ginsenosides in human plasma were monitored. The plasma exposure to compound K (CK), ginsenoside Rh2 (GRh2), protopanaxadiol (PPD), and protopanaxatriol (PPT) in the concomitant administration RGE and LAB groups increased by 2.7-, 2.1-, 1.6-, and 3.5-fold, respectively, compared to those in the RGE administration group, without a significant change in Tmax. The plasma concentrations of GRb1, GRb2, and GRc remained unchanged, whereas the AUC values of GRd and GRg3 significantly decreased in the concomitant administration RGE and LAB groups. To understand the underlying mechanism, the in vitro metabolic activity of ginsenosides was measured during the fermentation of RGE or individual ginsenosides in the presence of LAB for 1 week. Consistent with the in vivo results, co-incubation with RGE and LAB significantly increased the formation rate of GRh2, CK, PPD, and PPT. These results may be attributed to the facilitated deglycosylation of GRd and GRg3 and the increased production of GRh2, CK, PPD, and PPT by the co-administration of LAB and RGE. In conclusion, LAB supplementation increased the plasma concentrations of deglycosylated ginsenosides, such as GRh2, CK, PPD, and PPT, through facilitated deglycosylation metabolism of ginsenosides in the intestine.


Assuntos
Ginsenosídeos , Lactobacillales , Panax , Humanos , Lactobacillales/metabolismo , Extratos Vegetais , Panax/metabolismo , Sujeitos da Pesquisa
9.
J Agric Food Chem ; 70(47): 14877-14885, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382709

RESUMO

Lactic acid bacteria can convert selenium (Se) from inorganic to organic and elemental forms, but the distribution and existence form of organic Se in the bacteria are not clear after Se enrichment, and the effects of selenization on the growth and nutritional value of strains also need to be studied. In this study, Pediococcus acidilactici MRS-7 could absorb up to 67% of inorganic Se and convert most of it into organic Se; about 75% of organic Se was selenoprotein, 2.7% was Se-polysaccharide, and 4.6% was Se-nucleic acid. Additionally, Se-enriched treatment increased the levels of amino acids and essential elements in P. acidilactici MRS-7. Finally, after Se enrichment, Se nanoparticles (SeNPs) were found on the surface of P. acidilactici MRS-7, but they had no harmful effect on its morphology, and its survival during gastrointestinal digestion was not affected, indicating that SeP has potential probiotic value in the food industry.


Assuntos
Lactobacillales , Pediococcus acidilactici , Probióticos , Selênio , Pediococcus acidilactici/metabolismo , Selênio/metabolismo , Lactobacillales/metabolismo , Trato Gastrointestinal , Pediococcus/metabolismo
10.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364477

RESUMO

This study investigated the effect of lactic-acid-bacteria fermentation on the microstructure and gastrointestinal digestibility of soy proteins using a digestomics approach. Fermented soy protein isolates (FSPIs) under varied fermentation-terminal pH demonstrated a colloidal solution (FSPI-7.0/6.0) or yogurt-like curd (FSPI-5.0/4.0) state. Cryo-electron microscopy figures demonstrated the loosely stacked layer of FSPI-7.0/6.0 samples, whereas a denser gel network was observed for FSPI-5.0/4.0 samples. Molecular interactions shifted from dominant ionic bonds to hydrophobic forces and disulfide bonds. The gastric/intestinal digestion demonstrated that the curd samples afforded a significantly low particle size and high-soluble protein and peptide contents in the medium and late digestive phases. A peptidomics study showed that the FSPI-6.0 digestate at early intestinal digestion had a high peptidome abundance, whereas FSPI curd digestates (FSPI-5.0/4.0) elicited a postponed but more extensive promotion during medium and late digestion. Glycinin G2/G4 and ß-conglycinin α/α' subunits were the major subunits promoted by FSPI-curds. The spatial structures of glycinin G2 and ß-conglycinin α subunits demonstrated variations located in seven regions. Glycinin G2 region 6 (A349-K356) and ß-conglycinin α subunit region 7 (E556-E575), which were located at the interior of the 3D structure, were the key regions contributing to discrepancies at the late stage.


Assuntos
Globulinas , Lactobacillales , Proteínas de Soja/química , Lactobacillales/metabolismo , Microscopia Crioeletrônica , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Antígenos de Plantas/química , Suplementos Nutricionais , Trato Gastrointestinal/metabolismo , Glycine max/metabolismo
11.
J Food Sci ; 87(11): 5118-5127, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36250495

RESUMO

Hyperuricemia is a well-known cause of gout and also a risk factor for various comorbidities. Current agents like xanthine oxidase inhibitors prevent hyperuricemia, but usually induce severe side effects. Alternative strategies, such as novel dietary supplementations, are necessary for the management of hyperuricemia. Lactic acid bacteria (LAB) have been used in human diet for a long time with a good safety record. In this study, 345 LAB strains isolated from traditional fermented dairy products were tested for assimilating abilities of guanosine. Two LAB strains, Lacticaseibacillus rhamnosus 1155 (LR1155) and Limosilactobacillus fermentum 2644 (LF2644), showing great capacities of guanosine transformation and degradation were selected. Compared to LR1155, LF2644 showed a better effect with 100.00% transforming rate and 55.10% degrading rate. In an in vivo test, a hyperuricemic rat model was established and the results showed that administration of LR1155 (p < 0.01) or LF2644 (p < 0.01) prevented the rise of serum uric acid with more than 20% decrease when compared with the hyperuricemia rats. In addition, an increased fecal uric acid level was observed in LF2644 or LR1155 treated rats (LR1155-M p < 0.05, others p < 0.01). This study proved that LR1155 and LF2644 can be promising candidates of dietary supplements for prevention or improvement of hyperuricemia. PRACTICAL APPLICATION: The LAB strains tested in this study could be considered as good potential probiotic candidates for dietary supplements because of their urate-lowering effects, which provide a novel antihyperuricemic strategy with advantages of safety and sustainability.


Assuntos
Produtos Fermentados do Leite , Hiperuricemia , Lactobacillales , Humanos , Ratos , Animais , Ácido Úrico/metabolismo , Ácido Úrico/uso terapêutico , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Lactobacillales/metabolismo , Xantina Oxidase , Guanosina/uso terapêutico
12.
Environ Pollut ; 314: 120277, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167164

RESUMO

Uranium (U) contamination often occurs in the topsoil (arable layer), and is a serious threat to crop growth. However, conventional microbial reduction methods are sensitive to oxygen and cannot be used to treat aerobic topsoils. In this study, phosphate-solubilizing microorganisms (PSM) were isolated from U-contaminated topsoil and used for soil remediation. Microbial metabolites and products were analyzed, and the pathways and mechanisms of PSM immobilization were revealed. The results showed that strain PSM8 had the highest phosphate-solubilizing capacity (dissolved P was 208 ± 5 mg/L) and the highest U removal rate (97.3 ± 0.1%). Multi-technical analyses indicated that bacterial surface functional groups adsorbed (UO2)2+ ions on the cell surface, glycolysis produced 3-10 mg/L of lactic acid (pH 4.7-6.0), and lactic acid solubilized Ca3(PO4)2 to form stable chernikovite (a type of uranyl phosphate) on the cell surface. The coupled application of Ca3(PO4)2 and strain PSM8 significantly reduced the bioavailability of soil U (62 ± 11%), converting U from the exchangeable to the residual phase and P from the steady to the available form. In addition, pot experiments showed that soil remediation promoted crop growth and significantly reduced U uptake and toxicity to photosynthetic systems. These findings demonstrate that PSM and Ca3(PO4)2 are good coupled fertilizers for U-contaminated agricultural soil.


Assuntos
Lactobacillales , Poluentes do Solo , Urânio , Urânio/análise , Fertilizantes/análise , Lactobacillales/metabolismo , Fosfatos/análise , Solo/química , Ácido Láctico , Oxigênio/análise , Poluentes do Solo/análise
13.
J Appl Microbiol ; 133(4): 2375-2389, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35778976

RESUMO

AIMS: To characterize the fermentation process and bacterial diversity of sorghum silage inoculated with Lactiplantibacillus plantarum LpAv, Pediococcus pentosaceus PpM and Lacticaseibacillus paracasei LcAv. METHODS AND RESULTS: Chopped sorghum was ensiled using the selected strains. Physicochemical parameters (Ammonia Nitrogen/Total Nitrogen, Dry Matter, Crude Protein, Acid Detergent Fibre, Neutral Detergent Fibre, Acid Detergent Lignin, Ether Extract and Ashes), bacterial counts, cell cytometry and 16sRNA sequencing were performed to characterize the ensiling process and an animal trial (BALB/c mice) was conducted in order to preliminary explore the potential of sorghum silage to promote animal gut health. After 30 days of ensiling, the genus Lactobacillus comprised 68.4 ± 2.3% and 73.5 ± 1.8% of relative abundance, in control and inoculated silages respectively. Richness (Chao1 index) in inoculated samples, but not in control silages, diminished along ensiling, suggesting the domination of fermentation by the inoculated LAB. A trend in conferring enhanced protection against Salmonella infection was observed in the mouse model used to explore the potential to promote gut health of sorghum silage. CONCLUSIONS: The LAB strains used in this study were able to dominate sorghum fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report using metaprofiling of 16sRNA to characterize sorghum silage, showing a microbiological insight where resident and inoculated LAB strains overwhelmed the epiphytic microbiota, inhibiting potential pathogens of the genus Klebsiella.


Assuntos
Lactobacillales , Sorghum , Amônia/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Detergentes , Grão Comestível/metabolismo , Éteres , Fermentação , Lactobacillales/genética , Lactobacillales/metabolismo , Lignina/metabolismo , Camundongos , Nitrogênio/metabolismo , Extratos Vegetais , Silagem/microbiologia , Sorghum/microbiologia
14.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163199

RESUMO

In the present study, thirty two lactic acid bacteria (LAB) were isolated from fermented Indian herbal medicine. In comparison to other strains, MNL5 had stronger bile salt hydrolase (BSH) and cholesterol-lowering properties. Furthermore, it can withstand the extreme conditions found in the GI tract, due to, e.g., pepsin, bile salts, pancreatin, and acids. Pediococcus acidilactici MNL5 was identified as a probiotic candidate after sequencing the 16S rRNA gene. The antibacterial activity of P. acidilactici MNL5 cell-free supernatants (CFS) against Escherichia coli, Staphylococcus aureus, Helicobacter pylori, Bacillus cereus, and Candida albicans was moderate. A Caenorhabditis elegans experiment was also performed to assess the effectiveness of P. acidilactici MNL5 supplementation to increase life span compared to E. coli supplementation (DAF-2 and LIU1 models) (p < 0.05). An immense reduction of the lipid droplets of C. elegans was identified through a fluorescent microscope. The drastic alteration of the expression of fat genes is related to obesity phenotypes. Hence, several paths are evolutionary for C. elegans; the results of our work highlight the nematode as an important model for obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Pediococcus acidilactici/metabolismo , Probióticos/farmacologia , Animais , Antibacterianos/metabolismo , Ácidos e Sais Biliares/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fermentação , Medicina Herbária/métodos , Lactobacillales/genética , Lactobacillales/metabolismo , Obesidade/microbiologia , Pediococcus acidilactici/fisiologia , RNA Ribossômico 16S/genética
15.
J Microbiol Biotechnol ; 32(4): 473-483, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35058401

RESUMO

In this study we investigated the effect of lactic acid bacteria (LAB) fermentation on the ingredients and anti-oxidant activity of Withania somnifera extract. Four strains of LAB could proliferate normally in medium containing W. somnifera extract after the pH reached 3.1~3.5. LAB fermentation increased the content of alcohols and ketones, endowing the extract with the characteristic aroma of fermentation. Compared to the control, the DPPH and ABTS free radical scavenging rates in the fermented samples were significantly improved, ranging from 48.5% to 59.6% and 1.2% to 6.4%. The content of total phenols was significantly increased by 36.1% during the fermentation of mixed bacteria. Moreover, the original composition spectrum of the extract was significantly changed while the differentially accumulated metabolites (DAMs) were closely related to bile secretion, tryptophan metabolism and purine metabolism. Therefore, LAB fermentation can be used as a promising way to improve the flavor and bioactivity of the extracts of W. somnifera, making the ferments more attractive for use as functional food.


Assuntos
Lactobacillales , Withania , Antioxidantes/metabolismo , Cromatografia Líquida , Fermentação , Lactobacillales/metabolismo , Extratos Vegetais/metabolismo , Espectrometria de Massas em Tandem , Withania/química , Withania/metabolismo
16.
Pharmacol Res ; 175: 105981, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798264

RESUMO

Inchinkoto (ICKT) is a popular choleretic and hepatoprotective herbal medicine that is widely used in Japan. Geniposide, a major ingredient of ICKT, is metabolized to genipin by gut microbiota, which exerts a choleretic effect. This study investigates the relationship between stool genipin-producing activity and diversity of the clinical effect of ICKT in patients with malignant obstructive jaundice. Fifty-two patients with malignant obstructive jaundice who underwent external biliary drainage were included. ICKT was administered as three packets per day (7.5 g/day) for three days and 2.5 g on the morning of the fourth day. Stool samples were collected before ICKT administration and bile flow was monitored on a daily basis. The microbiome, genipin-producing activity, and organic acids in stools were analyzed. The Shannon-Wiener (SW) index was calculated to evaluate gut microbiome diversity. The stool genipin-producing activity showed a significant positive correlation with the SW index. Stool genipin-producing activity positively correlated with the order Clostridia (obligate anaerobes), but negatively correlated with the order Lactobacillales (facultative anaerobes). Moreover, stool genipin-producing activity was positively correlated to the concentration valeric acid, but negatively correlated to the concentration of lactic acid and succinic acid. The change of bile flow at 2 and 3 days after ICKT administration showed significant positive correlation with genipin-producing activity (correlation coefficient, 0.40 and 0.29, respectively, P < 0.05). An analysis of stool profile, including stool genipin-producing activity, may predict the efficacy of ICKT. Modification of the microbiome may be a target to enhance the therapeutic effect of ICKT.


Assuntos
Colagogos e Coleréticos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Iridoides/metabolismo , Icterícia Obstrutiva/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Bile/química , Ácidos Carboxílicos/metabolismo , Clostridium/genética , Clostridium/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Humanos , Icterícia Obstrutiva/microbiologia , Lactobacillales/genética , Lactobacillales/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/microbiologia , Resultado do Tratamento
17.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836105

RESUMO

Cordyceps militaris (C. militaris) has various biomedical applications in traditional oriental medicine for different diseases including inflammatory and immune-dysregulated diseases. It is a reservoir of nutritional components such as cordycepin, polysaccharides, and antioxidants. To improve its bioactivity, we fermented C. militaris with a Pediococcus pentosaceus strain isolated from a salted small octopus (SC11). The current study aimed to evaluate whether P. pentosaceus (SC11) fermentation could enhance the anti-allergic potential of C. militaris cultured on germinated Rhynchosia nulubilis (GRC) against a type I hypersensitive reaction in in vitro and in vivo studies. Total antioxidant capacity and cordycepin content were significantly increased in GRC after SC11 fermentation. GRC-SC11 showed significantly enhanced anti-allergic responses by inhibiting immunoglobulin E (IgE)/antigen-induced degranulation in RBL-2H3 cells, compared to GRC. The results demonstrated the significant inhibition of phosphorylated spleen tyrosine kinase (Syk)/ p38/GRB2-associated binding protein 2 (Gab2)/c-jun in IgE/Ag-triggered RBL-2H3 cells. Furthermore, suppressed mRNA levels of interleukin-4 (IL-4) and tumor necrosis factor-α (TNF-α) in IgE/Ag-activated RBL-2H3 cells were observed. GRC-SC11 significantly ameliorated IgE-induced allergic reactions by suppressing the ear swelling, vascular permeability, and inflammatory cell infiltration in passive cutaneous anaphylaxis (PCA) BALB/c mice. In conclusion, GRC fermented with P.pentosaceus exerted enhanced anti-allergic effects, and increased the cordycepin content and antioxidants potential compared to GRC. It can be used as bio-functional food in the prevention and management of type I allergic diseases.


Assuntos
Antialérgicos/metabolismo , Cordyceps/metabolismo , Hipersensibilidade/microbiologia , Lactobacillales/metabolismo , Pediococcus pentosaceus/metabolismo , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Fermentação , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Imunoglobulina E/metabolismo , Mastócitos/imunologia , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C
18.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641608

RESUMO

The effect of spontaneous fermentation by lactic acid bacteria on the extraction yield of bioactive compounds and antioxidant activity from rosemary leaf extracts was investigated using high-performance thin-layer chromatography (HPTLC). Brining and spontaneous fermentation with lactic acid bacteria more than doubled extraction of polyphenolics and antioxidants from the rosemary leaves. The results show that lactic acid fermentation enhances antioxidant activity in extracts by increasing the total phenolic content but does not increase extraction of phytosterols. Increased extraction of phenolic oxidants during fermentation assisted extraction, results from the in situ generated natural eutectic solvent from the plant sample. ATR-FTIR spectra from the bioactive bands suggests that this increased antioxidant activity is associated with increased extraction of rosmarinic acid, depolymerised lignin, abietane diterpenoids and 15-hydroxy-7-oxodehydroabietic acid.


Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Lactobacillales/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Rosmarinus/química , Rosmarinus/metabolismo , Abietanos/química , Abietanos/metabolismo , Cromatografia em Camada Fina , Cinamatos/química , Cinamatos/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Fermentação , Humanos , Lignina/química , Lignina/metabolismo , Fenóis/química , Fenóis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Rosmarínico
19.
Sci Rep ; 11(1): 12028, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103574

RESUMO

The lactic acid bacteria (LAB) Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) have appeared promising as replacements for antibiotics in in vitro studies. Microencapsulation, especially by the spray-drying method, has been used to preserve their numbers and characteristics during storage and digestion. This study compared the efficacy of these strains and their microencapsulated form with antibiotic usage on growth performance, faecal microbial counts, and intestinal morphology in nursing-finishing pigs. A total of 240 healthy neonatal pigs were treated on days 0, 3, 6, 9, and 12 after cross-fostering. Sterile peptone water was delivered orally to the control and antibiotic groups. Spray-dried Lactobacillus plantarum strain 22F stored for 6-months was administered to piglets in the spraydry group. Three ml of each the three fresh strains (109 CFU/mL) were orally administered to piglets in each group. All pigs received the basal diets, but these were supplemented with routine antibiotic for the antibiotic group. Pigs in all the probiotic supplemented groups exhibited a better average daily gain and feed conversion ratio than those of the controls in the nursery and grower phases. Probiotic supplementation increased viable lactobacilli and decreased enterobacterial counts. Antibiotic additives reduced both enterobacterial and lactobacilli counts. Villous height and villous height:crypt depth ratio were greater in probiotic and antibiotic supplemented pigs comparing to the controls, especially in the jejunum. The results demonstrated the feasibility of using these strains as a substitute for antibiotics and the practicality of the microencapsulation protocol for use in swine farms.


Assuntos
Antibacterianos/administração & dosagem , Fezes/microbiologia , Lactobacillales/metabolismo , Lactobacillus plantarum/metabolismo , Pediococcus acidilactici/metabolismo , Probióticos/administração & dosagem , Ração Animal/análise , Animais , Animais Recém-Nascidos , Peso Corporal , Dieta/veterinária , Suplementos Nutricionais , Esquema de Medicação , Feminino , Masculino , Suínos
20.
Biotechnol Lett ; 43(8): 1637-1648, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33999363

RESUMO

OBJECTIVES: This study aimed to screen, characterize, and annotate the genome along with the comparison of GABA synthesis genes presented in lactic acid bacteria (LAB). RESULTS: Thirty-five LAB isolates from fermented foods were screened for GABA production using thin-layer chromatography (TLC). Fifteen isolates produced GABA ranging from 0.07 to 22.94 g/L. Based on their GTG5 profiles, phenotypic, and genotypic characteristics, isolates LSI1-1, LSI1-5, LSI2-1, LSI2-2, LSI2-3, LSI2-5, and LSM3-1-4 were identified as Lactobacillus plantarum subsp. plantarum; isolate LSM1-4 was Lactobacillus argentoratensis; isolates CAB1-2, CAB1-5, CAB1-7, and LSI1-4 were Lactobacillus pentosus; and CAB1-1, LSM3-1-1 and LSM3-2-3 were Lactobacillus fermentum. Strains LSI2-1 and CAB1-7 from pickled vegetables were selected for genome analysis. The gadA gene (1410 bp, 470aa) was encountered in GABA production of both strains and no other glutamate decarboxylase (GAD) genes were found in the genomes when compared with other LAB strains. The presence of gadA is evidence for GABA production. Strains LSI2-1 and CAB1-7 produced 22.94 g/L and 11.59 g/L of GABA in GYP broth supplemented with 3% (w/v) MSG at 30 °C for 72 h, respectively. CONCLUSIONS: Our report highlights the characterization of LAB and GABA production of L. plantarum LSI2-1 strain with its GABA synthesis gene. GABA production of strains LSI2-1 and CAB1-7 in GYP broth with 3% (w/v) MSG and comparative GAD genes.


Assuntos
Alimentos Fermentados/microbiologia , Lactobacillales , Ácido gama-Aminobutírico/metabolismo , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Genômica , Glutamato Descarboxilase/genética , Lactobacillales/genética , Lactobacillales/metabolismo , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA